Tag Archives: cloud

#430743 Teaching Machines to Understand, and ...

We humans are swamped with text. It’s not just news and other timely information: Regular people are drowning in legal documents. The problem is so bad we mostly ignore it. Every time a person uses a store’s loyalty rewards card or connects to an online service, his or her activities are governed by the equivalent of hundreds of pages of legalese. Most people pay no attention to these massive documents, often labeled “terms of service,” “user agreement,” or “privacy policy.”
These are just part of a much wider societal problem of information overload. There is so much data stored—exabytes of it, as much stored as has ever been spoken by people in all of human history—that it’s humanly impossible to read and interpret everything. Often, we narrow down our pool of information by choosing particular topics or issues to pay attention to. But it’s important to actually know the meaning and contents of the legal documents that govern how our data is stored and who can see it.
As computer science researchers, we are working on ways artificial intelligence algorithms could digest these massive texts and extract their meaning, presenting it in terms regular people can understand.
Can computers understand text?
Computers store data as 0s and 1s—data that cannot be directly understood by humans. They interpret these data as instructions for displaying text, sound, images, or videos that are meaningful to people. But can computers actually understand the language, not only presenting the words but also their meaning?
One way to find out is to ask computers to summarize their knowledge in ways that people can understand and find useful. It would be best if AI systems could process text quickly enough to help people make decisions as they are needed—for example, when you’re signing up for a new online service and are asked to agree with the site’s privacy policy.
What if a computerized assistant could digest all that legal jargon in a few seconds and highlight key points? Perhaps a user could even tell the automated assistant to pay particular attention to certain issues, like when an email address is shared, or whether search engines can index personal posts. Companies could use this capability, too, to analyze contracts or other lengthy documents.
To do this sort of work, we need to combine a range of AI technologies, including machine learning algorithms that take in large amounts of data and independently identify connections among them; knowledge representation techniques to express and interpret facts and rules about the world; speech recognition systems to convert spoken language to text; and human language comprehension programs that process the text and its context to determine what the user is telling the system to do.
Examining privacy policies
A modern internet-enabled life today more or less requires trusting for-profit companies with private information (like physical and email addresses, credit card numbers and bank account details) and personal data (photos and videos, email messages and location information).
These companies’ cloud-based systems typically keep multiple copies of users’ data as part of backup plans to prevent service outages. That means there are more potential targets—each data center must be securely protected both physically and electronically. Of course, internet companies recognize customers’ concerns and employ security teams to protect users’ data. But the specific and detailed legal obligations they undertake to do that are found in their impenetrable privacy policies. No regular human—and perhaps even no single attorney—can truly understand them.
In our study, we ask computers to summarize the terms and conditions regular users say they agree to when they click “Accept” or “Agree” buttons for online services. We downloaded the publicly available privacy policies of various internet companies, including Amazon AWS, Facebook, Google, HP, Oracle, PayPal, Salesforce, Snapchat, Twitter, and WhatsApp.
Summarizing meaning
Our software examines the text and uses information extraction techniques to identify key information specifying the legal rights, obligations and prohibitions identified in the document. It also uses linguistic analysis to identify whether each rule applies to the service provider, the user or a third-party entity, such as advertisers and marketing companies. Then it presents that information in clear, direct, human-readable statements.
For example, our system identified one aspect of Amazon’s privacy policy as telling a user, “You can choose not to provide certain information, but then you might not be able to take advantage of many of our features.” Another aspect of that policy was described as “We may also collect technical information to help us identify your device for fraud prevention and diagnostic purposes.”

We also found, with the help of the summarizing system, that privacy policies often include rules for third parties—companies that aren’t the service provider or the user—that people might not even know are involved in data storage and retrieval.
The largest number of rules in privacy policies—43 percent—apply to the company providing the service. Just under a quarter of the rules—24 percent—create obligations for users and customers. The rest of the rules govern behavior by third-party services or corporate partners, or could not be categorized by our system.

The next time you click the “I Agree” button, be aware that you may be agreeing to share your data with other hidden companies who will be analyzing it.
We are continuing to improve our ability to succinctly and accurately summarize complex privacy policy documents in ways that people can understand and use to access the risks associated with using a service.

This article was originally published on The Conversation. Read the original article. Continue reading

Posted in Human Robots

#430630 CORE2 consumer robot controller by ...

Hardware, software and cloud for fast robot prototyping and development
Kraków, Poland, June 27th, 2017 – Robotic development platform creator Husarion has launched its next-generation dedicated robot controller CORE2. Available now at the Crowd Supply crowdfunding platform, CORE2 enables the rapid prototyping and development of consumer and service robots. It’s especially suitable for engineers designing commercial appliances and robotics students or hobbyists. Whether the next robotic idea is a tiny rover that penetrates tunnels, a surveillance drone, or a room-sized 3D printer, the CORE2 can serve as the brains behind it.
Photo Credit: Husarionwww.husarion.com
Husarion’s platform greatly simplifies robot development, making it as easy as creating a website. It provides engineers with embedded hardware, preconfigured software and easy online management. From the simple, proof-of-concept prototypes made with LEGO® Mindstorms to complex designs ready for mass manufacturing, the core technology stays the same throughout the process, shortening the time to market significantly. It’s designed as an innovation for the consumer robotics industry similar to what Arduino or Raspberry PI were to the Maker Movement.

“We are on the verge of a consumer robotics revolution”, says Dominik Nowak, CEO of Husarion. “Big industrial businesses have long been utilizing robots, but until very recently the consumer side hasn’t seen that many of them. This is starting to change now with the democratization of tools, the Maker Movement and technology maturing. We believe Husarion is uniquely positioned for the upcoming boom, offering robot developers a holistic solution and lowering the barrier of entry to the market.”

The hardware part of the platform is the Husarion CORE2 board, a computer that interfaces directly with motors, servos, encoders or sensors. It’s powered by an ARM® CORTEX-M4 CPU, features 42x I/O ports and can support up to 4x DC motors and 6x servomechanisms. Wireless connectivity is provided by a built-in Wi-Fi module.
Photo Credit: Husarion – www.husarion.com
The Husarion CORE2-ROS is an alternative configuration with a Raspberry Pi 3 ARMv8-powered board layered on top, with a preinstalled Robot Operating System (ROS) custom Linux distribution. It allows users to tap into the rich sets of modules and building tools already available for ROS. Real-time capabilities and high computing power enable advanced use cases, such as fully autonomous devices.

Developing software for CORE2-powered robots is easy. Husarion provides Web IDE, allowing engineers to program their connected robots directly from within the browser. There’s also an offline SDK and a convenient extension for Visual Studio Code. The open-source library hFramework based on Real Time Operating System masks the complexity of interface communication behind an elegant, easy-to-use API.

CORE2 also works with Arduino libraries, which can be used with no modifications at all through the compatibility layer of the hFramework API.
Photo Credit: Husarion – www.husarion.com
For online access, programming and control, Husarion provides its dedicated Cloud. By registering the CORE2-powerd robot at https://cloud.husarion.com, developers can update firmware online, build a custom Web control UI and share controls of their device with anyone.

Starting at $89, Husarion CORE2 and CORE2-ROS controllers are now on sale through Crowd Supply.

Husarion also offers complete development kits, extra servo controllers and additional modules for compatibility with LEGO® Mindstorms or Makeblock® mechanics. For more information, please visit: https://www.crowdsupply.com/husarion/core2.

Key points:
A dedicated robot hardware controller, with built-in interfaces for sensors, servos, DC motors and encoders

Programming with free tools: online (via Husarion Cloud Web IDE) or offline (Visual Studio Code extension)
Compatible with ROS, provides C++ 11 open-source programming framework based on RTOS
Husarion Cloud: control, program and share robots, with customizable control UI
Allows faster development and more advanced robotics than general maker boards like Arduino or Raspberry Pi

About Husarion
Husarion was founded in 2013 in Kraków, Poland. In 2015, Husarion successfully financed a Kickstarter campaign for RoboCORE, the company’s first-generation controller. The company delivers a fast prototyping platform for consumer robots. Thanks to Husarion’s hardware modules, efficient programming tools and cloud management, engineers can rapidly develop and iterate on their robot ideas. Husarion simplifies the development of connected, commercial robots ready for mass production and provides kits for academic education.

For more information, visit: https://husarion.com/.
Photo Credit: Husarion – www.husarion.com

Photo Credit: Husarion – www.husarion.com

Media contact:

Piotr Sarotapublic relations consultant
SAROTA PR – public relations agencyphone: +48 12 684 12 68mobile: +48 606 895 326email: piotr(at)sarota.pl
http://www.sarota.pl/
Jakub Misiurapublic relations specialist
phone: +48 12 349 03 52mobile: +48 696 778 568email: jakub.misiura(at)sarota.pl

Photo Credit: Husarion – www.husarion.com
Photo Credit: Husarion – www.husarion.com
Photo Credit: Husarion – www.husarion.com

The post CORE2 consumer robot controller by Husarion appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#428026 Google Wants Robots to Acquire New ...

Google is combining cloud robotics and deep neural networks to accelerate robot learning Continue reading

Posted in Human Robots