Tag Archives: computer
#439913 A system to control robotic arms based ...
For people with motor impairments or physical disabilities, completing daily tasks and house chores can be incredibly challenging. Recent advancements in robotics, such as brain-controlled robotic limbs, have the potential to significantly improve their quality of life. Continue reading
#439721 New Study Finds a Single Neuron Is a ...
Comparing brains to computers is a long and dearly held analogy in both neuroscience and computer science.
It’s not hard to see why.
Our brains can perform many of the tasks we want computers to handle with an easy, mysterious grace. So, it goes, understanding the inner workings of our minds can help us build better computers; and those computers can help us better understand our own minds. Also, if brains are like computers, knowing how much computation it takes them to do what they do can help us predict when machines will match minds.
Indeed, there’s already a productive flow of knowledge between the fields.
Deep learning, a powerful form of artificial intelligence, for example, is loosely modeled on the brain’s vast, layered networks of neurons.
You can think of each “node” in a deep neural network as an artificial neuron. Like neurons, nodes receive signals from other nodes connected to them and perform mathematical operations to transform input into output.
Depending on the signals a node receives, it may opt to send its own signal to all the nodes in its network. In this way, signals cascade through layer upon layer of nodes, progressively tuning and sharpening the algorithm.
The brain works like this too. But the keyword above is loosely.
Scientists know biological neurons are more complex than the artificial neurons employed in deep learning algorithms, but it’s an open question just how much more complex.
In a fascinating paper published recently in the journal Neuron, a team of researchers from the Hebrew University of Jerusalem tried to get us a little closer to an answer. While they expected the results would show biological neurons are more complex—they were surprised at just how much more complex they actually are.
In the study, the team found it took a five- to eight-layer neural network, or nearly 1,000 artificial neurons, to mimic the behavior of a single biological neuron from the brain’s cortex.
Though the researchers caution the results are an upper bound for complexity—as opposed to an exact measurement of it—they also believe their findings might help scientists further zero in on what exactly makes biological neurons so complex. And that knowledge, perhaps, can help engineers design even more capable neural networks and AI.
“[The result] forms a bridge from biological neurons to artificial neurons,” Andreas Tolias, a computational neuroscientist at Baylor College of Medicine, told Quanta last week.
Amazing Brains
Neurons are the cells that make up our brains. There are many different types of neurons, but generally, they have three parts: spindly, branching structures called dendrites, a cell body, and a root-like axon.
On one end, dendrites connect to a network of other neurons at junctures called synapses. At the other end, the axon forms synapses with a different population of neurons. Each cell receives electrochemical signals through its dendrites, filters those signals, and then selectively passes along its own signals (or spikes).
To computationally compare biological and artificial neurons, the team asked: How big of an artificial neural network would it take to simulate the behavior of a single biological neuron?
First, they built a model of a biological neuron (in this case, a pyramidal neuron from a rat’s cortex). The model used some 10,000 differential equations to simulate how and when the neuron would translate a series of input signals into a spike of its own.
They then fed inputs into their simulated neuron, recorded the outputs, and trained deep learning algorithms on all the data. Their goal? Find the algorithm that could most accurately approximate the model.
(Video: A model of a pyramidal neuron (left) receives signals through its dendritic branches. In this case, the signals provoke three spikes.)
They increased the number of layers in the algorithm until it was 99 percent accurate at predicting the simulated neuron’s output given a set of inputs. The sweet spot was at least five layers but no more than eight, or around 1,000 artificial neurons per biological neuron. The deep learning algorithm was much simpler than the original model—but still quite complex.
From where does this complexity arise?
As it turns out, it’s mostly due to a type of chemical receptor in dendrites—the NMDA ion channel—and the branching of dendrites in space. “Take away one of those things, and a neuron turns [into] a simple device,” lead author David Beniaguev tweeted in 2019, describing an earlier version of the work published as a preprint.
Indeed, after removing these features, the team found they could match the simplified biological model with but a single-layer deep learning algorithm.
A Moving Benchmark
It’s tempting to extrapolate the team’s results to estimate the computational complexity of the whole brain. But we’re nowhere near such a measure.
For one, it’s possible the team didn’t find the most efficient algorithm.
It’s common for the the developer community to rapidly improve upon the first version of an advanced deep learning algorithm. Given the intensive iteration in the study, the team is confident in the results, but they also released the model, data, and algorithm to the scientific community to see if anyone could do better.
Also, the model neuron is from a rat’s brain, as opposed to a human’s, and it’s only one type of brain cell. Further, the study is comparing a model to a model—there is, as of yet, no way to make a direct comparison to a physical neuron in the brain. It’s entirely possible the real thing is more, not less, complex.
Still, the team believes their work can push neuroscience and AI forward.
In the former case, the study is further evidence dendrites are complicated critters worthy of more attention. In the latter, it may lead to radical new algorithmic architectures.
Idan Segev, a coauthor on the paper, suggests engineers should try replacing the simple artificial neurons in today’s algorithms with a mini five-layer network simulating a biological neuron. “We call for the replacement of the deep network technology to make it closer to how the brain works by replacing each simple unit in the deep network today with a unit that represents a neuron, which is already—on its own—deep,” Segev said.
Whether so much added complexity would pay off is uncertain. Experts debate how much of the brain’s detail algorithms need to capture to achieve similar or better results.
But it’s hard to argue with millions of years of evolutionary experimentation. So far, following the brain’s blueprint has been a rewarding strategy. And if this work is any indication, future neural networks may well dwarf today’s in size and complexity.
Image Credit: NICHD/S. Jeong Continue reading
#439414 Air-powered computer memory helps soft ...
Engineers at UC Riverside have unveiled an air-powered computer memory that can be used to control soft robots. The innovation overcomes one of the biggest obstacles to advancing soft robotics: the fundamental mismatch between pneumatics and electronics. The work is published in the open-access journal, PLOS One. Continue reading
#439073 There’s a ‘New’ Nirvana Song Out, ...
One of the primary capabilities separating human intelligence from artificial intelligence is our ability to be creative—to use nothing but the world around us, our experiences, and our brains to create art. At present, AI needs to be extensively trained on human-made works of art in order to produce new work, so we’ve still got a leg up. That said, neural networks like OpenAI’s GPT-3 and Russian designer Nikolay Ironov have been able to create content indistinguishable from human-made work.
Now there’s another example of AI artistry that’s hard to tell apart from the real thing, and it’s sure to excite 90s alternative rock fans the world over: a brand-new, never-heard-before Nirvana song. Or, more accurately, a song written by a neural network that was trained on Nirvana’s music.
The song is called “Drowned in the Sun,” and it does have a pretty Nirvana-esque ring to it. The neural network that wrote it is Magenta, which was launched by Google in 2016 with the goal of training machines to create art—or as the tool’s website puts it, exploring the role of machine learning as a tool in the creative process. Magenta was built using TensorFlow, Google’s massive open-source software library focused on deep learning applications.
The song was written as part of an album called Lost Tapes of the 27 Club, a project carried out by a Toronto-based organization called Over the Bridge focused on mental health in the music industry.
Here’s how a computer was able to write a song in the unique style of a deceased musician. Music, 20 to 30 tracks, was fed into Magenta’s neural network in the form of MIDI files. MIDI stands for Musical Instrument Digital Interface, and the format contains the details of a song written in code that represents musical parameters like pitch and tempo. Components of each song, like vocal melody or rhythm guitar, were fed in one at a time.
The neural network found patterns in these different components, and got enough of a handle on them that when given a few notes to start from, it could use those patterns to predict what would come next; in this case, chords and melodies that sound like they could’ve been written by Kurt Cobain.
To be clear, Magenta didn’t spit out a ready-to-go song complete with lyrics. The AI wrote the music, but a different neural network wrote the lyrics (using essentially the same process as Magenta), and the team then sifted through “pages and pages” of output to find lyrics that fit the melodies Magenta created.
Eric Hogan, a singer for a Nirvana tribute band who the Over the Bridge team hired to sing “Drowned in the Sun,” felt that the lyrics were spot-on. “The song is saying, ‘I’m a weirdo, but I like it,’” he said. “That is total Kurt Cobain right there. The sentiment is exactly what he would have said.”
Cobain isn’t the only musician the Lost Tapes project tried to emulate; songs in the styles of Jimi Hendrix, Jim Morrison, and Amy Winehouse were also included. What all these artists have in common is that they died by suicide at the age of 27.
The project is meant to raise awareness around mental health, particularly among music industry professionals. It’s not hard to think of great artists of all persuasions—musicians, painters, writers, actors—whose lives are cut short due to severe depression and other mental health issues for which it can be hard to get help. These issues are sometimes romanticized, as suffering does tend to create art that’s meaningful, relatable, and timeless. But according to the Lost Tapes website, suicide attempts among music industry workers are more than double that of the general population.
How many more hit songs would these artists have written if they were still alive? We’ll never know, but hopefully Lost Tapes of the 27 Club and projects like it will raise awareness of mental health issues, both in the music industry and in general, and help people in need find the right resources. Because no matter how good computers eventually get at creating music, writing, or other art, as Lost Tapes’ website pointedly says, “Even AI will never replace the real thing.”
Image Credit: Edward Xu on Unsplash Continue reading