Tag Archives: come
#436190 What Is the Uncanny Valley?
Have you ever encountered a lifelike humanoid robot or a realistic computer-generated face that seem a bit off or unsettling, though you can’t quite explain why?
Take for instance AVA, one of the “digital humans” created by New Zealand tech startup Soul Machines as an on-screen avatar for Autodesk. Watching a lifelike digital being such as AVA can be both fascinating and disconcerting. AVA expresses empathy through her demeanor and movements: slightly raised brows, a tilt of the head, a nod.
By meticulously rendering every lash and line in its avatars, Soul Machines aimed to create a digital human that is virtually undistinguishable from a real one. But to many, rather than looking natural, AVA actually looks creepy. There’s something about it being almost human but not quite that can make people uneasy.
Like AVA, many other ultra-realistic avatars, androids, and animated characters appear stuck in a disturbing in-between world: They are so lifelike and yet they are not “right.” This void of strangeness is known as the uncanny valley.
Uncanny Valley: Definition and History
The uncanny valley is a concept first introduced in the 1970s by Masahiro Mori, then a professor at the Tokyo Institute of Technology. The term describes Mori’s observation that as robots appear more humanlike, they become more appealing—but only up to a certain point. Upon reaching the uncanny valley, our affinity descends into a feeling of strangeness, a sense of unease, and a tendency to be scared or freaked out.
Image: Masahiro Mori
The uncanny valley as depicted in Masahiro Mori’s original graph: As a robot’s human likeness [horizontal axis] increases, our affinity towards the robot [vertical axis] increases too, but only up to a certain point. For some lifelike robots, our response to them plunges, and they appear repulsive or creepy. That’s the uncanny valley.
In his seminal essay for Japanese journal Energy, Mori wrote:
I have noticed that, in climbing toward the goal of making robots appear human, our affinity for them increases until we come to a valley, which I call the uncanny valley.
Later in the essay, Mori describes the uncanny valley by using an example—the first prosthetic hands:
One might say that the prosthetic hand has achieved a degree of resemblance to the human form, perhaps on a par with false teeth. However, when we realize the hand, which at first site looked real, is in fact artificial, we experience an eerie sensation. For example, we could be startled during a handshake by its limp boneless grip together with its texture and coldness. When this happens, we lose our sense of affinity, and the hand becomes uncanny.
In an interview with IEEE Spectrum, Mori explained how he came up with the idea for the uncanny valley:
“Since I was a child, I have never liked looking at wax figures. They looked somewhat creepy to me. At that time, electronic prosthetic hands were being developed, and they triggered in me the same kind of sensation. These experiences had made me start thinking about robots in general, which led me to write that essay. The uncanny valley was my intuition. It was one of my ideas.”
Uncanny Valley Examples
To better illustrate how the uncanny valley works, here are some examples of the phenomenon. Prepare to be freaked out.
1. Telenoid
Photo: Hiroshi Ishiguro/Osaka University/ATR
Taking the top spot in the “creepiest” rankings of IEEE Spectrum’s Robots Guide, Telenoid is a robotic communication device designed by Japanese roboticist Hiroshi Ishiguro. Its bald head, lifeless face, and lack of limbs make it seem more alien than human.
2. Diego-san
Photo: Andrew Oh/Javier Movellan/Calit2
Engineers and roboticists at the University of California San Diego’s Machine Perception Lab developed this robot baby to help parents better communicate with their infants. At 1.2 meters (4 feet) tall and weighing 30 kilograms (66 pounds), Diego-san is a big baby—bigger than an average 1-year-old child.
“Even though the facial expression is sophisticated and intuitive in this infant robot, I still perceive a false smile when I’m expecting the baby to appear happy,” says Angela Tinwell, a senior lecturer at the University of Bolton in the U.K. and author of The Uncanny Valley in Games and Animation. “This, along with a lack of detail in the eyes and forehead, can make the baby appear vacant and creepy, so I would want to avoid those ‘dead eyes’ rather than interacting with Diego-san.”
3. Geminoid HI
Photo: Osaka University/ATR/Kokoro
Another one of Ishiguro’s creations, Geminoid HI is his android replica. He even took hair from his own scalp to put onto his robot twin. Ishiguro says he created Geminoid HI to better understand what it means to be human.
4. Sophia
Photo: Mikhail Tereshchenko/TASS/Getty Images
Designed by David Hanson of Hanson Robotics, Sophia is one of the most famous humanoid robots. Like Soul Machines’ AVA, Sophia displays a range of emotional expressions and is equipped with natural language processing capabilities.
5. Anthropomorphized felines
The uncanny valley doesn’t only happen with robots that adopt a human form. The 2019 live-action versions of the animated film The Lion King and the musical Cats brought the uncanny valley to the forefront of pop culture. To some fans, the photorealistic computer animations of talking lions and singing cats that mimic human movements were just creepy.
Are you feeling that eerie sensation yet?
Uncanny Valley: Science or Pseudoscience?
Despite our continued fascination with the uncanny valley, its validity as a scientific concept is highly debated. The uncanny valley wasn’t actually proposed as a scientific concept, yet has often been criticized in that light.
Mori himself said in his IEEE Spectrum interview that he didn’t explore the concept from a rigorous scientific perspective but as more of a guideline for robot designers:
Pointing out the existence of the uncanny valley was more of a piece of advice from me to people who design robots rather than a scientific statement.
Karl MacDorman, an associate professor of human-computer interaction at Indiana University who has long studied the uncanny valley, interprets the classic graph not as expressing Mori’s theory but as a heuristic for learning the concept and organizing observations.
“I believe his theory is instead expressed by his examples, which show that a mismatch in the human likeness of appearance and touch or appearance and motion can elicit a feeling of eeriness,” MacDorman says. “In my own experiments, I have consistently reproduced this effect within and across sense modalities. For example, a mismatch in the human realism of the features of a face heightens eeriness; a robot with a human voice or a human with a robotic voice is eerie.”
How to Avoid the Uncanny Valley
Unless you intend to create creepy characters or evoke a feeling of unease, you can follow certain design principles to avoid the uncanny valley. “The effect can be reduced by not creating robots or computer-animated characters that combine features on different sides of a boundary—for example, human and nonhuman, living and nonliving, or real and artificial,” MacDorman says.
To make a robot or avatar more realistic and move it beyond the valley, Tinwell says to ensure that a character’s facial expressions match its emotive tones of speech, and that its body movements are responsive and reflect its hypothetical emotional state. Special attention must also be paid to facial elements such as the forehead, eyes, and mouth, which depict the complexities of emotion and thought. “The mouth must be modeled and animated correctly so the character doesn’t appear aggressive or portray a ‘false smile’ when they should be genuinely happy,” she says.
For Christoph Bartneck, an associate professor at the University of Canterbury in New Zealand, the goal is not to avoid the uncanny valley, but to avoid bad character animations or behaviors, stressing the importance of matching the appearance of a robot with its ability. “We’re trained to spot even the slightest divergence from ‘normal’ human movements or behavior,” he says. “Hence, we often fail in creating highly realistic, humanlike characters.”
But he warns that the uncanny valley appears to be more of an uncanny cliff. “We find the likability to increase and then crash once robots become humanlike,” he says. “But we have never observed them ever coming out of the valley. You fall off and that’s it.” Continue reading
#436184 Why People Demanded Privacy to Confide ...
This is part four of a six-part series on the history of natural language processing.
Between 1964 and 1966, Joseph Weizenbaum, a German American computer scientist at MIT’s artificial intelligence lab, developed the first-ever chatbot [PDF].
While there were already some rudimentary digital language generators in existence—programs that could spit out somewhat coherent lines of text—Weizenbaum’s program was the first designed explicitly for interactions with humans. The user could type in some statement or set of statements in their normal language, press enter, and receive a response from the machine. As Weizenbaum explained, his program made “certain kinds of natural-language conversation between man and computer possible.”
He named the program Eliza after Eliza Doolittle, the working-class hero of George Bernard Shaw’s Pygmalion who learns how to talk with an upper-class accent. The new Eliza was written for the 36-bit IBM 7094, an early transistorized mainframe computer, in a programming language that Weizenbaum developed called MAD-SLIP.
Because computer time was a valuable resource, Eliza could only be run via a time-sharing system; the user interacted with the program remotely via an electric typewriter and printer. When the user typed in a sentence and pressed enter, a message was sent to the mainframe computer. Eliza scanned the message for the presence of a keyword and used it in a new sentence to form a response that was sent back, printed out, and read by the user.
To encourage ongoing dialogue, Weizenbaum designed Eliza to simulate the type of conversational style used by a Rogerian psychoanalyst. The program would take something the user said and reflect it back with a question, as can be seen in the example below. (Notice how the program takes keywords like “boyfriend” and “depressed” and re-uses them.)
Human: Men are all alike.
Computer: IN WHAT WAY?
Human: They're always bugging us about something or other.
Computer: CAN YOU THINK OF A SPECIFIC EXAMPLE?
Human: Well, my boyfriend made me come here.
Computer: YOUR BOYFRIEND MADE YOU COME HERE
Human: He says I'm depressed much of the time.
Computer: I AM SORRY TO HEAR YOU ARE DEPRESSED
Human: It's true. I am unhappy.
Weizenbaum chose this mode of dialogue for Eliza because it gave the impression that the computer understood what was being said without having to offer anything new to the conversation. It created the illusion of comprehension and engagement in a mere 200 lines of code.
To test Eliza’s capacity to engage an interlocutor, Weizenbaum invited students and colleagues into his office and let them chat with the machine while he looked on. He noticed, with some concern, that during their brief interactions with Eliza, many users began forming emotional attachments to the algorithm. They would open up to the machine and confess problems they were facing in their lives and relationships.
During their brief interactions with Eliza, many users began forming emotional attachments to the algorithm.
Even more surprising was that this sense of intimacy persisted even after Weizenbaum described how the machine worked and explained that it didn’t really understand anything that was being said. Weizenbaum was most troubled when his secretary, who had watched him build the program from scratch over many months, insisted that he leave the room so she could talk to Eliza in private.
For Weizenbaum, this experiment with Eliza made him question an idea that Alan Turing had proposed in 1950 about machine intelligence. In his paper, entitled “Computing Machinery and Intelligence,” Turing suggested that if a computer could conduct a convincingly human conversation in text, one could assume it was intelligent—an idea that became the basis of the famous Turing Test.
But Eliza demonstrated that convincing communication between a human and a machine could take place even if comprehension only flowed from one side: The simulation of intelligence, rather than intelligence itself, was enough to fool people. Weizenbaum called this the Eliza effect, and believed it was a type of “delusional thinking” that humanity would collectively suffer from in the digital age. This insight was a profound shock for Weizenbaum, and one that came to define his intellectual trajectory over the next decade.
The simulation of intelligence, rather than intelligence itself, was enough to fool people.
In 1976, he published Computing Power and Human Reason: From Judgment to Calculation [PDF], which offered a long meditation on why people are willing to believe that a simple machine might be able to understand their complex human emotions.
In this book, he argues that the Eliza effect signifies a broader pathology afflicting “modern man.” In a world conquered by science, technology, and capitalism, people had grown accustomed to viewing themselves as isolated cogs in a large and uncaring machine. In such a diminished social world, Weizenbaum reasoned, people had grown so desperate for connection that they put aside their reason and judgment in order to believe that a program could care about their problems.
Weizenbaum spent the rest of his life developing this humanistic critique of artificial intelligence and digital technology. His mission was to remind people that their machines were not as smart as they were often said to be. And that even though it sometimes appeared as though they could talk, they were never really listening.
This is the fourth installment of a six-part series on the history of natural language processing. Last week’s post described Andrey Markov and Claude Shannon’s painstaking efforts to create statistical models of language for text generation. Come back next Monday for part five, “In 2016, Microsoft’s Racist Chatbot Revealed the Dangers of Conversation.”
You can also check out our prior series on the untold history of AI. Continue reading
#436167 Is it Time for Tech to Stop Moving Fast ...
On Monday, I attended the 2019 Fall Conference of Stanford’s Institute for Human Centered Artificial Intelligence (HAI). That same night I watched the Season 6 opener for the HBO TV show Silicon Valley. And the debates featured in both surrounded the responsibility of tech companies for the societal effects of the technologies they produce. The two events have jumbled together in my mind, perhaps because I was in a bit of a brain fog, thanks to the nasty combination of a head cold and the smoke that descended on Silicon Valley from the northern California wildfires. But perhaps that mixture turned out to be a good thing.
What is clear, in spite of the smoke, is that this issue is something a lot of people are talking about, inside and outside of Silicon Valley (witness the viral video of Rep. Alexandria Ocasio-Cortez (D-NY) grilling Facebook CEO Mark Zuckerberg).
So, to add to that conversation, here’s my HBO Silicon Valley/Stanford HAI conference mashup.
Silicon Valley’s fictional CEO Richard Hendriks, in the opening scene of the episode, tells Congress that Facebook, Google, and Amazon only care about exploiting personal data for profit. He states:
“These companies are kings, and they rule over kingdoms far larger than any nation in history.”
Meanwhile Marietje Schaake, former member of the European Parliament and a fellow at HAI, told the conference audience of 900:
“There is a lot of power in the hands of few actors—Facebook decides who is a news source, Microsoft will run the defense department’s cloud…. I believe we need a deeper debate about which tasks need to stay in the hands of the public.”
Eric Schmidt, former CEO and executive chairman of Google, agreed. He says:
“It is important that we debate now the ethics of what we are doing, and the impact of the technology that we are building.”
Stanford Associate Professor Ge Wang, also speaking at the HAI conference, pointed out:
“‘Doing no harm’ is a vital goal, and it is not easy. But it is different from a proactive goal, to ‘do good.’”
Had Silicon Valley’s Hendricks been there, he would have agreed. He said in the episode:
“Just because it’s successful, doesn’t mean it’s good. Hiroshima was a successful implementation.”
The speakers at the HAI conference discussed the implications of moving fast and breaking things, of putting untested and unregulated technology into the world now that we know that things like public trust and even democracy can be broken.
Google’s Schmidt told the HAI audience:
“I don’t think that everything that is possible should be put into the wild in society, we should answer the question, collectively, how much risk are we willing to take.
And Silicon Valley denizens real and fictional no longer think it’s OK to just say sorry afterwards. Says Schmidt:
“When you ask Facebook about various scandals, how can they still say ‘We are very sorry; we have a lot of learning to do.’ This kind of naiveté stands out of proportion to the power tech companies have. With great power should come great responsibility, or at least modesty.”
Schaake argued:
“We need more guarantees, institutions, and policies than stated good intentions. It’s about more than promises.”
Fictional CEO Hendricks thinks saying sorry is a cop-out as well. In the episode, a developer admits that his app collected user data in spite of Hendricks assuring Congress that his company doesn’t do that:
“You didn’t know at the time,” the developer says. “Don’t beat yourself up about it. But in the future, stop saying it. Or don’t; I don’t care. Maybe it will be like Google saying ‘Don’t be evil,’ or Facebook saying ‘I’m sorry, we’ll do better.’”
Hendricks doesn’t buy it:
“This stops now. I’m the boss, and this is over.”
(Well, he is fictional.)
How can government, the tech world, and the general public address this in a more comprehensive way? Out in the real world, the “what to do” discussion at Stanford HAI surrounded regulation—how much, what kind, and when.
Says the European Parliament’s Schaake:
“An often-heard argument is that government should refrain from regulating tech because [regulation] will stifle innovation. [That argument] implies that innovation is more important than democracy or the rule of law. Our problems don’t stem from over regulation, but under regulation of technologies.”
But when should that regulation happen. Stanford provost emeritus John Etchemendy, speaking from the audience at the HAI conference, said:
“I’ve been an advocate of not trying to regulate before you understand it. Like San Francisco banning of use of facial recognition is not a good example of regulation; there are uses of facial recognition that we should allow. We want regulations that are just right, that prevent the bad things and allow the good things. So we are going to get it wrong either way, if we regulate to soon or hold off, we will get some things wrong.”
Schaake would opt for regulating sooner rather than later. She says that she often hears the argument that it is too early to regulate artificial intelligence—as well as the argument that it is too late to regulate ad-based political advertising, or online privacy. Neither, to her, makes sense. She told the HAI attendees:
“We need more than guarantees than stated good intentions.”
U.S. Chief Technology Officer Michael Kratsios would go with later rather than sooner. (And, yes, the country has a CTO. President Barack Obama created the position in 2009; Kratsios is the fourth to hold the office and the first under President Donald Trump. He was confirmed in August.) Also speaking at the HAI conference, Kratsios argued:
“I don’t think we should be running to regulate anything. We are a leader [in technology] not because we had great regulations, but we have taken a free market approach. We have done great in driving innovation in technologies that are born free, like the Internet. Technologies born in captivity, like autonomous vehicles, lag behind.”
In the fictional world of HBO’s Silicon Valley, startup founder Hendricks has a solution—a technical one of course: the decentralized Internet. He tells Congress:
“The way we win is by creating a new, decentralized Internet, one where the behavior of companies like this will be impossible, forever. Where it is the users, not the kings, who have sovereign control over their data. I will help you build an Internet that is of the people, by the people, and for the people.”
(This is not a fictional concept, though it is a long way from wide use. Also called the decentralized Web, the concept takes the content on today’s Web and fragments it, and then replicates and scatters those fragments to hosts around the world, increasing privacy and reducing the ability of governments to restrict access.)
If neither regulation nor technology comes to make the world safe from the unforeseen effects of new technologies, there is one more hope, according to Schaake: the millennials and subsequent generations.
Tech companies can no longer pursue growth at all costs, not if they want to keep attracting the talent they need, says Schaake. She noted that, “the young generation looks at the environment, at homeless on the streets,” and they expect their companies to tackle those and other issues and make the world a better place. Continue reading