Tag Archives: center
#438080 Boston Dynamics’ Spot Robot Is Now ...
Boston Dynamics has been working on an arm for its Spot quadruped for at least five years now. There have been plenty of teasers along the way, including this 45-second clip from early 2018 of Spot using its arm to open a door, which at 85 million views seems to be Boston Dynamics’ most popular video ever by a huge margin. Obviously, there’s a substantial amount of interest in turning Spot from a highly dynamic but mostly passive sensor platform into a mobile manipulator that can interact with its environment.
As anyone who’s done mobile manipulation will tell you, actually building an arm is just the first step—the really tricky part is getting that arm to do exactly what you want it to do. In particular, Spot’s arm needs to be able to interact with the world with some amount of autonomy in order to be commercially useful, because you can’t expect a human (remote or otherwise) to spend all their time positioning individual joints or whatever to pick something up. So the real question about this arm is whether Boston Dynamics has managed to get it to a point where it’s autonomous enough that users with relatively little robotics experience will be able to get it to do useful tasks without driving themselves nuts.
Today, Boston Dynamics is announcing commercial availability of the Spot arm, along with some improved software called Scout plus a self-charging dock that’ll give the robot even more independence. And to figure out exactly what Spot’s new arm can do, we spoke with Zachary Jackowski, Spot Chief Engineer at Boston Dynamics.
Although Boston Dynamics’ focus has been on dynamic mobility and legged robots, the company has been working on manipulation for a very long time. We first saw an arm prototype on an early iteration of Spot in 2016, where it demonstrated some impressive functionality, including loading a dishwasher and fetching a beer in a way that only resulted in a minor catastrophe. But we’re guessing that Spot’s arm can trace its history back to BigDog’s crazy powerful hydraulic face-arm, which was causing mayhem with cinder blocks back in 2013:
Spot’s arm is not quite that powerful (it has to drag cinder blocks along the ground rather than fling them into space), but you can certainly see the resemblance. Here’s the video that Boston Dynamics posted yesterday to introduce Spot’s new arm:
A couple of things jumped out from this video right away. First, Spot is doing whole body manipulation with its arm, as opposed to just acting as a four-legged base that brings the arm where it needs to go. Planning looks to be very tightly integrated, such that if you ask the robot to manipulate an object, its arm, legs, and torso all work together to optimize that manipulation. Also, when Spot flips that electrical switch, you see the robot successfully grasp the switch, and then reposition its body in a way that looks like it provides better leverage for the flip, which is a neat trick. It looks like it may be able to use the strength of its legs to augment the strength of its arm, as when it’s dragging the cinder block around, which is surely an homage to BigDog. The digging of a hole is particularly impressive. But again, the real question is how much of this is autonomous or semi-autonomous in a way that will be commercially useful?
Before we get to our interview with Spot Chief Engineer Zack Jackowski, it’s worth watching one more video that Boston Dynamics shared with us:
This is notable because Spot is opening a door that’s not ADA compliant, and the robot is doing it with a simple two-finger gripper. Most robots you see interacting with doors rely on ADA compliant hardware, meaning (among other things) a handle that can be pushed rather than a knob that has to be twisted, because it’s much more challenging for a robot to grasp and twist a smooth round door knob than it is to just kinda bash down on a handle. That capability, combined with Spot being able to pass through a spring-loaded door, potentially opens up a much wider array of human environments to the robot, and that’s where we started our conversation with Jackowski.
IEEE Spectrum: At what point did you decide that for Spot’s arm to be useful, it had to be able to handle round door knobs?
Zachary Jackowski: We're like a lot of roboticists, where someone in a meeting about manipulation would say “it's time for the round doorknob” and people would start groaning a little bit. But the reality is that, in order to make a robot useful, you have to engage with the environments that users have. Spot’s arm uses a very simple gripper—it’s a one degree of freedom gripper, but a ton of thought has gone into all of the fine geometric contours of it such that it can grab that ADA compliant lever handle, and it’ll also do an enclosing grasp around a round door knob. The major point of a robot like Spot is to engage with the environment you have, and so you can’t cut out stuff like round door knobs.
We're thrilled to be launching the arm and getting it out with users and to have them start telling us what doors it works really well on, and what they're having trouble with. And we're going to be working on rapidly improving all this stuff. We went through a few campaigns of like, “this isn’t ready until we can open every single door at Boston Dynamics!” But every single door at Boston Dynamics and at our test lab is a small fraction of all the doors in the world. So we're prepared to learn a lot this year.
When we see Spot open a door, or when it does those other manipulation behaviors in the launch video, how much of that is autonomous, how much is scripted, and to what extent is there a human in the loop?
All of the scenes where the robot does a pick, like the snow scene or the laundry scene, that is actually an almost fully integrated autonomous behavior that has a bit of a script wrapped around it. We trained a detector for an object, and the robot is identifying that object in the environment, picking it, and putting it in the bin all autonomously. The scripted part of that is telling the robot to perform a series of picks.
One of the things that we’re excited about, and that roboticists have been excited about going back probably all the way to the DRC, is semi-autonomous manipulation. And so we have modes built into the interface where if you see an object that you want the robot to grab, all you have to do is tap that object on the screen, and the robot will walk up to it, use the depth camera in its gripper to capture a depth map, and plan a grasp on its own in real time. That’s all built-in, too.
The jump rope—robots don’t just go and jump rope on their own. We scripted an arm motion to move the rope, and wrote a script using our API to coordinate all three robots. Drawing “Boston Dynamics” in chalk in our parking lot was scripted also. One of our engineers wrote a really cool G-code interpreter that vectorizes graphics so that Spot can draw them.
So for an end user, if you wanted Spot to autonomously flip some switches for you, you’d just have to train Spot on your switches, and then Spot could autonomously perform the task?
There are a couple of ways that task could break down depending on how you’re interfacing with the robot. If you’re a tablet user, you’d probably just identify the switch yourself on the tablet’s screen, and the robot will figure out the grasp, and grasp it. Then you’ll enter a constrained manipulation mode on the tablet, and the robot will be able to actuate the switch. But the robot will take care of the complicated controls aspects, like figuring out how hard it has to pull, the center of rotation of the switch, and so on.
The video of Spot digging was pretty cool—how did that work?
That’s mostly a scripted behavior. There are some really interesting control systems topics in there, like how you’d actually do the right kinds of force control while you insert the trowel into the dirt, and how to maintain robot stability while you do it. The higher level task of how to make a good hole in the dirt—that’s scripted. But the part of the problem that’s actually digging, you need the right control system to actually do that, or you’ll dig your trowel into the ground and flip your robot over.
The last time we saw Boston Dynamics robots flipping switches and turning valves I think might have been during the DRC in 2015, when they had expert robot operators with control over every degree of freedom. How are things different now with Spot, and will non-experts in the commercial space really be able to get the robot to do useful tasks?
A lot of the things, like “pick the stuff up in the room,” or ‘turn that switch,” can all be done by a lightly trained operator using just the tablet interface. If you want to actually command all of Spot’s arm degrees of freedom, you can do that— not through the tablet, but the API does expose all of it. That’s actually a notable difference from the base robot; we’ve never opened up the part of the API that lets you command individual leg degrees of freedom, because we don’t think it’s productive for someone to do that. The arm is a little bit different. There are a lot of smart people working on arm motion planning algorithms, and maybe you want to plan your arm trajectory in a super precise way and then do a DRC-style interface where you click to approve it. You can do all that through the API if you want, but fundamentally, it’s also user friendly. It follows our general API design philosophy of giving you the highest level pieces of the toolbox that will enable you to solve a complex problem that we haven't thought of.
Looking back on it now, it’s really cool to see, after so many years, robots do the stuff that Gill Pratt was excited about kicking off with the DRC. And now it’s just a thing you can buy.
Is Spot’s arm safe?
You should follow the same safety rules that you’d follow when working with Spot normally, and that’s that you shouldn’t get within two meters of the robot when it’s powered on. Spot is not a cobot. You shouldn’t hug it. Fundamentally, the places where the robot is the most valuable are places where people don’t want to be, or shouldn’t be.
We’ve seen how people reacted to earlier videos of Spot using its arm—can you help us set some reasonable expectations for what this means for Spot?
You know, it gets right back to the normal assumptions about our robots that people make that aren’t quite reality. All of this manipulation work we’re doing— the robot’s really acting as a tool. Even if it’s an autonomous behavior, it’s a tool. The robot is digging a hole because it’s got a set of instructions that say “apply this much force over this much distance here, here, and here.”
It’s not digging a hole and planting a tree because it loves trees, as much as I’d love to build a robot that works like that.
Photo: Boston Dynamics
There isn’t too much to say about the dock, except that it’s a requirement for making Spot long-term autonomous. The uncomfortable looking charging contacts that Spot impales itself on also include hardwired network connectivity, which is important because Spot often comes back home with a huge amount of data that all needs to be offloaded and processed. Docking and undocking are autonomous— as soon as the robot sees the fiducial markers on the dock, auto docking is enabled and it takes one click to settle the robot down.
During a brief remote demo, we also learned some other interesting things about Spot’s updated remote interface. It’s very latency tolerant, since you don’t have to drive the robot directly (although you can if you want to). Click a point on the camera view and Spot will move there autonomously while avoiding obstacles, meaning that even if you’re dealing with seconds of lag, the robot will continue making safe progress. This will be especially important if (when?) Spot starts exploring the Moon.
The remote interface also has an option to adjust how close Spot can get to obstacles, or to turn the obstacle avoidance off altogether. The latter functionality is useful if Spot sees something as an obstacle that really isn’t, like a curtain, while the former is useful if the robot is operating in an environment where it needs to give an especially wide berth to objects that could be dangerous to run into. “The robot’s not perfect—robots will never be perfect,” Jackowski reminds us, which is something we really (seriously) appreciate hearing from folks working on powerful, dynamic robots. “No matter how good the robot is, you should always de-risk as much as possible.”
Another part of that de-risking is having the user let Spot know when it’s about to go up or down some stairs by putting into “Stair Mode” with a toggle switch in the remote interface. Stairs are still a challenge for Spot, and Stair Mode slows the robot down and encourages it to pitch its body more aggressively to get a better view of the stairs. You’re encouraged to use stair mode, and also encouraged to send Spot up and down stairs with its “head” pointing up the stairs both ways, but these are not requirements for stair navigation— if you want to, you can send Spot down stairs head first without putting it in stair mode. Jackowski says that eventually, Spot will detect stairways by itself even when not in stair mode and adjust itself accordingly, but for now, that de-risking is solidly in the hands of the user.
Spot’s sensor payload, which is what we were trying out for the demo, provided a great opportunity for us to hear Spot STOMP STOMP STOMPING all over the place, which was also an opportunity for us to ask Jackowski why they can’t make Spot a little quieter. “It’s advantageous for Spot to step a little bit hard for the same reason it’s advantageous for you to step a little bit hard if you’re walking around blindfolded—that reason is that it really lets you know where the ground is, particularly when you’re not sure what to expect.” He adds, “It’s all in the name of robustness— the robot might be a little louder, but it’s a little more sure of its footing.”
Boston Dynamics isn’t yet ready to disclose the price of an arm-equipped Spot, but if you’re a potential customer, now is the time to contact the Boston Dynamics sales team to ask them about it. As a reminder, the base model of Spot costs US $74,500, with extra sensing or compute adding a substantial premium on top of that.
There will be a livestream launch event taking place at 11am ET today, during which Boston Dynamics’ CEO Robert Playter, VP of Marketing Michael Perry, and other folks from Boston Dynamics will make presentations on this new stuff. It’ll be live at this link, or you can watch it below. Continue reading →
#438076 Boston Dynamics’ Spot Robot Is Now ...
Boston Dynamics has been working on an arm for its Spot quadruped for at least five years now. There have been plenty of teasers along the way, including this 45-second clip from early 2018 of Spot using its arm to open a door, which at 85 million views seems to be Boston Dynamics’ most popular video ever by a huge margin. Obviously, there’s a substantial amount of interest in turning Spot from a highly dynamic but mostly passive sensor platform into a mobile manipulator that can interact with its environment.
As anyone who’s done mobile manipulation will tell you, actually building an arm is just the first step—the really tricky part is getting that arm to do exactly what you want it to do. In particular, Spot’s arm needs to be able to interact with the world with some amount of autonomy in order to be commercially useful, because you can’t expect a human (remote or otherwise) to spend all their time positioning individual joints or whatever to pick something up. So the real question about this arm is whether Boston Dynamics has managed to get it to a point where it’s autonomous enough that users with relatively little robotics experience will be able to get it to do useful tasks without driving themselves nuts.
Today, Boston Dynamics is announcing commercial availability of the Spot arm, along with some improved software called Scout plus a self-charging dock that’ll give the robot even more independence. And to figure out exactly what Spot’s new arm can do, we spoke with Zachary Jackowski, Spot Chief Engineer at Boston Dynamics.
Although Boston Dynamics’ focus has been on dynamic mobility and legged robots, the company has been working on manipulation for a very long time. We first saw an arm prototype on an early iteration of Spot in 2016, where it demonstrated some impressive functionality, including loading a dishwasher and fetching a beer in a way that only resulted in a minor catastrophe. But we’re guessing that Spot’s arm can trace its history back to BigDog’s crazy powerful hydraulic face-arm, which was causing mayhem with cinder blocks back in 2013:
Spot’s arm is not quite that powerful (it has to drag cinder blocks along the ground rather than fling them into space), but you can certainly see the resemblance. Here’s the video that Boston Dynamics posted yesterday to introduce Spot’s new arm:
A couple of things jumped out from this video right away. First, Spot is doing whole body manipulation with its arm, as opposed to just acting as a four-legged base that brings the arm where it needs to go. Planning looks to be very tightly integrated, such that if you ask the robot to manipulate an object, its arm, legs, and torso all work together to optimize that manipulation. Also, when Spot flips that electrical switch, you see the robot successfully grasp the switch, and then reposition its body in a way that looks like it provides better leverage for the flip, which is a neat trick. It looks like it may be able to use the strength of its legs to augment the strength of its arm, as when it’s dragging the cinder block around, which is surely an homage to BigDog. The digging of a hole is particularly impressive. But again, the real question is how much of this is autonomous or semi-autonomous in a way that will be commercially useful?
Before we get to our interview with Spot Chief Engineer Zack Jackowski, it’s worth watching one more video that Boston Dynamics shared with us:
This is notable because Spot is opening a door that’s not ADA compliant, and the robot is doing it with a simple two-finger gripper. Most robots you see interacting with doors rely on ADA compliant hardware, meaning (among other things) a handle that can be pushed rather than a knob that has to be twisted, because it’s much more challenging for a robot to grasp and twist a smooth round door knob than it is to just kinda bash down on a handle. That capability, combined with Spot being able to pass through a spring-loaded door, potentially opens up a much wider array of human environments to the robot, and that’s where we started our conversation with Jackowski.
IEEE Spectrum: At what point did you decide that for Spot’s arm to be useful, it had to be able to handle round door knobs?
Zachary Jackowski: We're like a lot of roboticists, where someone in a meeting about manipulation would say “it's time for the round doorknob” and people would start groaning a little bit. But the reality is that, in order to make a robot useful, you have to engage with the environments that users have. Spot’s arm uses a very simple gripper—it’s a one degree of freedom gripper, but a ton of thought has gone into all of the fine geometric contours of it such that it can grab that ADA compliant lever handle, and it’ll also do an enclosing grasp around a round door knob. The major point of a robot like Spot is to engage with the environment you have, and so you can’t cut out stuff like round door knobs.
We're thrilled to be launching the arm and getting it out with users and to have them start telling us what doors it works really well on, and what they're having trouble with. And we're going to be working on rapidly improving all this stuff. We went through a few campaigns of like, “this isn’t ready until we can open every single door at Boston Dynamics!” But every single door at Boston Dynamics and at our test lab is a small fraction of all the doors in the world. So we're prepared to learn a lot this year.
When we see Spot open a door, or when it does those other manipulation behaviors in the launch video, how much of that is autonomous, how much is scripted, and to what extent is there a human in the loop?
All of the scenes where the robot does a pick, like the snow scene or the laundry scene, that is actually an almost fully integrated autonomous behavior that has a bit of a script wrapped around it. We trained a detector for an object, and the robot is identifying that object in the environment, picking it, and putting it in the bin all autonomously. The scripted part of that is telling the robot to perform a series of picks.
One of the things that we’re excited about, and that roboticists have been excited about going back probably all the way to the DRC, is semi-autonomous manipulation. And so we have modes built into the interface where if you see an object that you want the robot to grab, all you have to do is tap that object on the screen, and the robot will walk up to it, use the depth camera in its gripper to capture a depth map, and plan a grasp on its own in real time. That’s all built-in, too.
The jump rope—robots don’t just go and jump rope on their own. We scripted an arm motion to move the rope, and wrote a script using our API to coordinate all three robots. Drawing “Boston Dynamics” in chalk in our parking lot was scripted also. One of our engineers wrote a really cool G-code interpreter that vectorizes graphics so that Spot can draw them.
So for an end user, if you wanted Spot to autonomously flip some switches for you, you’d just have to train Spot on your switches, and then Spot could autonomously perform the task?
There are a couple of ways that task could break down depending on how you’re interfacing with the robot. If you’re a tablet user, you’d probably just identify the switch yourself on the tablet’s screen, and the robot will figure out the grasp, and grasp it. Then you’ll enter a constrained manipulation mode on the tablet, and the robot will be able to actuate the switch. But the robot will take care of the complicated controls aspects, like figuring out how hard it has to pull, the center of rotation of the switch, and so on.
The video of Spot digging was pretty cool—how did that work?
That’s mostly a scripted behavior. There are some really interesting control systems topics in there, like how you’d actually do the right kinds of force control while you insert the trowel into the dirt, and how to maintain robot stability while you do it. The higher level task of how to make a good hole in the dirt—that’s scripted. But the part of the problem that’s actually digging, you need the right control system to actually do that, or you’ll dig your trowel into the ground and flip your robot over.
The last time we saw Boston Dynamics robots flipping switches and turning valves I think might have been during the DRC in 2015, when they had expert robot operators with control over every degree of freedom. How are things different now with Spot, and will non-experts in the commercial space really be able to get the robot to do useful tasks?
A lot of the things, like “pick the stuff up in the room,” or ‘turn that switch,” can all be done by a lightly trained operator using just the tablet interface. If you want to actually command all of Spot’s arm degrees of freedom, you can do that— not through the tablet, but the API does expose all of it. That’s actually a notable difference from the base robot; we’ve never opened up the part of the API that lets you command individual leg degrees of freedom, because we don’t think it’s productive for someone to do that. The arm is a little bit different. There are a lot of smart people working on arm motion planning algorithms, and maybe you want to plan your arm trajectory in a super precise way and then do a DRC-style interface where you click to approve it. You can do all that through the API if you want, but fundamentally, it’s also user friendly. It follows our general API design philosophy of giving you the highest level pieces of the toolbox that will enable you to solve a complex problem that we haven't thought of.
Looking back on it now, it’s really cool to see, after so many years, robots do the stuff that Gill Pratt was excited about kicking off with the DRC. And now it’s just a thing you can buy.
Is Spot’s arm safe?
You should follow the same safety rules that you’d follow when working with Spot normally, and that’s that you shouldn’t get within two meters of the robot when it’s powered on. Spot is not a cobot. You shouldn’t hug it. Fundamentally, the places where the robot is the most valuable are places where people don’t want to be, or shouldn’t be.
We’ve seen how people reacted to earlier videos of Spot using its arm—can you help us set some reasonable expectations for what this means for Spot?
You know, it gets right back to the normal assumptions about our robots that people make that aren’t quite reality. All of this manipulation work we’re doing— the robot’s really acting as a tool. Even if it’s an autonomous behavior, it’s a tool. The robot is digging a hole because it’s got a set of instructions that say “apply this much force over this much distance here, here, and here.”
It’s not digging a hole and planting a tree because it loves trees, as much as I’d love to build a robot that works like that.
Photo: Boston Dynamics
There isn’t too much to say about the dock, except that it’s a requirement for making Spot long-term autonomous. The uncomfortable looking charging contacts that Spot impales itself on also include hardwired network connectivity, which is important because Spot often comes back home with a huge amount of data that all needs to be offloaded and processed. Docking and undocking are autonomous— as soon as the robot sees the fiducial markers on the dock, auto docking is enabled and it takes one click to settle the robot down.
During a brief remote demo, we also learned some other interesting things about Spot’s updated remote interface. It’s very latency tolerant, since you don’t have to drive the robot directly (although you can if you want to). Click a point on the camera view and Spot will move there autonomously while avoiding obstacles, meaning that even if you’re dealing with seconds of lag, the robot will continue making safe progress. This will be especially important if (when?) Spot starts exploring the Moon.
The remote interface also has an option to adjust how close Spot can get to obstacles, or to turn the obstacle avoidance off altogether. The latter functionality is useful if Spot sees something as an obstacle that really isn’t, like a curtain, while the former is useful if the robot is operating in an environment where it needs to give an especially wide berth to objects that could be dangerous to run into. “The robot’s not perfect—robots will never be perfect,” Jackowski reminds us, which is something we really (seriously) appreciate hearing from folks working on powerful, dynamic robots. “No matter how good the robot is, you should always de-risk as much as possible.”
Another part of that de-risking is having the user let Spot know when it’s about to go up or down some stairs by putting into “Stair Mode” with a toggle switch in the remote interface. Stairs are still a challenge for Spot, and Stair Mode slows the robot down and encourages it to pitch its body more aggressively to get a better view of the stairs. You’re encouraged to use stair mode, and also encouraged to send Spot up and down stairs with its “head” pointing up the stairs both ways, but these are not requirements for stair navigation— if you want to, you can send Spot down stairs head first without putting it in stair mode. Jackowski says that eventually, Spot will detect stairways by itself even when not in stair mode and adjust itself accordingly, but for now, that de-risking is solidly in the hands of the user.
Spot’s sensor payload, which is what we were trying out for the demo, provided a great opportunity for us to hear Spot STOMP STOMP STOMPING all over the place, which was also an opportunity for us to ask Jackowski why they can’t make Spot a little quieter. “It’s advantageous for Spot to step a little bit hard for the same reason it’s advantageous for you to step a little bit hard if you’re walking around blindfolded—that reason is that it really lets you know where the ground is, particularly when you’re not sure what to expect.” He adds, “It’s all in the name of robustness— the robot might be a little louder, but it’s a little more sure of its footing.”
Boston Dynamics isn’t yet ready to disclose the price of an arm-equipped Spot, but if you’re a potential customer, now is the time to contact the Boston Dynamics sales team to ask them about it. As a reminder, the base model of Spot costs US $74,500, with extra sensing or compute adding a substantial premium on top of that.
There will be a livestream launch event taking place at 11am ET today, during which Boston Dynamics’ CEO Robert Playter, VP of Marketing Michael Perry, and other folks from Boston Dynamics will make presentations on this new stuff. It’ll be live at this link, or you can watch it below. Continue reading →
#438001 How an Israeli Startup Is Using AI to ...
The first baby conceived using in-vitro fertilization (IVF) was born in the UK in 1978. Over 40 years later, the technique has become commonplace, but its success rate is still fairly low at around 22 to 30 percent. A female-founded Israeli startup called Embryonics is setting out to change this by using artificial intelligence to screen embryos.
IVF consists of fertilizing a woman’s egg with her partner’s or a donor’s sperm outside of her body, creating an embryo that’s then implanted in the uterus. It’s not an easy process in any sense of the word—physically, emotionally, or financially. Insurance rarely covers IVF, and the costs run anywhere from $12,000 to $25,000 per cycle (a cycle takes about a month and includes stimulating a woman’s ovaries to produce eggs, extracting the eggs, inseminating them outside the body, and implanting an embryo).
Women have to give themselves daily hormone shots to stimulate egg production, and these can cause uncomfortable side effects. After so much stress and expense, it’s disheartening to think that the odds of a successful pregnancy are, at best, one in three.
A crucial factor in whether or not an IVF cycle works—that is, whether the embryo implants in the uterus and begins to develop into a healthy fetus—is the quality of the embryo. Doctors examine embryos through a microscope to determine how many cells they contain and whether they appear healthy, and choose the one that looks most viable.
But the human eye can only see so much, even with the help of a microscope; despite embryologists’ efforts to select the “best” embryo, success rates are still relatively low. “Many decisions are based on gut feeling or personal experience,” said Embryonics founder and CEO Yael Gold-Zamir. “Even if you go to the same IVF center, two experts can give you different opinions on the same embryo.”
This is where Embryonics’ technology comes in. They used 8,789 time-lapse videos of developing embryos to train an algorithm that predicts the likelihood of successful embryo implantation. A little less than half of the embryos from the dataset were graded by embryologists, and implantation data was integrated when it was available (as a binary “successful” or “failed” metric).
The algorithm uses geometric deep learning, a technique that takes a traditional convolutional neural network—which filters input data to create maps of its features, and is most commonly used for image recognition—and applies it to more complex data like 3D objects and graphs. Within days after fertilization, the embryo is still at the blastocyst stage, essentially a microscopic clump of just 200-300 cells; the algorithm uses this deep learning technique to spot and identify patterns in embryo development that human embryologists either wouldn’t see at all, or would require massive collation of data to validate.
On top of the embryo videos, Embryonics’ team incorporated patient data and environmental data from the lab into its algorithm, with encouraging results: the company reports that using its algorithm resulted in a 12 percent increase in positive predictive value (identifying embryos that would lead to implantation and healthy pregnancy) and a 29 percent increase in negative predictive value (identifying embyros that would not result in successful pregnancy) when compared to an external panel of embryologists.
TechCrunch reported last week that in a pilot of 11 women who used Embryonics’ algorithm to select their embryos, 6 are enjoying successful pregnancies, while 5 are still awaiting results.
Embryonics wasn’t the first group to think of using AI to screen embryos; a similar algorithm developed in 2019 by researchers at Weill Cornell Medicine was able to classify the quality of a set of embryo images with 97 percent accuracy. But Embryonics will be one of the first to bring this sort of technology to market. The company is waiting to receive approval from European regulatory bodies to be able to sell the software to fertility clinics in Europe.
Its timing is ripe: as more and more women delay having kids due to lifestyle and career-related factors, demand for IVF is growing, and will likely accelerate in coming years.
The company ultimately hopes to bring its product to the US, as well as to expand its work to include using data to improve hormonal stimulation.
Image Credit: Gerd Altmann from Pixabay Continue reading →
#437992 This Week’s Awesome Tech Stories From ...
ARTIFICIAL INTELLIGENCE
This Chinese Lab Is Aiming for Big AI Breakthroughs
Will Knight | Wired
“China produces as many artificial intelligence researchers as the US, but it lags in key fields like machine learning. The government hopes to make up ground. …It set AI researchers the goal of making ‘fundamental breakthroughs by 2025’ and called for the country to be ‘the world’s primary innovation center by 2030.’ BAAI opened a year later, in Zhongguancun, a neighborhood of Beijing designed to replicate US innovation hubs such as Boston and Silicon Valley.”
ENVIRONMENT
What Elon Musk’s $100 Million Carbon Capture Prize Could Mean
James Temple | MIT Technology Review
“[Elon Musk] announced on Twitter that he plans to give away $100 million of [his $180 billion net worth] as a prize for the ‘best carbon capture technology.’ …Another $100 million could certainly help whatever venture, or ventures, clinch Musk’s prize. But it’s a tiny fraction of his wealth and will also only go so far. …Money aside, however, one thing Musk has a particular knack for is generating attention. And this is a space in need of it.”
HEALTH
Synthetic Cornea Helped a Legally Blind Man Regain His Sight
Steve Dent | Engadget
“While the implant doesn’t contain any electronics, it could help more people than any robotic eye. ‘After years of hard work, seeing a colleague implant the CorNeat KPro with ease and witnessing a fellow human being regain his sight the following day was electrifying and emotionally moving, there were a lot of tears in the room,’ said CorNeat Vision co-founder Dr. Gilad Litvin.”
BIOTECH
MIT Develops Method for Lab-Grown Plants That May Eventually Lead to Alternatives to Forestry and Farming
Darrell Etherington | TechCrunch
“If the work of these researchers can eventually be used to create a way to produce lab-grown wood for use in construction and fabrication in a way that’s scalable and efficient, then there’s tremendous potential in terms of reducing the impact on forestry globally. Eventually, the team even theorizes you could coax the growth of plant-based materials into specific target shapes, so you could also do some of the manufacturing in the lab, by growing a wood table directly for instance.”
AUTOMATION
FAA Approves First Fully Automated Commercial Drone Flights
Andy Pasztor and Katy Stech Ferek | The Wall Street Journal
“US aviation regulators have approved the first fully automated commercial drone flights, granting a small Massachusetts-based company permission to operate drones without hands-on piloting or direct observation by human controllers or observers. …The company’s Scout drones operate under predetermined flight programs and use acoustic technology to detect and avoid drones, birds, and other obstacles.”
SPACE
China’s Surging Private Space Industry Is Out to Challenge the US
Neel V. Patel | MIT Technology Review
“[The Ceres-1] was a commercial rocket—only the second from a Chinese company ever to go into space. And the launch happened less than three years after the company was founded. The achievement is a milestone for China’s fledgling—but rapidly growing—private space industry, an increasingly critical part of the country’s quest to dethrone the US as the world’s preeminent space power.”
CRYPTOCURRENCY
Janet Yellen Will Consider Limiting Use of Cryptocurrency
Timothy B. Lee | Ars Technica
“Cryptocurrencies could come under renewed regulatory scrutiny over the next four years if Janet Yellen, Joe Biden’s pick to lead the Treasury Department, gets her way. During Yellen’s Tuesday confirmation hearing before the Senate Finance Committee, Sen. Maggie Hassan (D-N.H.) asked Yellen about the use of cryptocurrency by terrorists and other criminals. ‘Cryptocurrencies are a particular concern,’ Yellen responded. ‘I think many are used—at least in a transactions sense—mainly for illicit financing.’i”
SCIENCE
Secret Ingredient Found to Power Supernovas
Thomas Lewton | Quanta
“…Only in the last few years, with the growth of supercomputers, have theorists had enough computing power to model massive stars with the complexity needed to achieve explosions. …These new simulations are giving researchers a better understanding of exactly how supernovas have shaped the universe we see today.”
Image Credit: Ricardo Gomez Angel / Unsplash Continue reading →
#437978 How Mirroring the Architecture of the ...
While AI can carry out some impressive feats when trained on millions of data points, the human brain can often learn from a tiny number of examples. New research shows that borrowing architectural principles from the brain can help AI get closer to our visual prowess.
The prevailing wisdom in deep learning research is that the more data you throw at an algorithm, the better it will learn. And in the era of Big Data, that’s easier than ever, particularly for the large data-centric tech companies carrying out a lot of the cutting-edge AI research.
Today’s largest deep learning models, like OpenAI’s GPT-3 and Google’s BERT, are trained on billions of data points, and even more modest models require large amounts of data. Collecting these datasets and investing the computational resources to crunch through them is a major bottleneck, particularly for less well-resourced academic labs.
It also means today’s AI is far less flexible than natural intelligence. While a human only needs to see a handful of examples of an animal, a tool, or some other category of object to be able pick it out again, most AI need to be trained on many examples of an object in order to be able to recognize it.
There is an active sub-discipline of AI research aimed at what is known as “one-shot” or “few-shot” learning, where algorithms are designed to be able to learn from very few examples. But these approaches are still largely experimental, and they can’t come close to matching the fastest learner we know—the human brain.
This prompted a pair of neuroscientists to see if they could design an AI that could learn from few data points by borrowing principles from how we think the brain solves this problem. In a paper in Frontiers in Computational Neuroscience, they explained that the approach significantly boosts AI’s ability to learn new visual concepts from few examples.
“Our model provides a biologically plausible way for artificial neural networks to learn new visual concepts from a small number of examples,” Maximilian Riesenhuber, from Georgetown University Medical Center, said in a press release. “We can get computers to learn much better from few examples by leveraging prior learning in a way that we think mirrors what the brain is doing.”
Several decades of neuroscience research suggest that the brain’s ability to learn so quickly depends on its ability to use prior knowledge to understand new concepts based on little data. When it comes to visual understanding, this can rely on similarities of shape, structure, or color, but the brain can also leverage abstract visual concepts thought to be encoded in a brain region called the anterior temporal lobe (ATL).
“It is like saying that a platypus looks a bit like a duck, a beaver, and a sea otter,” said paper co-author Joshua Rule, from the University of California Berkeley.
The researchers decided to try and recreate this capability by using similar high-level concepts learned by an AI to help it quickly learn previously unseen categories of images.
Deep learning algorithms work by getting layers of artificial neurons to learn increasingly complex features of an image or other data type, which are then used to categorize new data. For instance, early layers will look for simple features like edges, while later ones might look for more complex ones like noses, faces, or even more high-level characteristics.
First they trained the AI on 2.5 million images across 2,000 different categories from the popular ImageNet dataset. They then extracted features from various layers of the network, including the very last layer before the output layer. They refer to these as “conceptual features” because they are the highest-level features learned, and most similar to the abstract concepts that might be encoded in the ATL.
They then used these different sets of features to train the AI to learn new concepts based on 2, 4, 8, 16, 32, 64, and 128 examples. They found that the AI that used the conceptual features yielded much better performance than ones trained using lower-level features on lower numbers of examples, but the gap shrunk as they were fed more training examples.
While the researchers admit the challenge they set their AI was relatively simple and only covers one aspect of the complex process of visual reasoning, they said that using a biologically plausible approach to solving the few-shot problem opens up promising new avenues in both neuroscience and AI.
“Our findings not only suggest techniques that could help computers learn more quickly and efficiently, they can also lead to improved neuroscience experiments aimed at understanding how people learn so quickly, which is not yet well understood,” Riesenhuber said.
As the researchers note, the human visual system is still the gold standard when it comes to understanding the world around us. Borrowing from its design principles might turn out to be a profitable direction for future research.
Image Credit: Gerd Altmann from Pixabay Continue reading →