Tag Archives: cloud
#432262 How We Can ‘Robot-Proof’ Education ...
Like millions of other individuals in the workforce, you’re probably wondering if you will one day be replaced by a machine. If you’re a student, you’re probably wondering if your chosen profession will even exist by the time you’ve graduated. From driving to legal research, there isn’t much that technology hasn’t already automated (or begun to automate). Many of us will need to adapt to this disruption in the workforce.
But it’s not enough for students and workers to adapt, become lifelong learners, and re-skill themselves. We also need to see innovation and initiative at an institutional and governmental level. According to research by The Economist, almost half of all jobs could be automated by computers within the next two decades, and no government in the world is prepared for it.
While many see the current trend in automation as a terrifying threat, others see it as an opportunity. In Robot-Proof: Higher Education in the Age of Artificial Intelligence, Northeastern University president Joseph Aoun proposes educating students in a way that will allow them to do the things that machines can’t. He calls for a new paradigm that teaches young minds “to invent, to create, and to discover”—filling the relevant needs of our world that robots simply can’t fill. Aoun proposes a much-needed novel framework that will allow us to “robot-proof” education.
Literacies and Core Cognitive Capacities of the Future
Aoun lays a framework for a new discipline, humanics, which discusses the important capacities and literacies for emerging education systems. At its core, the framework emphasizes our uniquely human abilities and strengths.
The three key literacies include data literacy (being able to manage and analyze big data), technological literacy (being able to understand exponential technologies and conduct computational thinking), and human literacy (being able to communicate and evaluate social, ethical, and existential impact).
Beyond the literacies, at the heart of Aoun’s framework are four cognitive capacities that are crucial to develop in our students if they are to be resistant to automation: critical thinking, systems thinking, entrepreneurship, and cultural agility.
“These capacities are mindsets rather than bodies of knowledge—mental architecture rather than mental furniture,” he writes. “Going forward, people will still need to know specific bodies of knowledge to be effective in the workplace, but that alone will not be enough when intelligent machines are doing much of the heavy lifting of information. To succeed, tomorrow’s employees will have to demonstrate a higher order of thought.”
Like many other experts in education, Joseph Aoun emphasizes the importance of critical thinking. This is important not just when it comes to taking a skeptical approach to information, but also being able to logically break down a claim or problem into multiple layers of analysis. We spend so much time teaching students how to answer questions that we often neglect to teach them how to ask questions. Asking questions—and asking good ones—is a foundation of critical thinking. Before you can solve a problem, you must be able to critically analyze and question what is causing it. This is why critical thinking and problem solving are coupled together.
The second capacity, systems thinking, involves being able to think holistically about a problem. The most creative problem-solvers and thinkers are able to take a multidisciplinary perspective and connect the dots between many different fields. According to Aoun, it “involves seeing across areas that machines might be able to comprehend individually but that they cannot analyze in an integrated way, as a whole.” It represents the absolute opposite of how most traditional curricula is structured with emphasis on isolated subjects and content knowledge.
Among the most difficult-to-automate tasks or professions is entrepreneurship.
In fact, some have gone so far as to claim that in the future, everyone will be an entrepreneur. Yet traditionally, initiative has been something students show in spite of or in addition to their schoolwork. For most students, developing a sense of initiative and entrepreneurial skills has often been part of their extracurricular activities. It needs to be at the core of our curricula, not a supplement to it. At its core, teaching entrepreneurship is about teaching our youth to solve complex problems with resilience, to become global leaders, and to solve grand challenges facing our species.
Finally, with an increasingly globalized world, there is a need for more workers with cultural agility, the ability to build amongst different cultural contexts and norms.
One of the major trends today is the rise of the contingent workforce. We are seeing an increasing percentage of full-time employees working on the cloud. Multinational corporations have teams of employees collaborating at different offices across the planet. Collaboration across online networks requires a skillset of its own. As education expert Tony Wagner points out, within these digital contexts, leadership is no longer about commanding with top-down authority, but rather about leading by influence.
An Emphasis on Creativity
The framework also puts an emphasis on experiential or project-based learning, wherein the heart of the student experience is not lectures or exams but solving real-life problems and learning by doing, creating, and executing. Unsurprisingly, humans continue to outdo machines when it comes to innovating and pushing intellectual, imaginative, and creative boundaries, making jobs involving these skills the hardest to automate.
In fact, technological trends are giving rise to what many thought leaders refer to as the imagination economy. This is defined as “an economy where intuitive and creative thinking create economic value, after logical and rational thinking have been outsourced to other economies.” Consequently, we need to develop our students’ creative abilities to ensure their success against machines.
In its simplest form, creativity represents the ability to imagine radical ideas and then go about executing them in reality.
In many ways, we are already living in our creative imaginations. Consider this: every invention or human construct—whether it be the spaceship, an architectural wonder, or a device like an iPhone—once existed as a mere idea, imagined in someone’s mind. The world we have designed and built around us is an extension of our imaginations and is only possible because of our creativity. Creativity has played a powerful role in human progress—now imagine what the outcomes would be if we tapped into every young mind’s creative potential.
The Need for a Radical Overhaul
What is clear from the recommendations of Aoun and many other leading thinkers in this space is that an effective 21st-century education system is radically different from the traditional systems we currently have in place. There is a dramatic contrast between these future-oriented frameworks and the way we’ve structured our traditional, industrial-era and cookie-cutter-style education systems.
It’s time for a change, and incremental changes or subtle improvements are no longer enough. What we need to see are more moonshots and disruption in the education sector. In a world of exponential growth and accelerating change, it is never too soon for a much-needed dramatic overhaul.
Image Credit: Besjunior / Shutterstock.com Continue reading
#432181 Putting AI in Your Pocket: MIT Chip Cuts ...
Neural networks are powerful things, but they need a lot of juice. Engineers at MIT have now developed a new chip that cuts neural nets’ power consumption by up to 95 percent, potentially allowing them to run on battery-powered mobile devices.
Smartphones these days are getting truly smart, with ever more AI-powered services like digital assistants and real-time translation. But typically the neural nets crunching the data for these services are in the cloud, with data from smartphones ferried back and forth.
That’s not ideal, as it requires a lot of communication bandwidth and means potentially sensitive data is being transmitted and stored on servers outside the user’s control. But the huge amounts of energy needed to power the GPUs neural networks run on make it impractical to implement them in devices that run on limited battery power.
Engineers at MIT have now designed a chip that cuts that power consumption by up to 95 percent by dramatically reducing the need to shuttle data back and forth between a chip’s memory and processors.
Neural nets consist of thousands of interconnected artificial neurons arranged in layers. Each neuron receives input from multiple neurons in the layer below it, and if the combined input passes a certain threshold it then transmits an output to multiple neurons above it. The strength of the connection between neurons is governed by a weight, which is set during training.
This means that for every neuron, the chip has to retrieve the input data for a particular connection and the connection weight from memory, multiply them, store the result, and then repeat the process for every input. That requires a lot of data to be moved around, expending a lot of energy.
The new MIT chip does away with that, instead computing all the inputs in parallel within the memory using analog circuits. That significantly reduces the amount of data that needs to be shoved around and results in major energy savings.
The approach requires the weights of the connections to be binary rather than a range of values, but previous theoretical work had suggested this wouldn’t dramatically impact accuracy, and the researchers found the chip’s results were generally within two to three percent of the conventional non-binary neural net running on a standard computer.
This isn’t the first time researchers have created chips that carry out processing in memory to reduce the power consumption of neural nets, but it’s the first time the approach has been used to run powerful convolutional neural networks popular for image-based AI applications.
“The results show impressive specifications for the energy-efficient implementation of convolution operations with memory arrays,” Dario Gil, vice president of artificial intelligence at IBM, said in a statement.
“It certainly will open the possibility to employ more complex convolutional neural networks for image and video classifications in IoT [the internet of things] in the future.”
It’s not just research groups working on this, though. The desire to get AI smarts into devices like smartphones, household appliances, and all kinds of IoT devices is driving the who’s who of Silicon Valley to pile into low-power AI chips.
Apple has already integrated its Neural Engine into the iPhone X to power things like its facial recognition technology, and Amazon is rumored to be developing its own custom AI chips for the next generation of its Echo digital assistant.
The big chip companies are also increasingly pivoting towards supporting advanced capabilities like machine learning, which has forced them to make their devices ever more energy-efficient. Earlier this year ARM unveiled two new chips: the Arm Machine Learning processor, aimed at general AI tasks from translation to facial recognition, and the Arm Object Detection processor for detecting things like faces in images.
Qualcomm’s latest mobile chip, the Snapdragon 845, features a GPU and is heavily focused on AI. The company has also released the Snapdragon 820E, which is aimed at drones, robots, and industrial devices.
Going a step further, IBM and Intel are developing neuromorphic chips whose architectures are inspired by the human brain and its incredible energy efficiency. That could theoretically allow IBM’s TrueNorth and Intel’s Loihi to run powerful machine learning on a fraction of the power of conventional chips, though they are both still highly experimental at this stage.
Getting these chips to run neural nets as powerful as those found in cloud services without burning through batteries too quickly will be a big challenge. But at the current pace of innovation, it doesn’t look like it will be too long before you’ll be packing some serious AI power in your pocket.
Image Credit: Blue Planet Studio / Shutterstock.com Continue reading
#431957 Is Conversation with Humans the Best ...
Robots are evolving in fascinating ways. Cloud computing, big data and the Internet of Things have all helped open new doors for artificial intelligence. Robots are also learning from much simpler mediums, such as human speech. Researchers Hit Roadblocks With AI Development Some experts believe that engaging in conversations with humans is going to play …
The post Is Conversation with Humans the Best Machine Learning Model for Robots? appeared first on TFOT. Continue reading