Tag Archives: computer

#435626 Video Friday: Watch Robots Make a Crepe ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. Every week, we also post a calendar of upcoming robotics events; here's what we have so far (send us your events!):

Robotronica – August 18, 2019 – Brisbane, Australia
CLAWAR 2019 – August 26-28, 2019 – Kuala Lumpur, Malaysia
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi
Humanoids 2019 – October 15-17, 2019 – Toronto
ARSO 2019 – October 31-November 2, 2019 – Beijing
ROSCon 2019 – October 31-November 1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today's videos.

Team CoSTAR (JPL, MIT, Caltech, KAIST, LTU) has one of the more diverse teams of robots that we’ve seen:

[ Team CoSTAR ]

A team from Carnegie Mellon University and Oregon State University is sending ground and aerial autonomous robots into a Pittsburgh-area mine to prepare for this month’s DARPA Subterranean Challenge.

“Look at that fire extinguisher, what a beauty!” Expect to hear a lot more of that kind of weirdness during SubT.

[ CMU ]

Unitree Robotics is starting to batch-manufacture Laikago Pro quadrupeds, and if you buy four of them, they can carry you around in a chair!

I’m also really liking these videos from companies that are like, “We have a whole bunch of robot dogs now—what weird stuff can we do with them?”

[ Unitree Robotics ]

Why take a handful of pills every day for all the stuff that's wrong with you, when you could take one custom pill instead? Because custom pills are time-consuming to make, that’s why. But robots don’t care!

Multiply Labs’ factory is designed to operate in parallel. All the filling robots and all the quality-control robots are operating at the same time. The robotic arm, in the meanwhile, shuttles dozens of trays up and down the production floor, making sure that each capsule is filled with the right drugs. The manufacturing cell shown in this article can produce 10,000 personalized capsules in an 8-hour shift. A single cell occupies just 128 square feet (12 square meters) on the production floor. This means that a regular production facility (~10,000 square feet, or 929 m2 ) can house 78 cells, for an overall output of 780,000 capsules per shift. This exceeds the output of most traditional manufacturers—while producing unique personalized capsules!

[ Multiply Labs ]

Thanks Fred!

If you’re getting tired of all those annoying drones that sound like giant bees, just have a listen to this turbine-powered one:

[ Malloy Aeronautics ]

In retrospect, it’s kind of amazing that nobody has bothered to put a functional robotic dog head on a quadruped robot before this, right?

Equipped with sensors, high-tech radar imaging, cameras and a directional microphone, this 100-pound (45-kilogram) super-robot is still a “puppy-in-training.” Just like a regular dog, he responds to commands such as “sit,” “stand,” and “lie down.” Eventually, he will be able to understand and respond to hand signals, detect different colors, comprehend many languages, coordinate his efforts with drones, distinguish human faces, and even recognize other dogs.

As an information scout, Astro’s key missions will include detecting guns, explosives and gun residue to assist police, the military, and security personnel. This robodog’s talents won’t just end there, he also can be programmed to assist as a service dog for the visually impaired or to provide medical diagnostic monitoring. The MPCR team also is training Astro to serve as a first responder for search-and-rescue missions such as hurricane reconnaissance as well as military maneuvers.

[ FAU ]

And now this amazing video, “The Coke Thief,” from ICRA 2005 (!):

[ Paper ]

CYBATHLON Series put the focus on one or two of the six disciplines and are organized in cooperation with international universities and partners. The CYBATHLON Arm and Leg Prosthesis Series took place in Karlsruhe, Germany, from 16 to 18 May and was organized in cooperation with the Karlsruhe Institute of Technology (KIT) and the trade fair REHAB Karlsruhe.

The CYBATHLON Wheelchair Series took place in Kawasaki, Japan on 5 May 2019 and was organized in cooperation with the CYBATHLON Wheelchair Series Japan Organizing Committee and supported by the Swiss Embassy.

[ Cybathlon ]

Rainbow crepe robot!

There’s also this other robot, which I assume does something besides what's in the video, because otherwise it appears to be a massively overengineered way of shaping cooked rice into a chubby triangle.

[ PC Watch ]

The Weaponized Plastic Fighting League at Fetch Robotics has had another season of shardation, deintegration, explodification, and other -tions. Here are a couple fan favorite match videos:

[ Fetch Robotics ]

This video is in German, but it’s worth watching for the three seconds of extremely satisfying footage showing a robot twisting dough into pretzels.

[ Festo ]

Putting brains into farming equipment is a no-brainer, since it’s a semi-structured environment that's generally clear of wayward humans driving other vehicles.

[ Lovol ]

Thanks Fan!

Watch some robots assemble suspiciously Lego-like (but definitely not actually Lego) minifigs.

[ DevLinks ]

The Robotics Innovation Facility (RIFBristol) helps businesses, entrepreneurs, researchers and public sector bodies to embrace the concept of ‘Industry 4.0'. From training your staff in robotics, and demonstrating how automation can improve your manufacturing processes, to prototyping and validating your new innovations—we can provide the support you need.

[ RIF ]

Ryan Gariepy from Clearpath Robotics (and a bunch of other stuff) gave a talk at ICRA with the title of “Move Fast and (Don’t) Break Things: Commercializing Robotics at the Speed of Venture Capital,” which is more interesting when you know that this year’s theme was “Notable Failures.”

[ Clearpath Robotics ]

In this week’s episode of Robots in Depth, Per interviews Michael Nielsen, a computer vision researcher at the Danish Technological Institute.

Michael worked with a fusion of sensors like stereo vision, thermography, radar, lidar and high-frame-rate cameras, merging multiple images for high dynamic range. All this, to be able to navigate the tricky situation in a farm field where you need to navigate close to or even in what is grown. Multibaseline cameras were also used to provide range detection over a wide range of distances.

We also learn about how he expanded his work into sorting recycling, a very challenging problem. We also hear about the problems faced when using time of flight and sheet of light cameras. He then shares some good results using stereo vision, especially combined with blue light random dot projectors.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435619 Video Friday: Watch This Robot Dog ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, CA, USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Team PLUTO (University of Pennsylvania, Ghost Robotics, and Exyn Technologies) put together this video giving us a robot’s-eye-view (or whatever they happen to be using for eyes) of the DARPA Subterranean Challenge tunnel circuits.

[ PLUTO ]

Zhifeng Huang has been improving his jet-stepping humanoid robot, which features new hardware and the ability to take larger and more complex steps.

This video reported the last progress of an ongoing project utilizing ducted-fan propulsion system to improve humanoid robot’s ability in stepping over large ditches. The landing point of the robot’s swing foot can be not only forward but also side direction. With keeping quasi-static balance, the robot was able to step over a ditch with 450mm in width (up to 97% of the robot’s leg’s length) in 3D stepping.

[ Paper ]

Thanks Zhifeng!

These underacuated hands from Matei Ciocarlie’s lab at Columbia are magically able to reconfigure themselves to grasp different object types with just one or two motors.

[ Paper ] via [ ROAM Lab ]

This is one reason we should pursue not “autonomous cars” but “fully autonomous cars” that never require humans to take over. We can’t be trusted.

During our early days as the Google self-driving car project, we invited some employees to test our vehicles on their commutes and weekend trips. What we were testing at the time was similar to the highway driver assist features that are now available on cars today, where the car takes over the boring parts of the driving, but if something outside its ability occurs, the driver has to take over immediately.

What we saw was that our testers put too much trust in that technology. They were doing things like texting, applying makeup, and even falling asleep that made it clear they would not be ready to take over driving if the vehicle asked them to. This is why we believe that nothing short of full autonomy will do.

[ Waymo ]

Buddy is a DIY and fetchingly minimalist social robot (of sorts) that will be coming to Kickstarter this month.

We have created a new arduino kit. His name is Buddy. He is a DIY social robot to serve as a replacement for Jibo, Cozmo, or any of the other bots that are no longer available. Fully 3D printed and supported he adds much more to our series of Arduino STEM robotics kits.

Buddy is able to look around and map his surroundings and react to changes within them. He can be surprised and he will always have a unique reaction to changes. The kit can be built very easily in less than an hour. It is even robust enough to take the abuse that kids can give it in a classroom.

[ Littlebots ]

The android Mindar, based on the Buddhist deity of mercy, preaches sermons at Kodaiji temple in Kyoto, and its human colleagues predict that with artificial intelligence it could one day acquire unlimited wisdom. Developed at a cost of almost $1 million (¥106 million) in a joint project between the Zen temple and robotics professor Hiroshi Ishiguro, the robot teaches about compassion and the dangers of desire, anger and ego.

[ Japan Times ]

I’m not sure whether it’s the sound or what, but this thing scares me for some reason.

[ BIRL ]

This gripper uses magnets as a sort of adjustable spring for dynamic stiffness control, which seems pretty clever.

[ Buffalo ]

What a package of medicine sees while being flown by drone from a hospital to a remote clinic in the Dominican Republic. The drone flew 11 km horizontally and 800 meters vertically, and I can’t even imagine what it would take to make that drive.

[ WeRobotics ]

My first ride in a fully autonomous car was at Stanford in 2009. I vividly remember getting in the back seat of a descendant of Junior, and watching the steering wheel turn by itself as the car executed a perfect parking maneuver. Ten years later, it’s still fun to watch other people have that experience.

[ Waymo ]

Flirtey, the pioneer of the commercial drone delivery industry, has unveiled the much-anticipated first video of its next-generation delivery drone, the Flirtey Eagle. The aircraft designer and manufacturer also unveiled the Flirtey Portal, a sophisticated take off and landing platform that enables scalable store-to-door operations; and an autonomous software platform that enables drones to deliver safely to homes.

[ Flirtey ]

EPFL scientists are developing new approaches for improved control of robotic hands – in particular for amputees – that combines individual finger control and automation for improved grasping and manipulation. This interdisciplinary proof-of-concept between neuroengineering and robotics was successfully tested on three amputees and seven healthy subjects.

[ EPFL ]

This video is a few years old, but we’ll take any excuse to watch the majestic sage-grouse be majestic in all their majesticness.

[ UC Davis ]

I like the idea of a game of soccer (or, football to you weirdos in the rest of the world) where the ball has a mind of its own.

[ Sphero ]

Looks like the whole delivery glider idea is really taking off! Or, you know, not taking off.

Weird that they didn’t show the landing, because it sure looked like it was going to plow into the side of the hill at full speed.

[ Yates ] via [ sUAS News ]

This video is from a 2018 paper, but it’s not like we ever get tired of seeing quadrupeds do stuff, right?

[ MIT ]

Founder and Head of Product, Ian Bernstein, and Head of Engineering, Morgan Bell, have been involved in the Misty project for years and they have learned a thing or two about building robots. Hear how and why Misty evolved into a robot development platform, learn what some of the earliest prototypes did (and why they didn’t work for what we envision), and take a deep dive into the technology decisions that form the Misty II platform.

[ Misty Robotics ]

Lex Fridman interviews Vijay Kumar on the Artifiical Intelligence Podcast.

[ AI Podcast ]

This week’s CMU RI Seminar is from Ross Knepper at Cornell, on Formalizing Teamwork in Human-Robot Interaction.

Robots out in the world today work for people but not with people. Before robots can work closely with ordinary people as part of a human-robot team in a home or office setting, robots need the ability to acquire a new mix of functional and social skills. Working with people requires a shared understanding of the task, capabilities, intentions, and background knowledge. For robots to act jointly as part of a team with people, they must engage in collaborative planning, which involves forming a consensus through an exchange of information about goals, capabilities, and partial plans. Often, much of this information is conveyed through implicit communication. In this talk, I formalize components of teamwork involving collaboration, communication, and representation. I illustrate how these concepts interact in the application of social navigation, which I argue is a first-class example of teamwork. In this setting, participants must avoid collision by legibly conveying intended passing sides via nonverbal cues like path shape. A topological representation using the braid groups enables the robot to reason about a small enumerable set of passing outcomes. I show how implicit communication of topological group plans achieves rapid covergence to a group consensus, and how a robot in the group can deliberately influence the ultimate outcome to maximize joint performance, yielding pedestrian comfort with the robot.

[ CMU RI ]

In this week’s episode of Robots in Depth, Per speaks with Julien Bourgeois about Claytronics, a project from Carnegie Mellon and Intel to develop “programmable matter.”

Julien started out as a computer scientist. He was always interested in robotics privately but then had the opportunity to get into micro robots when his lab was merged into the FEMTO-ST Institute. He later worked with Seth Copen Goldstein at Carnegie Mellon on the Claytronics project.

Julien shows an enlarged mock-up of the small robots that make up programmable matter, catoms, and speaks about how they are designed. Currently he is working on a unit that is one centimeter in diameter and he shows us the very small CPU that goes into that model.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435614 3 Easy Ways to Evaluate AI Claims

When every other tech startup claims to use artificial intelligence, it can be tough to figure out if an AI service or product works as advertised. In the midst of the AI “gold rush,” how can you separate the nuggets from the fool’s gold?

There’s no shortage of cautionary tales involving overhyped AI claims. And applying AI technologies to health care, education, and law enforcement mean that getting it wrong can have real consequences for society—not just for investors who bet on the wrong unicorn.

So IEEE Spectrum asked experts to share their tips for how to identify AI hype in press releases, news articles, research papers, and IPO filings.

“It can be tricky, because I think the people who are out there selling the AI hype—selling this AI snake oil—are getting more sophisticated over time,” says Tim Hwang, director of the Harvard-MIT Ethics and Governance of AI Initiative.

The term “AI” is perhaps most frequently used to describe machine learning algorithms (and deep learning algorithms, which require even less human guidance) that analyze huge amounts of data and make predictions based on patterns that humans might miss. These popular forms of AI are mostly suited to specialized tasks, such as automatically recognizing certain objects within photos. For that reason, they are sometimes described as “weak” or “narrow” AI.

Some researchers and thought leaders like to talk about the idea of “artificial general intelligence” or “strong AI” that has human-level capacity and flexibility to handle many diverse intellectual tasks. But for now, this type of AI remains firmly in the realm of science fiction and is far from being realized in the real world.

“AI has no well-defined meaning and many so-called AI companies are simply trying to take advantage of the buzz around that term,” says Arvind Narayanan, a computer scientist at Princeton University. “Companies have even been caught claiming to use AI when, in fact, the task is done by human workers.”

Here are three ways to recognize AI hype.

Look for Buzzwords
One red flag is what Hwang calls the “hype salad.” This means stringing together the term “AI” with many other tech buzzwords such as “blockchain” or “Internet of Things.” That doesn’t automatically disqualify the technology, but spotting a high volume of buzzwords in a post, pitch, or presentation should raise questions about what exactly the company or individual has developed.

Other experts agree that strings of buzzwords can be a red flag. That’s especially true if the buzzwords are never really explained in technical detail, and are simply tossed around as vague, poorly-defined terms, says Marzyeh Ghassemi, a computer scientist and biomedical engineer at the University of Toronto in Canada.

“I think that if it looks like a Google search—picture ‘interpretable blockchain AI deep learning medicine’—it's probably not high-quality work,” Ghassemi says.

Hwang also suggests mentally replacing all mentions of “AI” in an article with the term “magical fairy dust.” It’s a way of seeing whether an individual or organization is treating the technology like magic. If so—that’s another good reason to ask more questions about what exactly the AI technology involves.

And even the visual imagery used to illustrate AI claims can indicate that an individual or organization is overselling the technology.

“I think that a lot of the people who work on machine learning on a day-to-day basis are pretty humble about the technology, because they’re largely confronted with how frequently it just breaks and doesn't work,” Hwang says. “And so I think that if you see a company or someone representing AI as a Terminator head, or a big glowing HAL eye or something like that, I think it’s also worth asking some questions.”

Interrogate the Data

It can be hard to evaluate AI claims without any relevant expertise, says Ghassemi at the University of Toronto. Even experts need to know the technical details of the AI algorithm in question and have some access to the training data that shaped the AI model’s predictions. Still, savvy readers with some basic knowledge of applied statistics can search for red flags.

To start, readers can look for possible bias in training data based on small sample sizes or a skewed population that fails to reflect the broader population, Ghassemi says. After all, an AI model trained only on health data from white men would not necessarily achieve similar results for other populations of patients.

“For me, a red flag is not demonstrating deep knowledge of how your labels are defined.”
—Marzyeh Ghassemi, University of Toronto

How machine learning and deep learning models perform also depends on how well humans labeled the sample datasets use to train these programs. This task can be straightforward when labeling photos of cats versus dogs, but gets more complicated when assigning disease diagnoses to certain patient cases.

Medical experts frequently disagree with each other on diagnoses—which is why many patients seek a second opinion. Not surprisingly, this ambiguity can also affect the diagnostic labels that experts assign in training datasets. “For me, a red flag is not demonstrating deep knowledge of how your labels are defined,” Ghassemi says.

Such training data can also reflect the cultural stereotypes and biases of the humans who labeled the data, says Narayanan at Princeton University. Like Ghassemi, he recommends taking a hard look at exactly what the AI has learned: “A good way to start critically evaluating AI claims is by asking questions about the training data.”

Another red flag is presenting an AI system’s performance through a single accuracy figure without much explanation, Narayanan says. Claiming that an AI model achieves “99 percent” accuracy doesn’t mean much without knowing the baseline for comparison—such as whether other systems have already achieved 99 percent accuracy—or how well that accuracy holds up in situations beyond the training dataset.

Narayanan also emphasized the need to ask questions about an AI model’s false positive rate—the rate of making wrong predictions about the presence of a given condition. Even if the false positive rate of a hypothetical AI service is just one percent, that could have major consequences if that service ends up screening millions of people for cancer.

Readers can also consider whether using AI in a given situation offers any meaningful improvement compared to traditional statistical methods, says Clayton Aldern, a data scientist and journalist who serves as managing director for Caldern LLC. He gave the hypothetical example of a “super-duper-fancy deep learning model” that achieves a prediction accuracy of 89 percent, compared to a “little polynomial regression model” that achieves 86 percent on the same dataset.

“We're talking about a three-percentage-point increase on something that you learned about in Algebra 1,” Aldern says. “So is it worth the hype?”

Don’t Ignore the Drawbacks

The hype surrounding AI isn’t just about the technical merits of services and products driven by machine learning. Overblown claims about the beneficial impacts of AI technology—or vague promises to address ethical issues related to deploying it—should also raise red flags.

“If a company promises to use its tech ethically, it is important to question if its business model aligns with that promise,” Narayanan says. “Even if employees have noble intentions, it is unrealistic to expect the company as a whole to resist financial imperatives.”

One example might be a company with a business model that depends on leveraging customers’ personal data. Such companies “tend to make empty promises when it comes to privacy,” Narayanan says. And, if companies hire workers to produce training data, it’s also worth asking whether the companies treat those workers ethically.

The transparency—or lack thereof—about any AI claim can also be telling. A company or research group can minimize concerns by publishing technical claims in peer-reviewed journals or allowing credible third parties to evaluate their AI without giving away big intellectual property secrets, Narayanan says. Excessive secrecy is a big red flag.

With these strategies, you don’t need to be a computer engineer or data scientist to start thinking critically about AI claims. And, Narayanan says, the world needs many people from different backgrounds for societies to fully consider the real-world implications of AI.

Editor’s Note: The original version of this story misspelled Clayton Aldern’s last name as Alderton. Continue reading

Posted in Human Robots

#435601 New Double 3 Robot Makes Telepresence ...

Today, Double Robotics is announcing Double 3, the latest major upgrade to its line of consumer(ish) telepresence robots. We had a (mostly) fantastic time testing out Double 2 back in 2016. One of the things that we found out back then was that it takes a lot of practice to remotely drive the robot around. Double 3 solves this problem by leveraging the substantial advances in 3D sensing and computing that have taken place over the past few years, giving their new robot a level of intelligence that promises to make telepresence more accessible for everyone.

Double 2’s iPad has been replaced by “a fully integrated solution”—which is a fancy way of saying a dedicated 9.7-inch touchscreen and a whole bunch of other stuff. That other stuff includes an NVIDIA Jetson TX2 AI computing module, a beamforming six-microphone array, an 8-watt speaker, a pair of 13-megapixel cameras (wide angle and zoom) on a tilting mount, five ultrasonic rangefinders, and most excitingly, a pair of Intel RealSense D430 depth sensors.

It’s those new depth sensors that really make Double 3 special. The D430 modules each uses a pair of stereo cameras with a pattern projector to generate 1280 x 720 depth data with a range of between 0.2 and 10 meters away. The Double 3 robot uses all of this high quality depth data to locate obstacles, but at this point, it still doesn’t drive completely autonomously. Instead, it presents the remote operator with a slick, augmented reality view of drivable areas in the form of a grid of dots. You just click where you want the robot to go, and it will skillfully take itself there while avoiding obstacles (including dynamic obstacles) and related mishaps along the way.

This effectively offloads the most stressful part of telepresence—not running into stuff—from the remote user to the robot itself, which is the way it should be. That makes it that much easier to encourage people to utilize telepresence for the first time. The way the system is implemented through augmented reality is particularly impressive, I think. It looks like it’s intuitive enough for an inexperienced user without being restrictive, and is a clever way of mitigating even significant amounts of lag.

Otherwise, Double 3’s mobility system is exactly the same as the one featured on Double 2. In fact, that you can stick a Double 3 head on a Double 2 body and it instantly becomes a Double 3. Double Robotics is thoughtfully offering this to current Double 2 owners as a significantly more affordable upgrade option than buying a whole new robot.

For more details on all of Double 3's new features, we spoke with the co-founders of Double Robotics, Marc DeVidts and David Cann.

IEEE Spectrum: Why use this augmented reality system instead of just letting the user click on a regular camera image? Why make things more visually complicated, especially for new users?

Marc DeVidts and David Cann: One of the things that we realized about nine months ago when we got this whole thing working was that without the mixed reality for driving, it was really too magical of an experience for the customer. Even us—we had a hard time understanding whether the robot could really see obstacles and understand where the floor is and that kind of thing. So, we said “What would be the best way of communicating this information to the user?” And the right way to do it ended up drawing the graphics directly onto the scene. It’s really awesome—we have a full, real time 3D scene with the depth information drawn on top of it. We’re starting with some relatively simple graphics, and we’ll be adding more graphics in the future to help the user understand what the robot is seeing.

How robust is the vision system when it comes to obstacle detection and avoidance? Does it work with featureless surfaces, IR absorbent surfaces, in low light, in direct sunlight, etc?

We’ve looked at all of those cases, and one of the reasons that we’re going with the RealSense is the projector that helps us to see blank walls. We also found that having two sensors—one facing the floor and one facing forward—gives us a great coverage area. Having ultrasonic sensors in there as well helps us to detect anything that we can't see with the cameras. They're sort of a last safety measure, especially useful for detecting glass.

It seems like there’s a lot more that you could do with this sensing and mapping capability. What else are you working on?

We're starting with this semi-autonomous driving variant, and we're doing a private beta of full mapping. So, we’re going to do full SLAM of your environment that will be mapped by multiple robots at the same time while you're driving, and then you'll be able to zoom out to a map and click anywhere and it will drive there. That's where we're going with it, but we want to take baby steps to get there. It's the obvious next step, I think, and there are a lot more possibilities there.

Do you expect developers to be excited for this new mapping capability?

We're using a very powerful computer in the robot, a NVIDIA Jetson TX2 running Ubuntu. There's room to grow. It’s actually really exciting to be able to see, in real time, the 3D pose of the robot along with all of the depth data that gets transformed in real time into one view that gives you a full map. Having all of that data and just putting those pieces together and getting everything to work has been a huge feat in of itself.

We have an extensive API for developers to do custom implementations, either for telepresence or other kinds of robotics research. Our system isn't running ROS, but we're going to be adding ROS adapters for all of our hardware components.

Telepresence robots depend heavily on wireless connectivity, which is usually not something that telepresence robotics companies like Double have direct control over. Have you found that connectivity has been getting significantly better since you first introduced Double?

When we started in 2013, we had a lot of customers that didn’t have WiFi in their hallways, just in the conference rooms. We very rarely hear about customers having WiFi connectivity issues these days. The bigger issue we see is when people are calling into the robot from home, where they don't have proper traffic management on their home network. The robot doesn't need a ton of bandwidth, but it does need consistent, low latency bandwidth. And so, if someone else in the house is watching Netflix or something like that, it’s going to saturate your connection. But for the most part, it’s gotten a lot better over the last few years, and it’s no longer a big problem for us.

Do you think 5G will make a significant difference to telepresence robots?

We’ll see. We like the low latency possibilities and the better bandwidth, but it's all going to be a matter of what kind of reception you get. LTE can be great, if you have good reception; it’s all about where the tower is. I’m pretty sure that WiFi is going to be the primary thing for at least the next few years.

DeVidts also mentioned that an unfortunate side effect of the new depth sensors is that hanging a t-shirt on your Double to give it some personality will likely render it partially blind, so that's just something to keep in mind. To make up for this, you can switch around the colorful trim surrounding the screen, which is nowhere near as fun.

When the Double 3 is ready for shipping in late September, US $2,000 will get you the new head with all the sensors and stuff, which seamlessly integrates with your Double 2 base. Buying Double 3 straight up (with the included charging dock) will run you $4,ooo. This is by no means an inexpensive robot, and my impression is that it’s not really designed for individual consumers. But for commercial, corporate, healthcare, or education applications, $4k for a robot as capable as the Double 3 is really quite a good deal—especially considering the kinds of use cases for which it’s ideal.

[ Double Robotics ] Continue reading

Posted in Human Robots

#435597 Water Jet Powered Drone Takes Off With ...

At ICRA 2015, the Aerial Robotics Lab at the Imperial College London presented a concept for a multimodal flying swimming robot called AquaMAV. The really difficult thing about a flying and swimming robot isn’t so much the transition from the first to the second, since you can manage that even if your robot is completely dead (thanks to gravity), but rather the other way: going from water to air, ideally in a stable and repetitive way. The AquaMAV concept solved this by basically just applying as much concentrated power as possible to the problem, using a jet thruster to hurl the robot out of the water with quite a bit of velocity to spare.

In a paper appearing in Science Robotics this week, the roboticists behind AquaMAV present a fully operational robot that uses a solid-fuel powered chemical reaction to generate an explosion that powers the robot into the air.

The 2015 version of AquaMAV, which was mostly just some very vintage-looking computer renderings and a little bit of hardware, used a small cylinder of CO2 to power its water jet thruster. This worked pretty well, but the mass and complexity of the storage and release mechanism for the compressed gas wasn’t all that practical for a flying robot designed for long-term autonomy. It’s a familiar challenge, especially for pneumatically powered soft robots—how do you efficiently generate gas on-demand, especially if you need a lot of pressure all at once?

An explosion propels the drone out of the water
There’s one obvious way of generating large amounts of pressurized gas all at once, and that’s explosions. We’ve seen robots use explosive thrust for mobility before, at a variety of scales, and it’s very effective as long as you can both properly harness the explosion and generate the fuel with a minimum of fuss, and this latest version of AquaMAV manages to do both:

The water jet coming out the back of this robot aircraft is being propelled by a gas explosion. The gas comes from the reaction between a little bit of calcium carbide powder stored inside the robot, and water. Water is mixed with the powder one drop at a time, producing acetylene gas, which gets piped into a combustion chamber along with air and water. When ignited, the acetylene air mixture explodes, forcing the water out of the combustion chamber and providing up to 51 N of thrust, which is enough to launch the 160-gram robot 26 meters up and over the water at 11 m/s. It takes just 50 mg of calcium carbide (mixed with 3 drops of water) to generate enough acetylene for each explosion, and both air and water are of course readily available. With 0.2 g of calcium carbide powder on board, the robot has enough fuel for multiple jumps, and the jump is powerful enough that the robot can get airborne even under fairly aggressive sea conditions.

Image: Science Robotics

The robot can transition from a floating state to an airborne jetting phase and back to floating (A). A 3D model render of the underside of the robot (B) shows the electronics capsule. The capsule contains the fuel tank (C), where calcium carbide reacts with air and water to propel the vehicle.

Next step: getting the robot to fly autonomously
Providing adequate thrust is just one problem that needs to be solved when attempting to conquer the water-air transition with a fixed-wing robot. The overall design of the robot itself is a challenge as well, because the optimal design and balance for the robot is quite different in each phase of operation, as the paper describes:

For the vehicle to fly in a stable manner during the jetting phase, the center of mass must be a significant distance in front of the center of pressure of the vehicle. However, to maintain a stable floating position on the water surface and the desired angle during jetting, the center of mass must be located behind the center of buoyancy. For the gliding phase, a fine balance between the center of mass and the center of pressure must be struck to achieve static longitudinal flight stability passively. During gliding, the center of mass should be slightly forward from the wing’s center of pressure.

The current version is mostly optimized for the jetting phase of flight, and doesn’t have any active flight control surfaces yet, but the researchers are optimistic that if they added some they’d have no problem getting the robot to fly autonomously. It’s just a glider at the moment, but a low-power propeller is the obvious step after that, and to get really fancy, a switchable gearbox could enable efficient movement on water as well as in the air. Long-term, the idea is that robots like these would be useful for tasks like autonomous water sampling over large areas, but I’d personally be satisfied with a remote controlled version that I could take to the beach.

“Consecutive aquatic jump-gliding with water-reactive fuel,” by R. Zufferey, A. Ortega Ancel, A. Farinha, R. Siddall, S. F. Armanini, M. Nasr, R. V. Brahmal, G. Kennedy, and M. Kovac from Imperial College in London, is published in the current issue of Science Robotics. Continue reading

Posted in Human Robots