Tag Archives: children

#434246 How AR and VR Will Shape the Future of ...

How we work and play is about to transform.

After a prolonged technology “winter”—or what I like to call the ‘deceptive growth’ phase of any exponential technology—the hardware and software that power virtual (VR) and augmented reality (AR) applications are accelerating at an extraordinary rate.

Unprecedented new applications in almost every industry are exploding onto the scene.

Both VR and AR, combined with artificial intelligence, will significantly disrupt the “middleman” and make our lives “auto-magical.” The implications will touch every aspect of our lives, from education and real estate to healthcare and manufacturing.

The Future of Work
How and where we work is already changing, thanks to exponential technologies like artificial intelligence and robotics.

But virtual and augmented reality are taking the future workplace to an entirely new level.

Virtual Reality Case Study: eXp Realty

I recently interviewed Glenn Sanford, who founded eXp Realty in 2008 (imagine: a real estate company on the heels of the housing market collapse) and is the CEO of eXp World Holdings.

Ten years later, eXp Realty has an army of 14,000 agents across all 50 US states, three Canadian provinces, and 400 MLS market areas… all without a single traditional staffed office.

In a bid to transition from 2D interfaces to immersive, 3D work experiences, virtual platform VirBELA built out the company’s office space in VR, unlocking indefinite scaling potential and an extraordinary new precedent.

Real estate agents, managers, and even clients gather in a unique virtual campus, replete with a sports field, library, and lobby. It’s all accessible via head-mounted displays, but most agents join with a computer browser. Surprisingly, the campus-style setup enables the same type of water-cooler conversations I see every day at the XPRIZE headquarters.

With this centralized VR campus, eXp Realty has essentially thrown out overhead costs and entered a lucrative market without the same constraints of brick-and-mortar businesses.

Delocalize with VR, and you can now hire anyone with internet access (right next door or on the other side of the planet), redesign your corporate office every month, throw in an ocean-view office or impromptu conference room for client meetings, and forget about guzzled-up hours in traffic.

As a leader, what happens when you can scalably expand and connect your workforce, not to mention your customer base, without the excess overhead of office space and furniture? Your organization can run faster and farther than your competition.

But beyond the indefinite scalability achieved through digitizing your workplace, VR’s implications extend to the lives of your employees and even the future of urban planning:

Home Prices: As virtual headquarters and office branches take hold of the 21st-century workplace, those who work on campuses like eXp Realty’s won’t need to commute to work. As a result, VR has the potential to dramatically influence real estate prices—after all, if you don’t need to drive to an office, your home search isn’t limited to a specific set of neighborhoods anymore.

Transportation: In major cities like Los Angeles and San Francisco, the implications are tremendous. Analysts have revealed that it’s already cheaper to use ride-sharing services like Uber and Lyft than to own a car in many major cities. And once autonomous “Car-as-a-Service” platforms proliferate, associated transportation costs like parking fees, fuel, and auto repairs will no longer fall on the individual, if not entirely disappear.

Augmented Reality: Annotate and Interact with Your Workplace

As I discussed in a recent Spatial Web blog, not only will Web 3.0 and VR advancements allow us to build out virtual worlds, but we’ll soon be able to digitally map our real-world physical offices or entire commercial high-rises.

Enter a professional world electrified by augmented reality.

Our workplaces are practically littered with information. File cabinets abound with archival data and relevant documents, and company databases continue to grow at a breakneck pace. And, as all of us are increasingly aware, cybersecurity and robust data permission systems remain a major concern for CEOs and national security officials alike.

What if we could link that information to specific locations, people, time frames, and even moving objects?

As data gets added and linked to any given employee’s office, conference room, or security system, we might then access online-merge-offline environments and information through augmented reality.

Imagine showing up at your building’s concierge and your AR glasses automatically check you into the building, authenticating your identity and pulling up any reminders you’ve linked to that specific location.

You stop by a friend’s office, and his smart security system lets you know he’ll arrive in an hour. Need to book a public conference room that’s already been scheduled by another firm’s marketing team? Offer to pay them a fee and, once accepted, a smart transaction will automatically deliver a payment to their company account.

With blockchain-verified digital identities, spatially logged data, and virtually manifest information, business logistics take a fraction of the time, operations grow seamless, and corporate data will be safer than ever.

Or better yet, imagine precise and high-dexterity work environments populated with interactive annotations that guide an artisan, surgeon, or engineer through meticulous handiwork.

Take, for instance, AR service 3D4Medical, which annotates virtual anatomy in midair. And as augmented reality hardware continues to advance, we might envision a future wherein surgeons perform operations on annotated organs and magnified incision sites, or one in which quantum computer engineers can magnify and annotate mechanical parts, speeding up reaction times and vastly improving precision.

The Future of Free Time and Play
In Abundance, I wrote about today’s rapidly demonetizing cost of living. In 2011, almost 75 percent of the average American’s income was spent on housing, transportation, food, personal insurance, health, and entertainment. What the headlines don’t mention: this is a dramatic improvement over the last 50 years. We’re spending less on basic necessities and working fewer hours than previous generations.

Chart depicts the average weekly work hours for full-time production employees in non-agricultural activities. Source: Diamandis.com data
Technology continues to change this, continues to take care of us and do our work for us. One phrase that describes this is “technological socialism,” where it’s technology, not the government, that takes care of us.

Extrapolating from the data, I believe we are heading towards a post-scarcity economy. Perhaps we won’t need to work at all, because we’ll own and operate our own fleet of robots or AI systems that do our work for us.

As living expenses demonetize and workplace automation increases, what will we do with this abundance of time? How will our children and grandchildren connect and find their purpose if they don’t have to work for a living?

As I write this on a Saturday afternoon and watch my two seven-year-old boys immersed in Minecraft, building and exploring worlds of their own creation, I can’t help but imagine that this future is about to enter its disruptive phase.

Exponential technologies are enabling a new wave of highly immersive games, virtual worlds, and online communities. We’ve likely all heard of the Oasis from Ready Player One. But far beyond what we know today as ‘gaming,’ VR is fast becoming a home to immersive storytelling, interactive films, and virtual world creation.

Within the virtual world space, let’s take one of today’s greatest precursors, the aforementioned game Minecraft.

For reference, Minecraft is over eight times the size of planet Earth. And in their free time, my kids would rather build in Minecraft than almost any other activity. I think of it as their primary passion: to create worlds, explore worlds, and be challenged in worlds.

And in the near future, we’re all going to become creators of or participants in virtual worlds, each populated with assets and storylines interoperable with other virtual environments.

But while the technological methods are new, this concept has been alive and well for generations. Whether you got lost in the world of Heidi or Harry Potter, grew up reading comic books or watching television, we’ve all been playing in imaginary worlds, with characters and story arcs populating our minds. That’s the nature of childhood.

In the past, however, your ability to edit was limited, especially if a given story came in some form of 2D media. I couldn’t edit where Tom Sawyer was going or change what Iron Man was doing. But as a slew of new software advancements underlying VR and AR allow us to interact with characters and gain (albeit limited) agency (for now), both new and legacy stories will become subjects of our creation and playgrounds for virtual interaction.

Take VR/AR storytelling startup Fable Studio’s Wolves in the Walls film. Debuting at the 2018 Sundance Film Festival, Fable’s immersive story is adapted from Neil Gaiman’s book and tracks the protagonist, Lucy, whose programming allows her to respond differently based on what her viewers do.

And while Lucy can merely hand virtual cameras to her viewers among other limited tasks, Fable Studio’s founder Edward Saatchi sees this project as just the beginning.

Imagine a virtual character—either in augmented or virtual reality—geared with AI capabilities, that now can not only participate in a fictional storyline but interact and dialogue directly with you in a host of virtual and digitally overlayed environments.

Or imagine engaging with a less-structured environment, like the Star Wars cantina, populated with strangers and friends to provide an entirely novel social media experience.

Already, we’ve seen characters like that of Pokémon brought into the real world with Pokémon Go, populating cities and real spaces with holograms and tasks. And just as augmented reality has the power to turn our physical environments into digital gaming platforms, advanced AR could bring on a new era of in-home entertainment.

Imagine transforming your home into a narrative environment for your kids or overlaying your office interior design with Picasso paintings and gothic architecture. As computer vision rapidly grows capable of identifying objects and mapping virtual overlays atop them, we might also one day be able to project home theaters or live sports within our homes, broadcasting full holograms that allow us to zoom into the action and place ourselves within it.

Increasingly honed and commercialized, augmented and virtual reality are on the cusp of revolutionizing the way we play, tell stories, create worlds, and interact with both fictional characters and each other.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: nmedia / Shutterstock.com Continue reading

Posted in Human Robots

#434235 The Milestones of Human Progress We ...

When you look back at 2018, do you see a good or a bad year? Chances are, your perception of the year involves fixating on all the global and personal challenges it brought. In fact, every year, we tend to look back at the previous year as “one of the most difficult” and hope that the following year is more exciting and fruitful.

But in the grander context of human history, 2018 was an extraordinarily positive year. In fact, every year has been getting progressively better.

Before we dive into some of the highlights of human progress from 2018, let’s make one thing clear. There is no doubt that there are many overwhelming global challenges facing our species. From climate change to growing wealth inequality, we are far from living in a utopia.

Yet it’s important to recognize that both our news outlets and audiences have been disproportionately fixated on negative news. This emphasis on bad news is detrimental to our sense of empowerment as a species.

So let’s take a break from all the disproportionate negativity and have a look back on how humanity pushed boundaries in 2018.

On Track to Becoming an Interplanetary Species
We often forget how far we’ve come since the very first humans left the African savanna, populated the entire planet, and developed powerful technological capabilities. Our desire to explore the unknown has shaped the course of human evolution and will continue to do so.

This year, we continued to push the boundaries of space exploration. As depicted in the enchanting short film Wanderers, humanity’s destiny is the stars. We are born to be wanderers of the cosmos and the everlasting unknown.

SpaceX had 21 successful launches in 2018 and closed the year with a successful GPS launch. The latest test flight by Virgin Galactic was also an incredible milestone, as SpaceShipTwo was welcomed into space. Richard Branson and his team expect that space tourism will be a reality within the next 18 months.

Our understanding of the cosmos is also moving forward with continuous breakthroughs in astrophysics and astronomy. One notable example is the MARS InSight Mission, which uses cutting-edge instruments to study Mars’ interior structure and has even given us the first recordings of sound on Mars.

Understanding and Tackling Disease
Thanks to advancements in science and medicine, we are currently living longer, healthier, and wealthier lives than at any other point in human history. In fact, for most of human history, life expectancy at birth was around 30. Today it is more than 70 worldwide, and in the developed parts of the world, more than 80.

Brilliant researchers around the world are pushing for even better health outcomes. This year, we saw promising treatments emerge against Alzheimers disease, rheumatoid arthritis, multiple scleroris, and even the flu.

The deadliest disease of them all, cancer, is also being tackled. According to the American Association of Cancer Research, 22 revolutionary treatments for cancer were approved in the last year, and the death rate in adults is also in decline. Advancements in immunotherapy, genetic engineering, stem cells, and nanotechnology are all powerful resources to tackle killer diseases.

Breakthrough Mental Health Therapy
While cleaner energy, access to education, and higher employment rates can improve quality of life, they do not guarantee happiness and inner peace. According to the World Economic Forum, mental health disorders affect one in four people globally, and in many places they are significantly under-reported. More people are beginning to realize that our mental health is just as important as our physical health, and that we ought to take care of our minds just as much as our bodies.

We are seeing the rise of applications that put mental well-being at their center. Breakthrough advancements in genetics are allowing us to better understand the genetic makeup of disorders like clinical depression or Schizophrenia, and paving the way for personalized medical treatment. We are also seeing the rise of increasingly effective therapeutic treatments for anxiety.

This year saw many milestones for a whole new revolutionary area in mental health: psychedelic therapy. Earlier this summer, the FDA granted breakthrough therapy designation to MDMA for the treatment of PTSD, after several phases of successful trails. Similar research has discovered that Psilocybin (also known as magic mushrooms) combined with therapy is far more effective than traditional forms of treatment for depression and anxiety.

Moral and Social Progress
Innovation is often associated with economic and technological progress. However, we also need leaps of progress in our morality, values, and policies. Throughout the 21st century, we’ve made massive strides in rights for women and children, civil rights, LGBT rights, animal rights, and beyond. However, with rising nationalism and xenophobia in many parts of the developed world, there is significant work to be done on this front.

All hope is not lost, as we saw many noteworthy milestones this year. In January 2018, Iceland introduced the equal wage law, bringing an end to the gender wage gap. On September 6th, the Indian Supreme Court decriminalized homosexuality, marking a historical moment. Earlier in December, the European Commission released a draft of ethics guidelines for trustworthy artificial intelligence. Such are just a few examples of positive progress in social justice, ethics, and policy.

We are also seeing a global rise in social impact entrepreneurship. Emerging startups are no longer valued simply based on their profits and revenue, but also on the level of positive impact they are having on the world at large. The world’s leading innovators are not asking themselves “How can I become rich?” but rather “How can I solve this global challenge?”

Intelligently Optimistic for 2019
It’s becoming more and more clear that we are living in the most exciting time in human history. Even more, we mustn’t be afraid to be optimistic about 2019.

An optimistic mindset can be grounded in rationality and evidence. Intelligent optimism is all about being excited about the future in an informed and rational way. The mindset is critical if we are to get everyone excited about the future by highlighting the rapid progress we have made and recognizing the tremendous potential humans have to find solutions to our problems.

In his latest TED talk, Steven Pinker points out, “Progress does not mean that everything becomes better for everyone everywhere all the time. That would be a miracle, and progress is not a miracle but problem-solving. Problems are inevitable and solutions create new problems which have to be solved in their turn.”

Let us not forget that in cosmic time scales, our entire species’ lifetime, including all of human history, is the equivalent of the blink of an eye. The probability of us existing both as an intelligent species and as individuals is so astoundingly low that it’s practically non-existent. We are the products of 14 billion years of cosmic evolution and extraordinarily good fortune. Let’s recognize and leverage this wondrous opportunity, and pave an exciting way forward.

Image Credit: Virgin Galactic / Virgin Galactic 2018. Continue reading

Posted in Human Robots

#433939 The Promise—and Complications—of ...

Every year, for just a few days in a major city, a small team of roboticists get to live the dream: ordering around their own personal robot butlers. In carefully-constructed replicas of a restaurant scene or a domestic setting, these robots perform any number of simple algorithmic tasks. “Get the can of beans from the shelf. Greet the visitors to the museum. Help the humans with their shopping. Serve the customers at the restaurant.”

This is Robocup @ Home, the annual tournament where teams of roboticists put their autonomous service robots to the test for practical domestic applications. The tasks seem simple and mundane, but considering the technology required reveals that they’re really not.

The Robot Butler Contest
Say you want a robot to fetch items in the supermarket. In a crowded, noisy environment, the robot must understand your commands, ask for clarification, and map out and navigate an unfamiliar environment, avoiding obstacles and people as it does so. Then it must recognize the product you requested, perhaps in a cluttered environment, perhaps in an unfamiliar orientation. It has to grasp that product appropriately—recall that there are entire multi-million-dollar competitions just dedicated to developing robots that can grasp a range of objects—and then return it to you.

It’s a job so simple that a child could do it—and so complex that teams of smart roboticists can spend weeks programming and engineering, and still end up struggling to complete simplified versions of this task. Of course, the child has the advantage of millions of years of evolutionary research and development, while the first robots that could even begin these tasks were only developed in the 1970s.

Even bearing this in mind, Robocup @ Home can feel like a place where futurist expectations come crashing into technologist reality. You dream of a smooth-voiced, sardonic JARVIS who’s already made your favorite dinner when you come home late from work; you end up shouting “remember the biscuits” at a baffled, ungainly droid in aisle five.

Caring for the Elderly
Famously, Japan is one of the most robo-enthusiastic nations in the world; they are the nation that stunned us all with ASIMO in 2000, and several studies have been conducted into the phenomenon. It’s no surprise, then, that humanoid robotics should be seriously considered as a solution to the crisis of the aging population. The Japanese government, as part of its robots strategy, has already invested $44 million in their development.

Toyota’s Human Support Robot (HSR-2) is a simple but programmable robot with a single arm; it can be remote-controlled to pick up objects and can monitor patients. HSR-2 has become the default robot for use in Robocup @ Home tournaments, at least in tasks that involve manipulating objects.

Alongside this, Toyota is working on exoskeletons to assist people in walking after strokes. It may surprise you to learn that nurses suffer back injuries more than any other occupation, at roughly three times the rate of construction workers, due to the day-to-day work of lifting patients. Toyota has a Care Assist robot/exoskeleton designed to fix precisely this problem by helping care workers with the heavy lifting.

The Home of the Future
The enthusiasm for domestic robotics is easy to understand and, in fact, many startups already sell robots marketed as domestic helpers in some form or another. In general, though, they skirt the immensely complicated task of building a fully capable humanoid robot—a task that even Google’s skunk-works department gave up on, at least until recently.

It’s plain to see why: far more research and development is needed before these domestic robots could be used reliably and at a reasonable price. Consumers with expectations inflated by years of science fiction saturation might find themselves frustrated as the robots fail to perform basic tasks.

Instead, domestic robotics efforts fall into one of two categories. There are robots specialized to perform a domestic task, like iRobot’s Roomba, which stuck to vacuuming and became the most successful domestic robot of all time by far.

The tasks need not necessarily be simple, either: the impressive but expensive automated kitchen uses the world’s most dexterous hands to cook meals, providing it can recognize the ingredients. Other robots focus on human-robot interaction, like Jibo: they essentially package the abilities of a voice assistant like Siri, Cortana, or Alexa to respond to simple questions and perform online tasks in a friendly, dynamic robot exterior.

In this way, the future of domestic automation starts to look a lot more like smart homes than a robot or domestic servant. General robotics is difficult in the same way that general artificial intelligence is difficult; competing with humans, the great all-rounders, is a challenge. Getting superhuman performance at a more specific task, however, is feasible and won’t cost the earth.

Individual startups without the financial might of a Google or an Amazon can develop specialized robots, like Seven Dreamers’ laundry robot, and hope that one day it will form part of a network of autonomous robots that each have a role to play in the household.

Domestic Bliss?
The Smart Home has been a staple of futurist expectations for a long time, to the extent that movies featuring smart homes out of control are already a cliché. But critics of the smart home idea—and of the internet of things more generally—tend to focus on the idea that, more often than not, software just adds an additional layer of things that can break (NSFW), in exchange for minimal added convenience. A toaster that can short-circuit is bad enough, but a toaster that can refuse to serve you toast because its firmware is updating is something else entirely.

That’s before you even get into the security vulnerabilities, which are all the more important when devices are installed in your home and capable of interacting with them. The idea of a smart watch that lets you keep an eye on your children might sound like something a security-conscious parent would like: a smart watch that can be hacked to track children, listen in on their surroundings, and even fool them into thinking a call is coming from their parents is the stuff of nightmares.

Key to many of these problems is the lack of standardization for security protocols, and even the products themselves. The idea of dozens of startups each developing a highly-specialized piece of robotics to perform a single domestic task sounds great in theory, until you realize the potential hazards and pitfalls of getting dozens of incompatible devices to work together on the same system.

It seems inevitable that there are yet more layers of domestic drudgery that can be automated away, decades after the first generation of time-saving domestic devices like the dishwasher and vacuum cleaner became mainstream. With projected market values into the billions and trillions of dollars, there is no shortage of industry interest in ironing out these kinks. But, for now at least, the answer to the question: “Where’s my robot butler?” is that it is gradually, painstakingly learning how to sort through groceries.

Image Credit: Nonchanon / Shutterstock.com Continue reading

Posted in Human Robots

#433892 The Spatial Web Will Map Our 3D ...

The boundaries between digital and physical space are disappearing at a breakneck pace. What was once static and boring is becoming dynamic and magical.

For all of human history, looking at the world through our eyes was the same experience for everyone. Beyond the bounds of an over-active imagination, what you see is the same as what I see.

But all of this is about to change. Over the next two to five years, the world around us is about to light up with layer upon layer of rich, fun, meaningful, engaging, and dynamic data. Data you can see and interact with.

This magical future ahead is called the Spatial Web and will transform every aspect of our lives, from retail and advertising, to work and education, to entertainment and social interaction.

Massive change is underway as a result of a series of converging technologies, from 5G global networks and ubiquitous artificial intelligence, to 30+ billion connected devices (known as the IoT), each of which will generate scores of real-world data every second, everywhere.

The current AI explosion will make everything smart, autonomous, and self-programming. Blockchain and cloud-enabled services will support a secure data layer, putting data back in the hands of users and allowing us to build complex rule-based infrastructure in tomorrow’s virtual worlds.

And with the rise of online-merge-offline (OMO) environments, two-dimensional screens will no longer serve as our exclusive portal to the web. Instead, virtual and augmented reality eyewear will allow us to interface with a digitally-mapped world, richly layered with visual data.

Welcome to the Spatial Web. Over the next few months, I’ll be doing a deep dive into the Spatial Web (a.k.a. Web 3.0), covering what it is, how it works, and its vast implications across industries, from real estate and healthcare to entertainment and the future of work. In this blog, I’ll discuss the what, how, and why of Web 3.0—humanity’s first major foray into our virtual-physical hybrid selves (BTW, this year at Abundance360, we’ll be doing a deep dive into the Spatial Web with the leaders of HTC, Magic Leap, and High-Fidelity).

Let’s dive in.

What is the Spatial Web?
While we humans exist in three dimensions, our web today is flat.

The web was designed for shared information, absorbed through a flat screen. But as proliferating sensors, ubiquitous AI, and interconnected networks blur the lines between our physical and online worlds, we need a spatial web to help us digitally map a three-dimensional world.

To put Web 3.0 in context, let’s take a trip down memory lane. In the late 1980s, the newly-birthed world wide web consisted of static web pages and one-way information—a monumental system of publishing and linking information unlike any unified data system before it. To connect, we had to dial up through unstable modems and struggle through insufferably slow connection speeds.

But emerging from this revolutionary (albeit non-interactive) infodump, Web 2.0 has connected the planet more in one decade than empires did in millennia.

Granting democratized participation through newly interactive sites and applications, today’s web era has turbocharged information-sharing and created ripple effects of scientific discovery, economic growth, and technological progress on an unprecedented scale.

We’ve seen the explosion of social networking sites, wikis, and online collaboration platforms. Consumers have become creators; physically isolated users have been handed a global microphone; and entrepreneurs can now access billions of potential customers.

But if Web 2.0 took the world by storm, the Spatial Web emerging today will leave it in the dust.

While there’s no clear consensus about its definition, the Spatial Web refers to a computing environment that exists in three-dimensional space—a twinning of real and virtual realities—enabled via billions of connected devices and accessed through the interfaces of virtual and augmented reality.

In this way, the Spatial Web will enable us to both build a twin of our physical reality in the virtual realm and bring the digital into our real environments.

It’s the next era of web-like technologies:

Spatial computing technologies, like augmented and virtual reality;
Physical computing technologies, like IoT and robotic sensors;
And decentralized computing: both blockchain—which enables greater security and data authentication—and edge computing, which pushes computing power to where it’s most needed, speeding everything up.

Geared with natural language search, data mining, machine learning, and AI recommendation agents, the Spatial Web is a growing expanse of services and information, navigable with the use of ever-more-sophisticated AI assistants and revolutionary new interfaces.

Where Web 1.0 consisted of static documents and read-only data, Web 2.0 introduced multimedia content, interactive web applications, and social media on two-dimensional screens. But converging technologies are quickly transcending the laptop, and will even disrupt the smartphone in the next decade.

With the rise of wearables, smart glasses, AR / VR interfaces, and the IoT, the Spatial Web will integrate seamlessly into our physical environment, overlaying every conversation, every road, every object, conference room, and classroom with intuitively-presented data and AI-aided interaction.

Think: the Oasis in Ready Player One, where anyone can create digital personas, build and invest in smart assets, do business, complete effortless peer-to-peer transactions, and collect real estate in a virtual world.

Or imagine a virtual replica or “digital twin” of your office, each conference room authenticated on the blockchain, requiring a cryptographic key for entry.

As I’ve discussed with my good friend and “VR guru” Philip Rosedale, I’m absolutely clear that in the not-too-distant future, every physical element of every building in the world is going to be fully digitized, existing as a virtual incarnation or even as N number of these. “Meet me at the top of the Empire State Building?” “Sure, which one?”

This digitization of life means that suddenly every piece of information can become spatial, every environment can be smarter by virtue of AI, and every data point about me and my assets—both virtual and physical—can be reliably stored, secured, enhanced, and monetized.

In essence, the Spatial Web lets us interface with digitally-enhanced versions of our physical environment and build out entirely fictional virtual worlds—capable of running simulations, supporting entire economies, and even birthing new political systems.

But while I’ll get into the weeds of different use cases next week, let’s first concretize.

How Does It Work?
Let’s start with the stack. In the PC days, we had a database accompanied by a program that could ingest that data and present it to us as digestible information on a screen.

Then, in the early days of the web, data migrated to servers. Information was fed through a website, with which you would interface via a browser—whether Mosaic or Mozilla.

And then came the cloud.

Resident at either the edge of the cloud or on your phone, today’s rapidly proliferating apps now allow us to interact with previously read-only data, interfacing through a smartphone. But as Siri and Alexa have brought us verbal interfaces, AI-geared phone cameras can now determine your identity, and sensors are beginning to read our gestures.

And now we’re not only looking at our screens but through them, as the convergence of AI and AR begins to digitally populate our physical worlds.

While Pokémon Go sent millions of mobile game-players on virtual treasure hunts, IKEA is just one of the many companies letting you map virtual furniture within your physical home—simulating everything from cabinets to entire kitchens. No longer the one-sided recipients, we’re beginning to see through sensors, creatively inserting digital content in our everyday environments.

Let’s take a look at how the latest incarnation might work. In this new Web 3.0 stack, my personal AI would act as an intermediary, accessing public or privately-authorized data through the blockchain on my behalf, and then feed it through an interface layer composed of everything from my VR headset, to numerous wearables, to my smart environment (IoT-connected devices or even in-home robots).

But as we attempt to build a smart world with smart infrastructure, smart supply chains and smart everything else, we need a set of basic standards with addresses for people, places, and things. Just like our web today relies on the Internet Protocol (TCP/IP) and other infrastructure, by which your computer is addressed and data packets are transferred, we need infrastructure for the Spatial Web.

And a select group of players is already stepping in to fill this void. Proposing new structural designs for Web 3.0, some are attempting to evolve today’s web model from text-based web pages in 2D to three-dimensional AR and VR web experiences located in both digitally-mapped physical worlds and newly-created virtual ones.

With a spatial programming language analogous to HTML, imagine building a linkable address for any physical or virtual space, granting it a format that then makes it interchangeable and interoperable with all other spaces.

But it doesn’t stop there.

As soon as we populate a virtual room with content, we then need to encode who sees it, who can buy it, who can move it…

And the Spatial Web’s eventual governing system (for posting content on a centralized grid) would allow us to address everything from the room you’re sitting in, to the chair on the other side of the table, to the building across the street.

Just as we have a DNS for the web and the purchasing of web domains, once we give addresses to spaces (akin to granting URLs), we then have the ability to identify and visit addressable locations, physical objects, individuals, or pieces of digital content in cyberspace.

And these not only apply to virtual worlds, but to the real world itself. As new mapping technologies emerge, we can now map rooms, objects, and large-scale environments into virtual space with increasing accuracy.

We might then dictate who gets to move your coffee mug in a virtual conference room, or when a team gets to use the room itself. Rules and permissions would be set in the grid, decentralized governance systems, or in the application layer.

Taken one step further, imagine then monetizing smart spaces and smart assets. If you have booked the virtual conference room, perhaps you’ll let me pay you 0.25 BTC to let me use it instead?

But given the Spatial Web’s enormous technological complexity, what’s allowing it to emerge now?

Why Is It Happening Now?
While countless entrepreneurs have already started harnessing blockchain technologies to build decentralized apps (or dApps), two major developments are allowing today’s birth of Web 3.0:

High-resolution wireless VR/AR headsets are finally catapulting virtual and augmented reality out of a prolonged winter.

The International Data Corporation (IDC) predicts the VR and AR headset market will reach 65.9 million units by 2022. Already in the next 18 months, 2 billion devices will be enabled with AR. And tech giants across the board have long begun investing heavy sums.

In early 2019, HTC is releasing the VIVE Focus, a wireless self-contained VR headset. At the same time, Facebook is charging ahead with its Project Santa Cruz—the Oculus division’s next-generation standalone, wireless VR headset. And Magic Leap has finally rolled out its long-awaited Magic Leap One mixed reality headset.

Mass deployment of 5G will drive 10 to 100-gigabit connection speeds in the next 6 years, matching hardware progress with the needed speed to create virtual worlds.

We’ve already seen tremendous leaps in display technology. But as connectivity speeds converge with accelerating GPUs, we’ll start to experience seamless VR and AR interfaces with ever-expanding virtual worlds.

And with such democratizing speeds, every user will be able to develop in VR.

But accompanying these two catalysts is also an important shift towards the decentralized web and a demand for user-controlled data.

Converging technologies, from immutable ledgers and blockchain to machine learning, are now enabling the more direct, decentralized use of web applications and creation of user content. With no central point of control, middlemen are removed from the equation and anyone can create an address, independently interacting with the network.

Enabled by a permission-less blockchain, any user—regardless of birthplace, gender, ethnicity, wealth, or citizenship—would thus be able to establish digital assets and transfer them seamlessly, granting us a more democratized Internet.

And with data stored on distributed nodes, this also means no single point of failure. One could have multiple backups, accessible only with digital authorization, leaving users immune to any single server failure.

Implications Abound–What’s Next…
With a newly-built stack and an interface built from numerous converging technologies, the Spatial Web will transform every facet of our everyday lives—from the way we organize and access our data, to our social and business interactions, to the way we train employees and educate our children.

We’re about to start spending more time in the virtual world than ever before. Beyond entertainment or gameplay, our livelihoods, work, and even personal decisions are already becoming mediated by a web electrified with AI and newly-emerging interfaces.

In our next blog on the Spatial Web, I’ll do a deep dive into the myriad industry implications of Web 3.0, offering tangible use cases across sectors.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘on ramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Comeback01 / Shutterstock.com Continue reading

Posted in Human Robots

#433884 Designer Babies, and Their Babies: How ...

As if stand-alone technologies weren’t advancing fast enough, we’re in age where we must study the intersection points of these technologies. How is what’s happening in robotics influenced by what’s happening in 3D printing? What could be made possible by applying the latest advances in quantum computing to nanotechnology?

Along these lines, one crucial tech intersection is that of artificial intelligence and genomics. Each field is seeing constant progress, but Jamie Metzl believes it’s their convergence that will really push us into uncharted territory, beyond even what we’ve imagined in science fiction. “There’s going to be this push and pull, this competition between the reality of our biology with its built-in limitations and the scope of our aspirations,” he said.

Metzl is a senior fellow at the Atlantic Council and author of the upcoming book Hacking Darwin: Genetic Engineering and the Future of Humanity. At Singularity University’s Exponential Medicine conference last week, he shared his insights on genomics and AI, and where their convergence could take us.

Life As We Know It
Metzl explained how genomics as a field evolved slowly—and then quickly. In 1953, James Watson and Francis Crick identified the double helix structure of DNA, and realized that the order of the base pairs held a treasure trove of genetic information. There was such a thing as a book of life, and we’d found it.

In 2003, when the Human Genome Project was completed (after 13 years and $2.7 billion), we learned the order of the genome’s 3 billion base pairs, and the location of specific genes on our chromosomes. Not only did a book of life exist, we figured out how to read it.

Jamie Metzl at Exponential Medicine
Fifteen years after that, it’s 2018 and precision gene editing in plants, animals, and humans is changing everything, and quickly pushing us into an entirely new frontier. Forget reading the book of life—we’re now learning how to write it.

“Readable, writable, and hackable, what’s clear is that human beings are recognizing that we are another form of information technology, and just like our IT has entered this exponential curve of discovery, we will have that with ourselves,” Metzl said. “And it’s intersecting with the AI revolution.”

Learning About Life Meets Machine Learning
In 2016, DeepMind’s AlphaGo program outsmarted the world’s top Go player. In 2017 AlphaGo Zero was created: unlike AlphaGo, AlphaGo Zero wasn’t trained using previous human games of Go, but was simply given the rules of Go—and in four days it defeated the AlphaGo program.

Our own biology is, of course, vastly more complex than the game of Go, and that, Metzl said, is our starting point. “The system of our own biology that we are trying to understand is massively, but very importantly not infinitely, complex,” he added.

Getting a standardized set of rules for our biology—and, eventually, maybe even outsmarting our biology—will require genomic data. Lots of it.

Multiple countries already starting to produce this data. The UK’s National Health Service recently announced a plan to sequence the genomes of five million Britons over the next five years. In the US the All of Us Research Program will sequence a million Americans. China is the most aggressive in sequencing its population, with a goal of sequencing half of all newborns by 2020.

“We’re going to get these massive pools of sequenced genomic data,” Metzl said. “The real gold will come from comparing people’s sequenced genomes to their electronic health records, and ultimately their life records.” Getting people comfortable with allowing open access to their data will be another matter; Metzl mentioned that Luna DNA and others have strategies to help people get comfortable with giving consent to their private information. But this is where China’s lack of privacy protection could end up being a significant advantage.

To compare genotypes and phenotypes at scale—first millions, then hundreds of millions, then eventually billions, Metzl said—we’re going to need AI and big data analytic tools, and algorithms far beyond what we have now. These tools will let us move from precision medicine to predictive medicine, knowing precisely when and where different diseases are going to occur and shutting them down before they start.

But, Metzl said, “As we unlock the genetics of ourselves, it’s not going to be about just healthcare. It’s ultimately going to be about who and what we are as humans. It’s going to be about identity.”

Designer Babies, and Their Babies
In Metzl’s mind, the most serious application of our genomic knowledge will be in embryo selection.

Currently, in-vitro fertilization (IVF) procedures can extract around 15 eggs, fertilize them, then do pre-implantation genetic testing; right now what’s knowable is single-gene mutation diseases and simple traits like hair color and eye color. As we get to the millions and then billions of people with sequences, we’ll have information about how these genetics work, and we’re going to be able to make much more informed choices,” Metzl said.

Imagine going to a fertility clinic in 2023. You give a skin graft or a blood sample, and using in-vitro gametogenesis (IVG)—infertility be damned—your skin or blood cells are induced to become eggs or sperm, which are then combined to create embryos. The dozens or hundreds of embryos created from artificial gametes each have a few cells extracted from them, and these cells are sequenced. The sequences will tell you the likelihood of specific traits and disease states were that embryo to be implanted and taken to full term. “With really anything that has a genetic foundation, we’ll be able to predict with increasing levels of accuracy how that potential child will be realized as a human being,” Metzl said.

This, he added, could lead to some wild and frightening possibilities: if you have 1,000 eggs and you pick one based on its optimal genetic sequence, you could then mate your embryo with somebody else who has done the same thing in a different genetic line. “Your five-day-old embryo and their five-day-old embryo could have a child using the same IVG process,” Metzl said. “Then that child could have a child with another five-day-old embryo from another genetic line, and you could go on and on down the line.”

Sounds insane, right? But wait, there’s more: as Jason Pontin reported earlier this year in Wired, “Gene-editing technologies such as Crispr-Cas9 would make it relatively easy to repair, add, or remove genes during the IVG process, eliminating diseases or conferring advantages that would ripple through a child’s genome. This all may sound like science fiction, but to those following the research, the combination of IVG and gene editing appears highly likely, if not inevitable.”

From Crazy to Commonplace?
It’s a slippery slope from gene editing and embryo-mating to a dystopian race to build the most perfect humans possible. If somebody’s investing so much time and energy in selecting their embryo, Metzl asked, how will they think about the mating choices of their children? IVG could quickly leave the realm of healthcare and enter that of evolution.

“We all need to be part of an inclusive, integrated, global dialogue on the future of our species,” Metzl said. “Healthcare professionals are essential nodes in this.” Not least among this dialogue should be the question of access to tech like IVG; are there steps we can take to keep it from becoming a tool for a wealthy minority, and thereby perpetuating inequality and further polarizing societies?

As Pontin points out, at its inception 40 years ago IVF also sparked fear, confusion, and resistance—and now it’s as normal and common as could be, with millions of healthy babies conceived using the technology.

The disruption that genomics, AI, and IVG will bring to reproduction could follow a similar story cycle—if we’re smart about it. As Metzl put it, “This must be regulated, because it is life.”

Image Credit: hywards / Shutterstock.com Continue reading

Posted in Human Robots