Tag Archives: cognitive
#431175 Servosila introduces Mobile Robots ...
Servosila introduces a new member of the family of Servosila “Engineer” robots, a UGV called “Radio Engineer”. This new variant of the well-known backpack-transportable robot features a Software Defined Radio (SDR) payload module integrated into the robotic vehicle.
“Several of our key customers had asked us to enable an Electronic Warfare (EW) or Cognitive Radio applications in our robots”, – says a spokesman for the company, “By integrating a Software Defined Radio (SDR) module into our robotic platforms we cater to both requirements. Radio spectrum analysis, radio signal detection, jamming, and radio relay are important features for EOD robots such as ours. Servosila continues to serve the customers by pushing the boundaries of what their Servosila robots can do. Our partners in the research world and academia shall also greatly benefit from the new functionality that gives them more means of achieving their research goals.”
Photo Credit: Servosila – www.servosila.com
Coupling a programmable mobile robot with a software-defined radio creates a powerful platform for developing innovative applications that mix mobility and artificial intelligence with modern radio technologies. The new robotic radio applications include localized frequency hopping pattern analysis, OFDM waveform recognition, outdoor signal triangulation, cognitive mesh networking, automatic area search for radio emitters, passive or active mobile robotic radars, mobile base stations, mobile radio scanners, and many others.
A rotating head of the robot with mounts for external antennae acts as a pan-and-tilt device thus enabling various scanning and tracking applications. The neck of the robotic head is equipped with a pair of highly accurate Servosila-made servos with a pointing precision of 3.0 angular minutes. This means that the robot can point its antennae with an unprecedented accuracy.
Researchers and academia can benefit from the platform’s support for GnuRadio, an open source software framework for developing SDR applications. An on-board Intel i7 computer capable of executing OpenCL code, is internally connected to the SDR payload module. This makes it possible to execute most existing GnuRadio applications directly on the robot’s on-board computer. Other sensors of the robot such as a GPS sensor, an IMU or a thermal vision camera contribute into sensor fusion algorithms.
Since Servosila “Engineer” mobile robots are primarily designed for outdoor use, the SDR module is fully enclosed into a hardened body of the robot which provides protection in case of dust, rain, snow or impacts with obstacles while the robot is on the move. The robot and its SDR payload module are both powered by an on-board battery thus making the entire robotic radio platform independent of external power supplies.
Servosila plans to start shipping the SDR-equipped robots to international customers in October, 2017.
Web: https://www.servosila.com
YouTube: https://www.youtube.com/user/servosila/videos
About the Company
Servosila is a robotics technology company that designs, produces and markets a range of mobile robots, robotic arms, servo drives, harmonic reduction gears, robotic control systems as well as software packages that make the robots intelligent. Servosila provides consulting, training and operations support services to various customers around the world. The company markets its products and services directly or through a network of partners who provide tailored and localized services that meet specific procurement, support or operational needs.
Press Release above is by: Servosila
The post Servosila introduces Mobile Robots equipped with Software Defined Radio (SDR) payloads appeared first on Roboticmagazine. Continue reading
#430649 Robotherapy for children with autism
New Robotherapy for children with autism could reduce patient supervision by therapists.
05.07.2017
Autism treatments and therapies routinely make headlines. With robot enhanced therapies on the rise, often overlooked though, is the mental stress and physical toll the procedures take on therapists. As autism treatments can be taxing on both patient and therapists, few realize the stress and workload of those working with autistic patients.
It is against this backdrop, that researchers from the Vrije Universiteit Brussel are pioneering a new technology to aid behavioural therapy, and one with a very deliberate aspect: they are using robots to boost the basic social learning skills of children with ASD and while doing so, they hope to make the therapists’ job substantially easier.
A study, just published in PALADYN – Journal of Behavioural Robotics examines the use of social robots as tools in clinical situations by addressing the challenge of increasing robot autonomy.
The growing deployment of robot-assisted therapies in recent decades means children with Autism Spectrum Disorder (ASD) can develop and nurture social behaviour and cognitive skills. Learning skills that hold out in real life is the first and foremost goal of all autism therapies, including the Robot-Assisted Therapy (RAT), with effectiveness always considered a key concern. However, this time round the scientists have set off on the additional mission to take the load off the human therapists by letting parts of the intervention be taken over by the supervised yet autonomous robots.
The researchers developed a complete system of robot-enhanced therapy (RET) for children with ASD. The therapy works by teaching behaviours during repeated sessions of interactive games. Since the individuals with ASD tend to be more responsive to feedback coming from an interaction with technology, robots are often used for this therapy. In this approach, the social robot acts as a mediator and typically remains remote-controlled by a human operator. The technique, called Wizard of Oz, requires the robot to be operated by an additional person and the robot is not recording the performance during the therapy. In order to reduce operator workload, authors introduced a system with a supervised autonomous robot – which is able to understand the psychological disposition of the child and use it to select actions appropriate to the current state of the interaction.
Admittedly, robots with supervised autonomy can substantially benefit behavioural therapy for children with ASD – diminishing the therapist workload on the one hand, and achieving more objective measurements of therapy outcomes on the other. Yet, complex as it is, this therapy requires a multidisciplinary approach, as RET provides mixed effectiveness for primary tasks: the turn-taking, joint attention and imitation task comparing to Standard Human Treatment (SHT).
Results are likely to prompt a further development of the robot assisted therapy with increasing robot’s autonomy. With many outstanding conceptual and technical issues yet to tackle –it is definitely the ethical questions that pose one of the major challenges as far as the potential and maximal degree of robot autonomy is concerned.
The article is fully available in open access to read, download and share on De Gruyter Online.
Research was conducted as a part of DREAM (Development of Robot-Enhanced therapy for children with Autism spectrum disorders) project.
DOI: 10.1515/pjbr-2017-0002
Image credit: P.G. Esteban
About the Journal: PALADYN – Journal of Behavioural Robotics is a fully peer-reviewed, electronic-only journal that publishes original, high-quality research on topics broadly related to neuronally and psychologically inspired robots and other behaving autonomous systems.
About De Gruyter Open: De Gruyter Open is a leading publisher of Open Access academic content. Publishing in all major disciplines, De Gruyter Open is home to more than 500 scholarly journals and over 100 books. The company is part of the De Gruyter Group (www.degruyter.com) and a member of the Association of Learned and Professional Society Publishers (ALPSP). De Gruyter Open’s book and journal programs have been endorsed by the international research community and some of the world’s top scientists, including Nobel laureates. The company’s mission is to make the very best in academic content freely available to scholars and lay readers alike.
The post Robotherapy for children with autism appeared first on Roboticmagazine. Continue reading