Tag Archives: challenge

#436462 Robotic Exoskeletons, Like This One, Are ...

When you imagine an exoskeleton, chances are it might look a bit like the Guardian XO from Sarcos Robotics. The XO is literally a robot you wear (or maybe, it wears you). The suit’s powered limbs sense your movements and match their position to yours with little latency to give you effortless superstrength and endurance—lifting 200 pounds will feel like 10.

A vision of robots and humankind working together in harmony. Now, isn’t that nice?

Of course, there isn’t anything terribly novel about an exoskeleton. We’ve seen plenty of concepts and demonstrations in the last decade. These include light exoskeletons tailored to industrial settings—some of which are being tested out by the likes of Honda—and healthcare exoskeletons that support the elderly or folks with disabilities.

Full-body powered robotic exoskeletons are a bit rarer, which makes the Sarcos suit pretty cool to look at. But like all things in robotics, practicality matters as much as vision. It’s worth asking: Will anyone buy and use the thing? Is it more than a concept video?

Sarcos thinks so, and they’re excited about it. “If you were to ask the question, what does 30 years and $300 million look like,” Sarcos CEO, Ben Wolff, told IEEE Spectrum, “you’re going to see it downstairs.”

The XO appears to check a few key boxes. For one, it’s user friendly. According to Sarcos, it only takes a few minutes for the uninitiated to strap in and get up to speed. Feeling comfortable doing work with the suit takes a few hours. This is thanks to a high degree of sensor-based automation that allows the robot to seamlessly match its user’s movements.

The XO can also operate for more than a few minutes. It has two hours of battery life, and with spares on hand, it can go all day. The batteries are hot-swappable, meaning you can replace a drained battery with a new one without shutting the system down.

The suit is aimed at manufacturing, where workers are regularly moving heavy stuff around. Additionally, Wolff told CNET, the suit could see military use. But that doesn’t mean Avatar-style combat. The XO, Wolff said, is primarily about logistics (lifting and moving heavy loads) and isn’t designed to be armored, so it won’t likely see the front lines.

The system will set customers back $100,000 a year to rent, which sounds like a lot, but for industrial or military purposes, the six-figure rental may not deter would-be customers if the suit proves itself a useful bit of equipment. (And it’s reasonable to imagine the price coming down as the technology becomes more commonplace and competitors arrive.)

Sarcos got into exoskeletons a couple decades ago and was originally funded by the military (like many robotics endeavors). Videos hit YouTube as long ago as 2008, but after announcing the company was taking orders for the XO earlier this year, Sarcos says they’ll deliver the first alpha units in January, which is a notable milestone.

Broadly, robotics has advanced a lot in recent years. YouTube sensations like Boston Dynamics have regularly earned millions of views (and inevitably, headlines stoking robot fear). They went from tethered treadmill sessions to untethered backflips off boxes. While today’s robots really are vastly superior to their ancestors, they’ve struggled to prove themselves useful. A counterpoint to flashy YouTube videos, the DARPA Robotics Challenge gave birth to another meme altogether. Robots falling over. Often and awkwardly.

This year marks some of the first commercial fruits of a few decades’ research. Boston Dynamics recently started offering its robot dog, Spot, to select customers in 2019. Whether this proves to be a headline-worthy flash in the pan or something sustainable remains to be seen. But between robots with more autonomy and exoskeletons like the XO, the exoskeleton variety will likely be easier to make more practical for various uses.

Whereas autonomous robots require highly advanced automation to navigate uncertain and ever-changing conditions—automation which, at the moment, remains largely elusive (though the likes of Google are pairing the latest AI with robots to tackle the problem)—an exoskeleton mainly requires physical automation. The really hard bits, like navigating and recognizing and interacting with objects, are outsourced to its human operator.

As it turns out, for today’s robots the best AI is still us. We may yet get chipper automatons like Rosy the Robot, but until then, for complicated applications, we’ll strap into our mechs for their strength and endurance, and they’ll wear us for our brains.

Image Credit: Sarcos Robotics Continue reading

Posted in Human Robots

#436426 Video Friday: This Robot Refuses to Fall ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

Robotic Arena – January 25, 2020 – Wrocław, Poland
DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, Wash., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

In case you somehow missed the massive Skydio 2 review we posted earlier this week, the first batches of the drone are now shipping. Each drone gets a lot of attention before it goes out the door, and here’s a behind-the-scenes clip of the process.

[ Skydio ]

Sphero RVR is one of the 15 robots on our robot gift guide this year. Here’s a new video Sphero just released showing some of the things you can do with the robot.

[ RVR ]

NimbRo-OP2 has some impressive recovery skills from the obligatory research-motivated robot abuse.

[ NimbRo ]

Teams seeking to qualify for the Virtual Urban Circuit of the Subterranean Challenge can access practice worlds to test their approaches prior to submitting solutions for the competition. This video previews three of the practice environments.

[ DARPA SubT ]

Stretchable skin-like robots that can be rolled up and put in your pocket have been developed by a University of Bristol team using a new way of embedding artificial muscles and electrical adhesion into soft materials.

[ Bristol ]

Happy Holidays from ABB!

Helping New York celebrate the festive season, twelve ABB robots are interacting with visitors to Bloomingdale’s iconic holiday celebration at their 59th Street flagship store. ABB’s robots are the main attraction in three of Bloomingdale’s twelve-holiday window displays at Lexington and Third Avenue, as ABB demonstrates the potential for its robotics and automation technology to revolutionize visual merchandising and make the retail experience more dynamic and whimsical.

[ ABB ]

We introduce pelican eel–inspired dual-morphing architectures that embody quasi-sequential behaviors of origami unfolding and skin stretching in response to fluid pressure. In the proposed system, fluid paths were enclosed and guided by a set of entirely stretchable origami units that imitate the morphing principle of the pelican eel’s stretchable and foldable frames. This geometric and elastomeric design of fluid networks, in which fluid pressure acts in the direction that the whole body deploys first, resulted in a quasi-sequential dual-morphing response. To verify the effectiveness of our design rule, we built an artificial creature mimicking a pelican eel and reproduced biomimetic dual-morphing behavior.

And here’s a real pelican eel:

[ Science Robotics ]

Delft Dynamics’ updated anti-drone system involves a tether, mid-air net gun, and even a parachute.

[ Delft Dynamics ]

Teleoperation is a great way of helping robots with complex tasks, especially if you can do it through motion capture. But what if you’re teleoperating a non-anthropomorphic robot? Columbia’s ROAM Lab is working on it.

[ Paper ] via [ ROAM Lab ]

I don’t know how I missed this video last year because it’s got a steely robot hand squeezing a cute lil’ chick.

[ MotionLib ] via [ RobotStart ]

In this video we present results of a trajectory generation method for autonomous overtaking of unexpected obstacles in a dynamic urban environment. In these settings, blind spots can arise from perception limitations. For example when overtaking unexpected objects on the vehicle’s ego lane on a two-way street. In this case, a human driver would first make sure that the opposite lane is free and that there is enough room to successfully execute the maneuver, and then it would cut into the opposite lane in order to execute the maneuver successfully. We consider the practical problem of autonomous overtaking when the coverage of the perception system is impaired due to occlusion.

[ Paper ]

New weirdness from Toio!

[ Toio ]

Palo Alto City Library won a technology innovation award! Watch to see how Senior Librarian Dan Lou is using Misty to enhance their technology programs to inspire and educate customers.

[ Misty Robotics ]

We consider the problem of reorienting a rigid object with arbitrary known shape on a table using a two-finger pinch gripper. Reorienting problem is challenging because of its non-smoothness and high dimensionality. In this work, we focus on solving reorienting using pivoting, in which we allow the grasped object to rotate between fingers. Pivoting decouples the gripper rotation from the object motion, making it possible to reorient an object under strict robot workspace constraints.

[ CMU ]

How can a mobile robot be a good pedestrian without bumping into you on the sidewalk? It must be hard for a robot to navigate in crowded environments since the flow of traffic follows implied social rules. But researchers from MIT developed an algorithm that teaches mobile robots to maneuver in crowds of people, respecting their natural behaviour.

[ Roboy Research Reviews ]

What happens when humans and robots make art together? In this awe-inspiring talk, artist Sougwen Chung shows how she “taught” her artistic style to a machine — and shares the results of their collaboration after making an unexpected discovery: robots make mistakes, too. “Part of the beauty of human and machine systems is their inherent, shared fallibility,” she says.

[ TED ]

Last month at the Cooper Union in New York City, IEEE TechEthics hosted a public panel session on the facts and misperceptions of autonomous vehicles, part of the IEEE TechEthics Conversations Series. The speakers were: Jason Borenstein from Georgia Tech; Missy Cummings from Duke University; Jack Pokrzywa from SAE; and Heather M. Roff from Johns Hopkins Applied Physics Laboratory. The panel was moderated by Mark A. Vasquez, program manager for IEEE TechEthics.

[ IEEE TechEthics ]

Two videos this week from Lex Fridman’s AI podcast: Noam Chomsky, and Whitney Cummings.

[ AI Podcast ]

This week’s CMU RI Seminar comes from Jeff Clune at the University of Wyoming, on “Improving Robot and Deep Reinforcement Learning via Quality Diversity and Open-Ended Algorithms.”

Quality Diversity (QD) algorithms are those that seek to produce a diverse set of high-performing solutions to problems. I will describe them and a number of their positive attributes. I will then summarize our Nature paper on how they, when combined with Bayesian Optimization, produce a learning algorithm that enables robots, after being damaged, to adapt in 1-2 minutes in order to continue performing their mission, yielding state-of-the-art robot damage recovery. I will next describe our QD-based Go-Explore algorithm, which dramatically improves the ability of deep reinforcement learning algorithms to solve previously unsolvable problems wherein reward signals are sparse, meaning that intelligent exploration is required. Go-Explore solves Montezuma’s Revenge, considered by many to be a major AI research challenge. Finally, I will motivate research into open-ended algorithms, which seek to innovate endlessly, and introduce our POET algorithm, which generates its own training challenges while learning to solve them, automatically creating a curricula for robots to learn an expanding set of diverse skills. POET creates and solves challenges that are unsolvable with traditional deep reinforcement learning techniques.

[ CMU RI ] Continue reading

Posted in Human Robots

#436414 Japanese Researchers Teaching Robots to ...

When mobile manipulators eventually make it into our homes, self-repair is going to be a very important function. Hopefully, these robots will be durable enough that they won’t need to be repaired very often, but from time to time they’ll almost certainly need minor maintenance. At Humanoids 2019 in Toronto, researchers from the University of Tokyo showed how they taught a PR2 to perform simple repairs on itself by tightening its own screws. And using that skill, the robot was also able to augment itself, adding accessories like hooks to help it carry more stuff. Clever robot!

To keep things simple, the researchers provided the robot with CAD data that tells it exactly where all of its screws are.

At the moment, the robot can’t directly detect on its own whether a particular screw needs tightening, although it can tell if its physical pose doesn’t match its digital model, which suggests that something has gone wonky. It can also check its screws autonomously from time to time, or rely on a human physically pointing out that it has a screw loose, using the human’s finger location to identify which screw it is. Another challenge is that most robots, like most humans, are limited in the areas on themselves that they can comfortably reach. So to tighten up everything, they might have to find themselves a robot friend to help, just like humans help each other put on sunblock.

The actual tightening is either super easy or quite complicated, depending on the location and orientation of the screw. If the robot is lucky, it can just use its continuous wrist rotation for tightening, but if a screw is located in a tight position that requires an Allen wrench, the robot has to regrasp the tool over and over as it incrementally tightens the screw.

Image: University of Tokyo

In one experiment, the researchers taught a PR2 robot to attach a hook to one of its shoulders. The robot uses one hand to grasp the hook and another hand to grasp a screwdriver. The researchers tested the hook by hanging a tote bag on it.

The other neat trick that a robot can do once it can tighten screws on its own body is to add new bits of hardware to itself. PR2 was thoughtfully designed with mounting points on its shoulders (or maybe technically its neck) and head, and it turns out that it can reach these points with its manipulators, allowing to modify itself, as the researchers explain:

When PR2 wants to have a lot of things, the only two hands are not enough to realize that. So we let PR2 to use a bag the same as we put it on our shoulder. PR2 started attaching the hook whose pose is calculated with self CAD data with a driver on his shoulder in order to put a bag on his shoulder. PR2 finished attaching the hook, and the people put a lot of cans in a tote bag and put it on PR2’s shoulder.

“Self-Repair and Self-Extension by Tightening Screws based on Precise Calculation of Screw Pose of Self-Body with CAD Data and Graph Search with Regrasping a Driver,” by Takayuki Murooka, Kei Okada, and Masayuki Inaba from the University of Tokyo, was presented at Humanoids 2019 in Toronto, Canada. Continue reading

Posted in Human Robots

#436220 How Boston Dynamics Is Redefining Robot ...

Gif: Bob O’Connor/IEEE Spectrum

With their jaw-dropping agility and animal-like reflexes, Boston Dynamics’ bioinspired robots have always seemed to have no equal. But that preeminence hasn’t stopped the company from pushing its technology to new heights, sometimes literally. Its latest crop of legged machines can trudge up and down hills, clamber over obstacles, and even leap into the air like a gymnast. There’s no denying their appeal: Every time Boston Dynamics uploads a new video to YouTube, it quickly racks up millions of views. These are probably the first robots you could call Internet stars.

Spot

Photo: Bob O’Connor

84 cm HEIGHT

25 kg WEIGHT

5.76 km/h SPEED

SENSING: Stereo cameras, inertial measurement unit, position/force sensors

ACTUATION: 12 DC motors

POWER: Battery (90 minutes per charge)

Boston Dynamics, once owned by Google’s parent company, Alphabet, and now by the Japanese conglomerate SoftBank, has long been secretive about its designs. Few publications have been granted access to its Waltham, Mass., headquarters, near Boston. But one morning this past August, IEEE Spectrum got in. We were given permission to do a unique kind of photo shoot that day. We set out to capture the company’s robots in action—running, climbing, jumping—by using high-speed cameras coupled with powerful strobes. The results you see on this page: freeze-frames of pure robotic agility.

We also used the photos to create interactive views, which you can explore online on our Robots Guide. These interactives let you spin the robots 360 degrees, or make them walk and jump on your screen.

Boston Dynamics has amassed a minizoo of robotic beasts over the years, with names like BigDog, SandFlea, and WildCat. When we visited, we focused on the two most advanced machines the company has ever built: Spot, a nimble quadruped, and Atlas, an adult-size humanoid.

Spot can navigate almost any kind of terrain while sensing its environment. Boston Dynamics recently made it available for lease, with plans to manufacture something like a thousand units per year. It envisions Spot, or even packs of them, inspecting industrial sites, carrying out hazmat missions, and delivering packages. And its YouTube fame has not gone unnoticed: Even entertainment is a possibility, with Cirque du Soleil auditioning Spot as a potential new troupe member.

“It’s really a milestone for us going from robots that work in the lab to these that are hardened for work out in the field,” Boston Dynamics CEO Marc Raibert says in an interview.

Atlas

Photo: Bob O’Connor

150 cm HEIGHT

80 kg WEIGHT

5.4 km/h SPEED

SENSING: Lidar and stereo vision

ACTUATION: 28 hydraulic actuators

POWER: Battery

Our other photographic subject, Atlas, is Boston Dynamics’ biggest celebrity. This 150-centimeter-tall (4-foot-11-inch-tall) humanoid is capable of impressive athletic feats. Its actuators are driven by a compact yet powerful hydraulic system that the company engineered from scratch. The unique system gives the 80-kilogram (176-pound) robot the explosive strength needed to perform acrobatic leaps and flips that don’t seem possible for such a large humanoid to do. Atlas has inspired a string of parody videos on YouTube and more than a few jokes about a robot takeover.

While Boston Dynamics excels at making robots, it has yet to prove that it can sell them. Ever since its founding in 1992 as a spin-off from MIT, the company has been an R&D-centric operation, with most of its early funding coming from U.S. military programs. The emphasis on commercialization seems to have intensified after the acquisition by SoftBank, in 2017. SoftBank’s founder and CEO, Masayoshi Son, is known to love robots—and profits.

The launch of Spot is a significant step for Boston Dynamics as it seeks to “productize” its creations. Still, Raibert says his long-term goals have remained the same: He wants to build machines that interact with the world dynamically, just as animals and humans do. Has anything changed at all? Yes, one thing, he adds with a grin. In his early career as a roboticist, he used to write papers and count his citations. Now he counts YouTube views.

In the Spotlight

Photo: Bob O’Connor

Boston Dynamics designed Spot as a versatile mobile machine suitable for a variety of applications. The company has not announced how much Spot will cost, saying only that it is being made available to select customers, which will be able to lease the robot. A payload bay lets you add up to 14 kilograms of extra hardware to the robot’s back. One of the accessories that Boston Dynamics plans to offer is a 6-degrees-of-freedom arm, which will allow Spot to grasp objects and open doors.

Super Senses

Photo: Bob O’Connor

Spot’s hardware is almost entirely custom-designed. It includes powerful processing boards for control as well as sensor modules for perception. The ­sensors are located on the front, rear, and sides of the robot’s body. Each module consists of a pair of stereo cameras, a wide-angle camera, and a texture projector, which enhances 3D sensing in low light. The sensors allow the robot to use the navigation method known as SLAM, or simultaneous localization and mapping, to get around autonomously.

Stepping Up

Photo: Bob O’Connor

In addition to its autonomous behaviors, Spot can also be steered by a remote operator with a game-style controller. But even when in manual mode, the robot still exhibits a high degree of autonomy. If there’s an obstacle ahead, Spot will go around it. If there are stairs, Spot will climb them. The robot goes into these operating modes and then performs the related actions completely on its own, without any input from the operator. To go down a flight of stairs, Spot walks backward, an approach Boston Dynamics says provides greater stability.

Funky Feet

Gif: Bob O’Connor/IEEE Spectrum

Spot’s legs are powered by 12 custom DC motors, each geared down to provide high torque. The robot can walk forward, sideways, and backward, and trot at a top speed of 1.6 meters per second. It can also turn in place. Other gaits include crawling and pacing. In one wildly popular YouTube video, Spot shows off its fancy footwork by dancing to the pop hit “Uptown Funk.”

Robot Blood

Photo: Bob O’Connor

Atlas is powered by a hydraulic system consisting of 28 actuators. These actuators are basically cylinders filled with pressurized fluid that can drive a piston with great force. Their high performance is due in part to custom servo valves that are significantly smaller and lighter than the aerospace models that Boston Dynamics had been using in earlier designs. Though not visible from the outside, the innards of an Atlas are filled with these hydraulic actuators as well as the lines of fluid that connect them. When one of those lines ruptures, Atlas bleeds the hydraulic fluid, which happens to be red.

Next Generation

Gif: Bob O’Connor/IEEE Spectrum

The current version of Atlas is a thorough upgrade of the original model, which was built for the DARPA Robotics Challenge in 2015. The newest robot is lighter and more agile. Boston Dynamics used industrial-grade 3D printers to make key structural parts, giving the robot greater strength-to-weight ratio than earlier designs. The next-gen Atlas can also do something that its predecessor, famously, could not: It can get up after a fall.

Walk This Way

Photo: Bob O’Connor

To control Atlas, an operator provides general steering via a manual controller while the robot uses its stereo cameras and lidar to adjust to changes in the environment. Atlas can also perform certain tasks autonomously. For example, if you add special bar-code-type tags to cardboard boxes, Atlas can pick them up and stack them or place them on shelves.

Biologically Inspired

Photos: Bob O’Connor

Atlas’s control software doesn’t explicitly tell the robot how to move its joints, but rather it employs mathematical models of the underlying physics of the robot’s body and how it interacts with the environment. Atlas relies on its whole body to balance and move. When jumping over an obstacle or doing acrobatic stunts, the robot uses not only its legs but also its upper body, swinging its arms to propel itself just as an athlete would.

This article appears in the December 2019 print issue as “By Leaps and Bounds.” Continue reading

Posted in Human Robots

#436215 Help Rescuers Find Missing Persons With ...

There’s a definite sense that robots are destined to become a critical part of search and rescue missions and disaster relief efforts, working alongside humans to help first responders move faster and more efficiently. And we’ve seen all kinds of studies that include the claim “this robot could potentially help with disaster relief,” to varying degrees of plausibility.

But it takes a long time, and a lot of extra effort, for academic research to actually become anything useful—especially for first responders, where there isn’t a lot of financial incentive for further development.

It turns out that if you actually ask first responders what they most need for disaster relief, they’re not necessarily interested in the latest and greatest robotic platform or other futuristic technology. They’re using commercial off-the-shelf drones, often consumer-grade ones, because they’re simple and cheap and great at surveying large areas. The challenge is doing something useful with all of the imagery that these drones collect. Computer vision algorithms could help with that, as long as those algorithms are readily accessible and nearly effortless to use.

The IEEE Robotics and Automation Society and the Center for Robotic-Assisted Search and Rescue (CRASAR) at Texas A&M University have launched a contest to bridge this gap between the kinds of tools that roboticists and computer vision researchers might call “basic” and a system that’s useful to first responders in the field. It’s a simple and straightforward idea, and somewhat surprising that no one had thought of it before now. And if you can develop such a system, it’s worth some cash.

CRASAR does already have a Computer Vision Emergency Response Toolkit (created right after Hurricane Harvey), which includes a few pixel filters and some edge and corner detectors. Through this contest, you can get paid your share of a $3,000 prize pool for adding some other excessively basic tools, including:

Image enhancement through histogram equalization, which can be applied to electro-optical (visible light cameras) and thermal imagery

Color segmentation for a range

Grayscale segmentation for a range in a thermal image

If it seems like this contest is really not that hard, that’s because it isn’t. “The first thing to understand about this contest is that strictly speaking, it’s really not that hard,” says Robin Murphy, director of CRASAR. “This contest isn’t necessarily about coming up with algorithms that are brand new, or even state-of-the-art, but rather algorithms that are functional and reliable and implemented in a way that’s immediately [usable] by inexperienced users in the field.”

Murphy readily admits that some of what needs to be done is not particularly challenging at all, but that’s not the point—the point is to make these functionalities accessible to folks who have better things to do than solve these problems themselves, as Murphy explains.

“A lot of my research is driven by problems that I’ve seen in the field that you’d think somebody would have solved, but apparently not. More than half of this is available in OpenCV, but who’s going to find it, download it, learn Python, that kind of thing? We need to get these tools into an open framework. We’re happy if you take libraries that already exist (just don’t steal code)—not everything needs to be rewritten from scratch. Just use what’s already there. Some of it may seem too simple, because it IS that simple. It already exists and you just need to move some code around.”

If you want to get very slightly more complicated, there’s a second category that involves a little bit of math:

Coders must provide a system that does the following for each nadir image in a set:

Reads the geotag embedded in the .jpg
Overlays a USNG grid for a user-specified interval (e.g., every 50, 100, or 200 meters)
Gives the GPS coordinates of each pixel if a cursor is rolled over the image
Given a set of images with the GPS or USNG coordinate and a bounding box, finds all images in the set that have a pixel intersecting that location

The final category awards prizes to anyone who comes up with anything else that turns out to be useful. Or, more specifically, “entrants can submit any algorithm they believe will be of value.” Whether or not it’s actually of value will be up to a panel of judges that includes both first responders and computer vision experts. More detailed rules can be found here, along with sample datasets that you can use for testing.

The contest deadline is 16 December, so you’ve got about a month to submit an entry. Winners will be announced at the beginning of January. Continue reading

Posted in Human Robots