Tag Archives: collaboration

#435731 Video Friday: NASA Is Sending This ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, UK
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, PA, USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

The big news today is that NASA is sending a robot to Saturn’s moon Titan. A flying robot. The Dragonfly mission will launch in 2026 and arrive in 2034, but you knew that already, because last January, we posted a detailed article about the concept from the Applied Physics Lab at Johns Hopkins University. And now it’s not a concept anymore, yay!

Again, read all the details plus an interview in 2018 article.

[ NASA ]

A robotic gripping arm that uses engineered bacteria to “taste” for a specific chemical has been developed by engineers at the University of California, Davis, and Carnegie Mellon University. The gripper is a proof-of-concept for biologically-based soft robotics.

The new device uses a biosensing module based on E. coli bacteria engineered to respond to the chemical IPTG by producing a fluorescent protein. The bacterial cells reside in wells with a flexible, porous membrane that allows chemicals to enter but keeps the cells inside. This biosensing module is built into the surface of a flexible gripper on a robotic arm, so the gripper can “taste” the environment through its fingers.

When IPTG crosses the membrane into the chamber, the cells fluoresce and electronic circuits inside the module detect the light. The electrical signal travels to the gripper’s control unit, which can decide whether to pick something up or release it.

[ UC Davis ]

The Toyota Research Institute (TRI) is taking on the hard problems in manipulation research toward making human-assist robots reliable and robust. Dr. Russ Tedrake, TRI Vice President of Robotics Research, explains how we are exploring the challenges and addressing the reliability gap by using a robot loading dishes in a dishwasher as an example task.

[ TRI ]

The Tactile Telerobot is the world’s first haptic telerobotic system that transmits realistic touch feedback to an operator located anywhere in the world. It is the product of joint collaboration between Shadow Robot Company, HaptX, and SynTouch. All Nippon Airways funded the project’s initial research and development.

What’s really unique about this is the HaptX tactile feedback system, which is something we’ve been following for several years now. It’s one of the most magical tech experiences I’ve ever had, and you can read about it here and here.

[ HaptX ]

Thanks Andrew!

I love how snake robots can emulate some of the fanciest moves of real snakes, and then also do bonkers things that real snakes never do.

[ Matsuno Lab ]

Here are a couple interesting videos from the Human-Robot Interaction Lab at Tufts.

A robot is instructed to perform an action and cannot do it due to lack of sensors. But when another robot is placed nearby, it can execute the instruction by tacitly tapping into the other robot’s mind and using that robot’s sensors for its own actions. Yes, it’s automatic, and yes, it’s the BORG!

Two Nao robots are instructed to perform a dance and are able to do it right after instruction. Moreover, they can switch roles immediately, and even a third different PR2 robot can perform the dance right away, demonstrating the ability of our DIARC architecture to learn quickly and share the knowledge with any type of robot running the architecture.

Compared to Nao, PR2 just sounds… depressed.

[ HRI Lab ]

This work explores the problem of robot tool construction – creating tools from parts available in the environment. We advance the state-of-the-art in robotic tool construction by introducing an approach that enables the robot to construct a wider range of tools with greater computational efficiency. Specifically, given an action that the robot wishes to accomplish and a set of building parts available to the robot, our approach reasons about the shape of the parts and potential ways of attaching them, generating a ranking of part combinations that the robot then uses to construct and test the target tool. We validate our approach on the construction of five tools using a physical 7-DOF robot arm.

[ RAIL Lab ] via [ RSS ]

We like Magazino’s approach to warehouse picking- constrain the problem to something you can reliably solve, like shoeboxes.

Magazino has announced a new pricing model for their robots. You pay 55k euros for the robot itself, and then after that, all you pay to keep the robot working is 6 cents per pick, so the robot is only costing you money for the work that it actually does.

[ Magazino ]

Thanks Florin!

Human-Robot Collaborations are happening across factories worldwide, yet very few are using it for smaller businesses, due to high costs or the difficulty of customization. Elephant Robotics, a new player from Shenzhen, the Silicon Valley of Asia, has set its sight on helping smaller businesses gain access to smart robotics. They created a Catbot (a collaborative robotic arm) that will offer high efficiency and flexibility to various industries.

The Catbot is set to help from education projects, photography, massaging, to being a personal barista or co-playing a table game. The customizations are endless. To increase the flexibility of usage, the Catbot is extremely easy to program from a high precision task up to covering hefty ground projects.

[ Elephant Robotics ]

Thanks Johnson!

Dronistics, an EPFL spin-off, has been testing out their enclosed delivery drone in the Dominican Republic through a partnership with WeRobotics.

[ WeRobotics ]

QTrobot is an expressive humanoid robot designed to help children with autism spectrum disorder and children with special educational needs in learning new skills. QTrobot uses simple and exaggerated facial expressions combined by interactive games and stories, to help children improve their emotional skills. QTrobot helps children to learn about and better understand the emotions and teach them strategies to handle their emotions more effectively.

[ LuxAI ]

Here’s a typical day in the life of a Tertill solar-powered autonomous weed-destroying robot.

$300, now shipping from Franklin Robotics.

[ Tertill ]

PAL Robotics is excited to announce a new TIAGo with two arms, TIAGo++! After carefully listening to the robotics community needs, we used TIAGo’s modularity to integrate two 7-DoF arms to our mobile manipulator. TIAGo++ can help you swiftly accomplish your research goals, opening endless possibilities in mobile manipulation.

[ PAL Robotics ]

Thanks Jack!

You’ve definitely already met the Cobalt security robot, but Toyota AI Ventures just threw a pile of money at them and would therefore like you to experience this re-introduction:

[ Cobalt Robotics ] via [ Toyota AI ]

ROSIE is a mobile manipulator kit from HEBI Robotics. And if you don’t like ROSIE, the modular nature of HEBI’s hardware means that you can take her apart and make something more interesting.

[ HEBI Robotics ]

Learn about Kawasaki Robotics’ second addition to their line of duAro dual-arm collaborative robots, duAro2. This model offers an extended vertical reach (550 mm) and an increased payload capacity (3 kg/arm).

[ Kawasaki Robotics ]

Drone Delivery Canada has partnered with Peel Region Paramedics to pilot its proprietary drone delivery platform to enable rapid first responder technology via drone with the goal to reduce response time and potentially save lives.

[ Drone Delivery Canada ]

In this week’s episode of Robots in Depth, Per speaks with Harri Ketamo, from Headai.

Harri Ketamo talks about AI and how he aims to mimic human decision making with algorithms. Harri has done a lot of AI for computer games to create opponents that are entertaining to play against. It is easy to develop a very bad or a very good opponent, but designing an opponent that behaves like a human, is entertaining to play against and that you can beat is quite hard. He talks about how AI in computer games is a very important story telling tool and an important part of making a game entertaining to play.

This work led him into other parts of the AI field. Harri thinks that we sometimes have a problem separating what is real from what is the type of story telling he knows from gaming AI. He calls for critical analysis of AI and says that data has to be used to verify AI decisions and results.

[ Robots in Depth ]

Thanks Per! Continue reading

Posted in Human Robots

#435676 Intel’s Neuromorphic System Hits 8 ...

At the DARPA Electronics Resurgence Initiative Summit today in Detroit, Intel plans to unveil an 8-million-neuron neuromorphic system comprising 64 Loihi research chips—codenamed Pohoiki Beach. Loihi chips are built with an architecture that more closely matches the way the brain works than do chips designed to do deep learning or other forms of AI. For the set of problems that such “spiking neural networks” are particularly good at, Loihi is about 1,000 times as fast as a CPU and 10,000 times as energy efficient. The new 64-Loihi system represents the equivalent of 8-million neurons, but that’s just a step to a 768-chip, 100-million-neuron system that the company plans for the end of 2019.

Intel and its research partners are just beginning to test what massive neural systems like Pohoiki Beach can do, but so far the evidence points to even greater performance and efficiency, says Mike Davies, director of neuromorphic research at Intel.

“We’re quickly accumulating results and data that there are definite benefits… mostly in the domain of efficiency. Virtually every one that we benchmark…we find significant gains in this architecture,” he says.

Going from a single-Loihi to 64 of them is more of a software issue than a hardware one. “We designed scalability into the Loihi chip from the beginning,” says Davies. “The chip has a hierarchical routing interface…which allows us to scale to up to 16,000 chips. So 64 is just the next step.”

Photo: Tim Herman/Intel Corporation

One of Intel’s Nahuku boards, each of which contains 8 to 32 Intel Loihi neuromorphic chips, shown here interfaced to an Intel Arria 10 FPGA development kit. Intel’s latest neuromorphic system, Pohoiki Beach, is made up of multiple Nahuku boards and contains 64 Loihi chips.

Finding algorithms that run well on an 8-million-neuron system and optimizing those algorithms in software is a considerable effort, he says. Still, the payoff could be huge. Neural networks that are more brain-like, such as Loihi, could be immune to some of the artificial intelligence’s—for lack of a better word—dumbness.

For example, today’s neural networks suffer from something called catastrophic forgetting. If you tried to teach a trained neural network to recognize something new—a new road sign, say—by simply exposing the network to the new input, it would disrupt the network so badly that it would become terrible at recognizing anything. To avoid this, you have to completely retrain the network from the ground up. (DARPA’s Lifelong Learning, or L2M, program is dedicated to solving this problem.)

(Here’s my favorite analogy: Say you coached a basketball team, and you raised the net by 30 centimeters while nobody was looking. The players would miss a bunch at first, but they’d figure things out quickly. If those players were like today’s neural networks, you’d have to pull them off the court and teach them the entire game over again—dribbling, passing, everything.)

Loihi can run networks that might be immune to catastrophic forgetting, meaning it learns a bit more like a human. In fact, there’s evidence through a research collaboration with Thomas Cleland’s group at Cornell University, that Loihi can achieve what’s called one-shot learning. That is, learning a new feature after being exposed to it only once. The Cornell group showed this by abstracting a model of the olfactory system so that it would run on Loihi. When exposed to a new virtual scent, the system not only didn't catastrophically forget everything else it had smelled, it learned to recognize the new scent just from the single exposure.

Loihi might also be able to run feature-extraction algorithms that are immune to the kinds of adversarial attacks that befuddle today’s image recognition systems. Traditional neural networks don’t really understand the features they’re extracting from an image in the way our brains do. “They can be fooled with simplistic attacks like changing individual pixels or adding a screen of noise that wouldn’t fool a human in any way,” Davies explains. But the sparse-coding algorithms Loihi can run work more like the human visual system and so wouldn’t fall for such shenanigans. (Disturbingly, humans are not completely immune to such attacks.)

Photo: Tim Herman/Intel Corporation

A close-up shot of Loihi, Intel’s neuromorphic research chip. Intel’s latest neuromorphic system, Pohoiki Beach, will be comprised of 64 of these Loihi chips.

Researchers have also been using Loihi to improve real-time control for robotic systems. For example, last week at the Telluride Neuromorphic Cognition Engineering Workshop—an event Davies called “summer camp for neuromorphics nerds”—researchers were hard at work using a Loihi-based system to control a foosball table. “It strikes people as crazy,” he says. “But it’s a nice illustration of neuromorphic technology. It’s fast, requires quick response, quick planning, and anticipation. These are what neuromorphic chips are good at.” Continue reading

Posted in Human Robots

#435619 Video Friday: Watch This Robot Dog ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, CA, USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Team PLUTO (University of Pennsylvania, Ghost Robotics, and Exyn Technologies) put together this video giving us a robot’s-eye-view (or whatever they happen to be using for eyes) of the DARPA Subterranean Challenge tunnel circuits.

[ PLUTO ]

Zhifeng Huang has been improving his jet-stepping humanoid robot, which features new hardware and the ability to take larger and more complex steps.

This video reported the last progress of an ongoing project utilizing ducted-fan propulsion system to improve humanoid robot’s ability in stepping over large ditches. The landing point of the robot’s swing foot can be not only forward but also side direction. With keeping quasi-static balance, the robot was able to step over a ditch with 450mm in width (up to 97% of the robot’s leg’s length) in 3D stepping.

[ Paper ]

Thanks Zhifeng!

These underacuated hands from Matei Ciocarlie’s lab at Columbia are magically able to reconfigure themselves to grasp different object types with just one or two motors.

[ Paper ] via [ ROAM Lab ]

This is one reason we should pursue not “autonomous cars” but “fully autonomous cars” that never require humans to take over. We can’t be trusted.

During our early days as the Google self-driving car project, we invited some employees to test our vehicles on their commutes and weekend trips. What we were testing at the time was similar to the highway driver assist features that are now available on cars today, where the car takes over the boring parts of the driving, but if something outside its ability occurs, the driver has to take over immediately.

What we saw was that our testers put too much trust in that technology. They were doing things like texting, applying makeup, and even falling asleep that made it clear they would not be ready to take over driving if the vehicle asked them to. This is why we believe that nothing short of full autonomy will do.

[ Waymo ]

Buddy is a DIY and fetchingly minimalist social robot (of sorts) that will be coming to Kickstarter this month.

We have created a new arduino kit. His name is Buddy. He is a DIY social robot to serve as a replacement for Jibo, Cozmo, or any of the other bots that are no longer available. Fully 3D printed and supported he adds much more to our series of Arduino STEM robotics kits.

Buddy is able to look around and map his surroundings and react to changes within them. He can be surprised and he will always have a unique reaction to changes. The kit can be built very easily in less than an hour. It is even robust enough to take the abuse that kids can give it in a classroom.

[ Littlebots ]

The android Mindar, based on the Buddhist deity of mercy, preaches sermons at Kodaiji temple in Kyoto, and its human colleagues predict that with artificial intelligence it could one day acquire unlimited wisdom. Developed at a cost of almost $1 million (¥106 million) in a joint project between the Zen temple and robotics professor Hiroshi Ishiguro, the robot teaches about compassion and the dangers of desire, anger and ego.

[ Japan Times ]

I’m not sure whether it’s the sound or what, but this thing scares me for some reason.

[ BIRL ]

This gripper uses magnets as a sort of adjustable spring for dynamic stiffness control, which seems pretty clever.

[ Buffalo ]

What a package of medicine sees while being flown by drone from a hospital to a remote clinic in the Dominican Republic. The drone flew 11 km horizontally and 800 meters vertically, and I can’t even imagine what it would take to make that drive.

[ WeRobotics ]

My first ride in a fully autonomous car was at Stanford in 2009. I vividly remember getting in the back seat of a descendant of Junior, and watching the steering wheel turn by itself as the car executed a perfect parking maneuver. Ten years later, it’s still fun to watch other people have that experience.

[ Waymo ]

Flirtey, the pioneer of the commercial drone delivery industry, has unveiled the much-anticipated first video of its next-generation delivery drone, the Flirtey Eagle. The aircraft designer and manufacturer also unveiled the Flirtey Portal, a sophisticated take off and landing platform that enables scalable store-to-door operations; and an autonomous software platform that enables drones to deliver safely to homes.

[ Flirtey ]

EPFL scientists are developing new approaches for improved control of robotic hands – in particular for amputees – that combines individual finger control and automation for improved grasping and manipulation. This interdisciplinary proof-of-concept between neuroengineering and robotics was successfully tested on three amputees and seven healthy subjects.

[ EPFL ]

This video is a few years old, but we’ll take any excuse to watch the majestic sage-grouse be majestic in all their majesticness.

[ UC Davis ]

I like the idea of a game of soccer (or, football to you weirdos in the rest of the world) where the ball has a mind of its own.

[ Sphero ]

Looks like the whole delivery glider idea is really taking off! Or, you know, not taking off.

Weird that they didn’t show the landing, because it sure looked like it was going to plow into the side of the hill at full speed.

[ Yates ] via [ sUAS News ]

This video is from a 2018 paper, but it’s not like we ever get tired of seeing quadrupeds do stuff, right?

[ MIT ]

Founder and Head of Product, Ian Bernstein, and Head of Engineering, Morgan Bell, have been involved in the Misty project for years and they have learned a thing or two about building robots. Hear how and why Misty evolved into a robot development platform, learn what some of the earliest prototypes did (and why they didn’t work for what we envision), and take a deep dive into the technology decisions that form the Misty II platform.

[ Misty Robotics ]

Lex Fridman interviews Vijay Kumar on the Artifiical Intelligence Podcast.

[ AI Podcast ]

This week’s CMU RI Seminar is from Ross Knepper at Cornell, on Formalizing Teamwork in Human-Robot Interaction.

Robots out in the world today work for people but not with people. Before robots can work closely with ordinary people as part of a human-robot team in a home or office setting, robots need the ability to acquire a new mix of functional and social skills. Working with people requires a shared understanding of the task, capabilities, intentions, and background knowledge. For robots to act jointly as part of a team with people, they must engage in collaborative planning, which involves forming a consensus through an exchange of information about goals, capabilities, and partial plans. Often, much of this information is conveyed through implicit communication. In this talk, I formalize components of teamwork involving collaboration, communication, and representation. I illustrate how these concepts interact in the application of social navigation, which I argue is a first-class example of teamwork. In this setting, participants must avoid collision by legibly conveying intended passing sides via nonverbal cues like path shape. A topological representation using the braid groups enables the robot to reason about a small enumerable set of passing outcomes. I show how implicit communication of topological group plans achieves rapid covergence to a group consensus, and how a robot in the group can deliberately influence the ultimate outcome to maximize joint performance, yielding pedestrian comfort with the robot.

[ CMU RI ]

In this week’s episode of Robots in Depth, Per speaks with Julien Bourgeois about Claytronics, a project from Carnegie Mellon and Intel to develop “programmable matter.”

Julien started out as a computer scientist. He was always interested in robotics privately but then had the opportunity to get into micro robots when his lab was merged into the FEMTO-ST Institute. He later worked with Seth Copen Goldstein at Carnegie Mellon on the Claytronics project.

Julien shows an enlarged mock-up of the small robots that make up programmable matter, catoms, and speaks about how they are designed. Currently he is working on a unit that is one centimeter in diameter and he shows us the very small CPU that goes into that model.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435583 Soft Self-Healing Materials for Robots ...

If there’s one thing we know about robots, it’s that they break. They break, like, literally all the time. The software breaks. The hardware breaks. The bits that you think could never, ever, ever possibly break end up breaking just when you need them not to break the most, and then you have to try to explain what happened to your advisor who’s been standing there watching your robot fail and then stay up all night fixing the thing that seriously was not supposed to break.

While most of this is just a fundamental characteristic of robots that can’t be helped, the European Commission is funding a project called SHERO (Self HEaling soft RObotics) to try and solve at least some of those physical robot breaking problems through the use of structural materials that can autonomously heal themselves over and over again.

SHERO is a three year, €3 million collaboration between Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris), and Swiss Federal Laboratories for Materials Science and Technology (Empa). As the name SHERO suggests, the goal of the project is to develop soft materials that can completely recover from the kinds of damage that robots are likely to suffer in day to day operations, as well as the occasional more extreme accident.

Most materials, especially soft materials, are fixable somehow, whether it’s with super glue or duct tape. But fixing things involves a human first identifying when they’re broken, and then performing a potentially skill, labor, time, and money intensive task. SHERO’s soft materials will, eventually, make this entire process autonomous, allowing robots to self-identify damage and initiate healing on their own.

Photos: SHERO Project

The damaged robot finger [top] can operate normally after healing itself.

How the self-healing material works
What these self-healing materials can do is really pretty amazing. The researchers are actually developing two different types—the first one heals itself when there’s an application of heat, either internally or externally, which gives some control over when and how the healing process starts. For example, if the robot is handling stuff that’s dirty, you’d want to get it cleaned up before healing it so that dirt doesn’t become embedded in the material. This could mean that the robot either takes itself to a heating station, or it could activate some kind of embedded heating mechanism to be more self-sufficient.

The second kind of self-healing material is autonomous, in that it will heal itself at room temperature without any additional input, and is probably more suitable for relatively minor scrapes and cracks. Here are some numbers about how well the healing works:

Autonomous self-healing polymers do not require heat. They can heal damage at room temperature. Developing soft robotic systems from autonomous self-healing polymers excludes the need of additional heating devices… The healing however takes some time. The healing efficiency after 3 days, 7 days and 14 days is respectively 62 percent, 91 percent and 97 percent.

This material was used to develop a healable soft pneumatic hand. Relevant large cuts can be healed entirely without the need of external heat stimulus. Depending on the size of the damage and even more on the location of damage, the healing takes only seconds or up to a week. Damage on locations on the actuator that are subjected to very small stresses during actuation was healed instantaneously. Larger damages, like cutting the actuator completely in half, took 7 days to heal. But even this severe damage could be healed completely without the need of any external stimulus.

Applications of self-healing robots
Both of these materials can be mixed together, and their mechanical properties can be customized so that the structure that they’re a part of can be tuned to move in different ways. The researchers also plan on introducing flexible conductive sensors into the material, which will help sense damage as well as providing position feedback for control systems. A lot of development will happen over the next few years, and for more details, we spoke with Bram Vanderborght at Vrije Universiteit in Brussels.

IEEE Spectrum: How easy or difficult or expensive is it to produce these materials? Will they add significant cost to robotic grippers?

Bram Vanderborght: They are definitely more expensive materials, but it’s also a matter of size of production. At the moment, we’ve made a few kilograms of the material (enough to make several demonstrators), and the price already dropped significantly from when we ordered 100 grams of the material in the first phase of the project. So probably the cost of the gripper will be higher [than a regular gripper], but you won’t need to replace the gripper as often as other grippers that need to be replaced due to wear, so it can be an advantage.

Moreover due to the method of 3D printing the material, the surface is smoother and airtight (so no post-processing is required to make it airtight). Also, the smooth surface is better to avoid contamination for food handling, for example.

In commercial or industrial applications, gradual fatigue seems to be a more common issue than more abrupt trauma like cuts. How well does the self-healing work to improve durability over long periods of time?

We did not test for gradual fatigue over very long times. But both macroscopic and microscopic damage can be healed. So hopefully it can provide an answer here as well.

Image: SHERO Project

After developing a self-healing robot gripper, the researchers plan to use similar materials to build parts that can be used as the skeleton of robots, allowing them to repair themselves on a regular basis.

How much does the self-healing capability restrict the material properties? What are the limits for softness or hardness or smoothness or other characteristics of the material?

Typically the mechanical properties of networked polymers are much better than thermoplastics. Our material is a networked polymer but in which the crosslinks are reversible. We can change quite a lot of parameters in the design of the materials. So we can develop very stiff (fracture strain at 1.24 percent) and very elastic materials (fracture strain at 450 percent). The big advantage that our material has is we can mix it to have intermediate properties. Moreover, at the interface of the materials with different mechanical properties, we have the same chemical bonds, so the interface is perfect. While other materials, they may need to glue it, which gives local stresses and a weak spot.

When the material heals itself, is it less structurally sound in that spot? Can it heal damage that happens to the same spot over and over again?

In theory we can heal it an infinite amount of times. When the wound is not perfectly aligned, of course in that spot it will become weaker. Also too high temperatures lead to irreversible bonds, and impurities lead to weak spots.

Besides grippers and skins, what other potential robotics applications would this technology be useful for?

Most of self healing materials available now are used for coatings. What we are developing are structural components, therefore the mechanical properties of the material need to be good for such applications. So maybe part of the skeleton of the robot can be developed with such materials to make it lighter, since can be designed for regular repair. And for exceptional loads, it breaks and can be repaired like our human body.

[ SHERO Project ] Continue reading

Posted in Human Robots

#435522 Harvard’s Smart Exo-Shorts Talk to the ...

Exosuits don’t generally scream “fashionable” or “svelte.” Take the mind-controlled robotic exoskeleton that allowed a paraplegic man to kick off the World Cup back in 2014. Is it cool? Hell yeah. Is it practical? Not so much.

Yapping about wearability might seem childish when the technology already helps people with impaired mobility move around dexterously. But the lesson of the ill-fated Google Glassholes, which includes an awkward dorky head tilt and an assuming voice command, clearly shows that wearable computer assistants can’t just work technologically—they have to look natural and allow the user to behave like as usual. They have to, in a sense, disappear.

To Dr. Jose Pons at the Legs + Walking Ability Lab in Chicago, exosuits need three main selling points to make it in the real world. One, they have to physically interact with their wearer and seamlessly deliver assistance when needed. Two, they should cognitively interact with the host to guide and control the robot at all times. Finally, they need to feel like a second skin—move with the user without adding too much extra mass or reducing mobility.

This week, a US-Korean collaboration delivered the whole shebang in a Lululemon-style skin-hugging package combined with a retro waist pack. The portable exosuit, weighing only 11 pounds, looks like a pair of spandex shorts but can support the wearer’s hip movement when needed. Unlike their predecessors, the shorts are embedded with sensors that let them know when the wearer is walking versus running by analyzing gait.

Switching between the two movement modes may not seem like much, but what naturally comes to our brains doesn’t translate directly to smart exosuits. “Walking and running have fundamentally different biomechanics, which makes developing devices that assist both gaits challenging,” the team said. Their algorithm, computed in the cloud, allows the wearer to easily switch between both, with the shorts providing appropriate hip support that makes the movement experience seamless.

To Pons, who was not involved in the research but wrote a perspective piece, the study is an exciting step towards future exosuits that will eventually disappear under the skin—that is, implanted neural interfaces to control robotic assistance or activate the user’s own muscles.

“It is realistic to think that we will witness, in the next several years…robust human-robot interfaces to command wearable robotics based on…the neural code of movement in humans,” he said.

A “Smart” Exosuit Hack
There are a few ways you can hack a human body to move with an exosuit. One is using implanted electrodes inside the brain or muscles to decipher movement intent. With heavy practice, a neural implant can help paralyzed people walk again or dexterously move external robotic arms. But because the technique requires surgery, it’s not an immediate sell for people who experience low mobility because of aging or low muscle tone.

The other approach is to look to biophysics. Rather than decoding neural signals that control movement, here the idea is to measure gait and other physical positions in space to decipher intent. As you can probably guess, accurately deciphering user intent isn’t easy, especially when the wearable tries to accommodate multiple gaits. But the gains are many: there’s no surgery involved, and the wearable is low in energy consumption.

Double Trouble
The authors decided to tackle an everyday situation. You’re walking to catch the train to work, realize you’re late, and immediately start sprinting.

That seemingly easy conversion hides a complex switch in biomechanics. When you walk, your legs act like an inverted pendulum that swing towards a dedicated center in a predictable way. When you run, however, the legs move more like a spring-loaded system, and the joints involved in the motion differ from a casual stroll. Engineering an assistive wearable for each is relatively simple; making one for both is exceedingly hard.

Led by Dr. Conor Walsh at Harvard University, the team started with an intuitive idea: assisted walking and running requires specialized “actuation” profiles tailored to both. When the user is moving in a way that doesn’t require assistance, the wearable needs to be out of the way so that it doesn’t restrict mobility. A quick analysis found that assisting hip extension has the largest impact, because it’s important to both gaits and doesn’t add mass to the lower legs.

Building on that insight, the team made a waist belt connected to two thigh wraps, similar to a climbing harness. Two electrical motors embedded inside the device connect the waist belt to other components through a pulley system to help the hip joints move. The whole contraption weighed about 11 lbs and didn’t obstruct natural movement.

Next, the team programmed two separate supporting profiles for walking and running. The goal was to reduce the “metabolic cost” for both movements, so that the wearer expends as little energy as needed. To switch between the two programs, they used a cloud-based classification algorithm to measure changes in energy fluctuation to figure out what mode—running or walking—the user is in.

Smart Booster
Initial trials on treadmills were highly positive. Six male volunteers with similar age and build donned the exosuit and either ran or walked on the treadmill at varying inclines. The algorithm performed perfectly at distinguishing between the two gaits in all conditions, even at steep angles.

An outdoor test with eight volunteers also proved the algorithm nearly perfect. Even on uneven terrain, only two steps out of all test trials were misclassified. In an additional trial on mud or snow, the algorithm performed just as well.

“The system allows the wearer to use their preferred gait for each speed,” the team said.

Software excellence translated to performance. A test found that the exosuit reduced the energy for walking by over nine percent and running by four percent. It may not sound like much, but the range of improvement is meaningful in athletic performance. Putting things into perspective, the team said, the metabolic rate reduction during walking is similar to taking 16 pounds off at the waist.

The Wearable Exosuit Revolution
The study’s lightweight exoshorts are hardly the only players in town. Back in 2017, SRI International’s spin-off, Superflex, engineered an Aura suit to support mobility in the elderly. The Aura used a different mechanism: rather than a pulley system, it incorporated a type of smart material that contracts in a manner similar to human muscles when zapped with electricity.

Embedded with a myriad of sensors for motion, accelerometers and gyroscopes, Aura’s smartness came from mini-computers that measure how fast the wearer is moving and track the user’s posture. The data were integrated and processed locally inside hexagon-shaped computing pods near the thighs and upper back. The pods also acted as the control center for sending electrical zaps to give the wearer a boost when needed.

Around the same time, a collaboration between Harvard’s Wyss Institute and ReWalk Robotics introduced a fabric-based wearable robot to assist a wearer’s legs for balance and movement. Meanwhile, a Swiss team coated normal fabric with electroactive material to weave soft, pliable artificial “muscles” that move with the skin.

Although health support is the current goal, the military is obviously interested in similar technologies to enhance soldiers’ physicality. Superflex’s Aura, for example, was originally inspired by technology born from DARPA’s Warrior Web Program, which aimed to reduce a soldier’s mechanical load.

That said, military gear has had a long history of trickling down to consumer use. Similar to the way camouflage, cargo pants, and GORE-TEX trickled down into the consumer ecosphere, it’s not hard to imagine your local Target eventually stocking intelligent exowear.

Image and Video Credit: Wyss Institute at Harvard University. Continue reading

Posted in Human Robots