Tag Archives: center

#435597 Water Jet Powered Drone Takes Off With ...

At ICRA 2015, the Aerial Robotics Lab at the Imperial College London presented a concept for a multimodal flying swimming robot called AquaMAV. The really difficult thing about a flying and swimming robot isn’t so much the transition from the first to the second, since you can manage that even if your robot is completely dead (thanks to gravity), but rather the other way: going from water to air, ideally in a stable and repetitive way. The AquaMAV concept solved this by basically just applying as much concentrated power as possible to the problem, using a jet thruster to hurl the robot out of the water with quite a bit of velocity to spare.

In a paper appearing in Science Robotics this week, the roboticists behind AquaMAV present a fully operational robot that uses a solid-fuel powered chemical reaction to generate an explosion that powers the robot into the air.

The 2015 version of AquaMAV, which was mostly just some very vintage-looking computer renderings and a little bit of hardware, used a small cylinder of CO2 to power its water jet thruster. This worked pretty well, but the mass and complexity of the storage and release mechanism for the compressed gas wasn’t all that practical for a flying robot designed for long-term autonomy. It’s a familiar challenge, especially for pneumatically powered soft robots—how do you efficiently generate gas on-demand, especially if you need a lot of pressure all at once?

An explosion propels the drone out of the water
There’s one obvious way of generating large amounts of pressurized gas all at once, and that’s explosions. We’ve seen robots use explosive thrust for mobility before, at a variety of scales, and it’s very effective as long as you can both properly harness the explosion and generate the fuel with a minimum of fuss, and this latest version of AquaMAV manages to do both:

The water jet coming out the back of this robot aircraft is being propelled by a gas explosion. The gas comes from the reaction between a little bit of calcium carbide powder stored inside the robot, and water. Water is mixed with the powder one drop at a time, producing acetylene gas, which gets piped into a combustion chamber along with air and water. When ignited, the acetylene air mixture explodes, forcing the water out of the combustion chamber and providing up to 51 N of thrust, which is enough to launch the 160-gram robot 26 meters up and over the water at 11 m/s. It takes just 50 mg of calcium carbide (mixed with 3 drops of water) to generate enough acetylene for each explosion, and both air and water are of course readily available. With 0.2 g of calcium carbide powder on board, the robot has enough fuel for multiple jumps, and the jump is powerful enough that the robot can get airborne even under fairly aggressive sea conditions.

Image: Science Robotics

The robot can transition from a floating state to an airborne jetting phase and back to floating (A). A 3D model render of the underside of the robot (B) shows the electronics capsule. The capsule contains the fuel tank (C), where calcium carbide reacts with air and water to propel the vehicle.

Next step: getting the robot to fly autonomously
Providing adequate thrust is just one problem that needs to be solved when attempting to conquer the water-air transition with a fixed-wing robot. The overall design of the robot itself is a challenge as well, because the optimal design and balance for the robot is quite different in each phase of operation, as the paper describes:

For the vehicle to fly in a stable manner during the jetting phase, the center of mass must be a significant distance in front of the center of pressure of the vehicle. However, to maintain a stable floating position on the water surface and the desired angle during jetting, the center of mass must be located behind the center of buoyancy. For the gliding phase, a fine balance between the center of mass and the center of pressure must be struck to achieve static longitudinal flight stability passively. During gliding, the center of mass should be slightly forward from the wing’s center of pressure.

The current version is mostly optimized for the jetting phase of flight, and doesn’t have any active flight control surfaces yet, but the researchers are optimistic that if they added some they’d have no problem getting the robot to fly autonomously. It’s just a glider at the moment, but a low-power propeller is the obvious step after that, and to get really fancy, a switchable gearbox could enable efficient movement on water as well as in the air. Long-term, the idea is that robots like these would be useful for tasks like autonomous water sampling over large areas, but I’d personally be satisfied with a remote controlled version that I could take to the beach.

“Consecutive aquatic jump-gliding with water-reactive fuel,” by R. Zufferey, A. Ortega Ancel, A. Farinha, R. Siddall, S. F. Armanini, M. Nasr, R. V. Brahmal, G. Kennedy, and M. Kovac from Imperial College in London, is published in the current issue of Science Robotics. Continue reading

Posted in Human Robots

#435593 AI at the Speed of Light

Neural networks shine for solving tough problems such as facial and voice recognition, but conventional electronic versions are limited in speed and hungry for power. In theory, optics could beat digital electronic computers in the matrix calculations used in neural networks. However, optics had been limited by their inability to do some complex calculations that had required electronics. Now new experiments show that all-optical neural networks can tackle those problems.

The key attraction of neural networks is their massive interconnections among processors, comparable to the complex interconnections among neurons in the brain. This lets them perform many operations simultaneously, like the human brain does when looking at faces or listening to speech, making them more efficient for facial and voice recognition than traditional electronic computers that execute one instruction at a time.

Today's electronic neural networks have reached eight million neurons, but their future use in artificial intelligence may be limited by their high power usage and limited parallelism in connections. Optical connections through lenses are inherently parallel. The lens in your eye simultaneously focuses light from across your field of view onto the retina in the back of your eye, where an array of light-detecting nerve cells detects the light. Each cell then relays the signal it receives to neurons in the brain that process the visual signals to show us an image.

Glass lenses process optical signals by focusing light, which performs a complex mathematical operation called a Fourier transform that preserves the information in the original scene but rearranges is completely. One use of Fourier transforms is converting time variations in signal intensity into a plot of the frequencies present in the signal. The military used this trick in the 1950s to convert raw radar return signals recorded by an aircraft in flight into a three-dimensional image of the landscape viewed by the plane. Today that conversion is done electronically, but the vacuum-tube computers of the 1950s were not up to the task.

Development of neural networks for artificial intelligence started with electronics, but their AI applications have been limited by their slow processing and need for extensive computing resources. Some researchers have developed hybrid neural networks, in which optics perform simple linear operations, but electronics perform more complex nonlinear calculations. Now two groups have demonstrated simple all-optical neural networks that do all processing with light.

In May, Wolfram Pernice of the Institute of Physics at the University of Münster in Germany and colleagues reported testing an all-optical “neuron” in which signals change target materials between liquid and solid states, an effect that has been used for optical data storage. They demonstrated nonlinear processing, and produced output pulses like those from organic neurons. They then produced an integrated photonic circuit that incorporated four optical neurons operating at different wavelengths, each of which connected to 15 optical synapses. The photonic circuit contained more than 140 components and could recognize simple optical patterns. The group wrote that their device is scalable, and that the technology promises “access to the high speed and high bandwidth inherent to optical systems, thus enabling the direct processing of optical telecommunication and visual data.”

Now a group at the Hong Kong University of Science and Technology reports in Optica that they have made an all-optical neural network based on a different process, electromagnetically induced transparency, in which incident light affects how atoms shift between quantum-mechanical energy levels. The process is nonlinear and can be triggered by very weak light signals, says Shengwang Du, a physics professor and coauthor of the paper.

In their demonstration, they illuminated rubidium-85 atoms cooled by lasers to about 10 microKelvin (10 microdegrees above absolute zero). Although the technique may seem unusually complex, Du said the system was the most accessible one in the lab that could produce the desired effects. “As a pure quantum atomic system [it] is ideal for this proof-of-principle experiment,” he says.

Next, they plan to scale up the demonstration using a hot atomic vapor center, which is less expensive, does not require time-consuming preparation of cold atoms, and can be integrated with photonic chips. Du says the major challenges are reducing cost of the nonlinear processing medium and increasing the scale of the all-optical neural network for more complex tasks.

“Their demonstration seems valid,” says Volker Sorger, an electrical engineer at George Washington University in Washington who was not involved in either demonstration. He says the all-optical approach is attractive because it offers very high parallelism, but the update rate is limited to about 100 hertz because of the liquid crystals used in their test, and he is not completely convinced their approach can be scaled error-free. Continue reading

Posted in Human Robots

#435522 Harvard’s Smart Exo-Shorts Talk to the ...

Exosuits don’t generally scream “fashionable” or “svelte.” Take the mind-controlled robotic exoskeleton that allowed a paraplegic man to kick off the World Cup back in 2014. Is it cool? Hell yeah. Is it practical? Not so much.

Yapping about wearability might seem childish when the technology already helps people with impaired mobility move around dexterously. But the lesson of the ill-fated Google Glassholes, which includes an awkward dorky head tilt and an assuming voice command, clearly shows that wearable computer assistants can’t just work technologically—they have to look natural and allow the user to behave like as usual. They have to, in a sense, disappear.

To Dr. Jose Pons at the Legs + Walking Ability Lab in Chicago, exosuits need three main selling points to make it in the real world. One, they have to physically interact with their wearer and seamlessly deliver assistance when needed. Two, they should cognitively interact with the host to guide and control the robot at all times. Finally, they need to feel like a second skin—move with the user without adding too much extra mass or reducing mobility.

This week, a US-Korean collaboration delivered the whole shebang in a Lululemon-style skin-hugging package combined with a retro waist pack. The portable exosuit, weighing only 11 pounds, looks like a pair of spandex shorts but can support the wearer’s hip movement when needed. Unlike their predecessors, the shorts are embedded with sensors that let them know when the wearer is walking versus running by analyzing gait.

Switching between the two movement modes may not seem like much, but what naturally comes to our brains doesn’t translate directly to smart exosuits. “Walking and running have fundamentally different biomechanics, which makes developing devices that assist both gaits challenging,” the team said. Their algorithm, computed in the cloud, allows the wearer to easily switch between both, with the shorts providing appropriate hip support that makes the movement experience seamless.

To Pons, who was not involved in the research but wrote a perspective piece, the study is an exciting step towards future exosuits that will eventually disappear under the skin—that is, implanted neural interfaces to control robotic assistance or activate the user’s own muscles.

“It is realistic to think that we will witness, in the next several years…robust human-robot interfaces to command wearable robotics based on…the neural code of movement in humans,” he said.

A “Smart” Exosuit Hack
There are a few ways you can hack a human body to move with an exosuit. One is using implanted electrodes inside the brain or muscles to decipher movement intent. With heavy practice, a neural implant can help paralyzed people walk again or dexterously move external robotic arms. But because the technique requires surgery, it’s not an immediate sell for people who experience low mobility because of aging or low muscle tone.

The other approach is to look to biophysics. Rather than decoding neural signals that control movement, here the idea is to measure gait and other physical positions in space to decipher intent. As you can probably guess, accurately deciphering user intent isn’t easy, especially when the wearable tries to accommodate multiple gaits. But the gains are many: there’s no surgery involved, and the wearable is low in energy consumption.

Double Trouble
The authors decided to tackle an everyday situation. You’re walking to catch the train to work, realize you’re late, and immediately start sprinting.

That seemingly easy conversion hides a complex switch in biomechanics. When you walk, your legs act like an inverted pendulum that swing towards a dedicated center in a predictable way. When you run, however, the legs move more like a spring-loaded system, and the joints involved in the motion differ from a casual stroll. Engineering an assistive wearable for each is relatively simple; making one for both is exceedingly hard.

Led by Dr. Conor Walsh at Harvard University, the team started with an intuitive idea: assisted walking and running requires specialized “actuation” profiles tailored to both. When the user is moving in a way that doesn’t require assistance, the wearable needs to be out of the way so that it doesn’t restrict mobility. A quick analysis found that assisting hip extension has the largest impact, because it’s important to both gaits and doesn’t add mass to the lower legs.

Building on that insight, the team made a waist belt connected to two thigh wraps, similar to a climbing harness. Two electrical motors embedded inside the device connect the waist belt to other components through a pulley system to help the hip joints move. The whole contraption weighed about 11 lbs and didn’t obstruct natural movement.

Next, the team programmed two separate supporting profiles for walking and running. The goal was to reduce the “metabolic cost” for both movements, so that the wearer expends as little energy as needed. To switch between the two programs, they used a cloud-based classification algorithm to measure changes in energy fluctuation to figure out what mode—running or walking—the user is in.

Smart Booster
Initial trials on treadmills were highly positive. Six male volunteers with similar age and build donned the exosuit and either ran or walked on the treadmill at varying inclines. The algorithm performed perfectly at distinguishing between the two gaits in all conditions, even at steep angles.

An outdoor test with eight volunteers also proved the algorithm nearly perfect. Even on uneven terrain, only two steps out of all test trials were misclassified. In an additional trial on mud or snow, the algorithm performed just as well.

“The system allows the wearer to use their preferred gait for each speed,” the team said.

Software excellence translated to performance. A test found that the exosuit reduced the energy for walking by over nine percent and running by four percent. It may not sound like much, but the range of improvement is meaningful in athletic performance. Putting things into perspective, the team said, the metabolic rate reduction during walking is similar to taking 16 pounds off at the waist.

The Wearable Exosuit Revolution
The study’s lightweight exoshorts are hardly the only players in town. Back in 2017, SRI International’s spin-off, Superflex, engineered an Aura suit to support mobility in the elderly. The Aura used a different mechanism: rather than a pulley system, it incorporated a type of smart material that contracts in a manner similar to human muscles when zapped with electricity.

Embedded with a myriad of sensors for motion, accelerometers and gyroscopes, Aura’s smartness came from mini-computers that measure how fast the wearer is moving and track the user’s posture. The data were integrated and processed locally inside hexagon-shaped computing pods near the thighs and upper back. The pods also acted as the control center for sending electrical zaps to give the wearer a boost when needed.

Around the same time, a collaboration between Harvard’s Wyss Institute and ReWalk Robotics introduced a fabric-based wearable robot to assist a wearer’s legs for balance and movement. Meanwhile, a Swiss team coated normal fabric with electroactive material to weave soft, pliable artificial “muscles” that move with the skin.

Although health support is the current goal, the military is obviously interested in similar technologies to enhance soldiers’ physicality. Superflex’s Aura, for example, was originally inspired by technology born from DARPA’s Warrior Web Program, which aimed to reduce a soldier’s mechanical load.

That said, military gear has had a long history of trickling down to consumer use. Similar to the way camouflage, cargo pants, and GORE-TEX trickled down into the consumer ecosphere, it’s not hard to imagine your local Target eventually stocking intelligent exowear.

Image and Video Credit: Wyss Institute at Harvard University. Continue reading

Posted in Human Robots

#435436 Undeclared Wars in Cyberspace Are ...

The US is at war. That’s probably not exactly news, as the country has been engaged in one type of conflict or another for most of its history. The last time we officially declared war was after Japan bombed Pearl Harbor in December 1941.

Our biggest undeclared war today is not being fought by drones in the mountains of Afghanistan or even through the less-lethal barrage of threats over the nuclear programs in North Korea and Iran. In this particular war, it is the US that is under attack and on the defensive.

This is cyberwarfare.

The definition of what constitutes a cyber attack is a broad one, according to Greg White, executive director of the Center for Infrastructure Assurance and Security (CIAS) at The University of Texas at San Antonio (UTSA).

At the level of nation-state attacks, cyberwarfare could involve “attacking systems during peacetime—such as our power grid or election systems—or it could be during war time in which case the attacks may be designed to cause destruction, damage, deception, or death,” he told Singularity Hub.

For the US, the Pearl Harbor of cyberwarfare occurred during 2016 with the Russian interference in the presidential election. However, according to White, an Air Force veteran who has been involved in computer and network security since 1986, the history of cyber war can be traced back much further, to at least the first Gulf War of the early 1990s.

“We started experimenting with cyber attacks during the first Gulf War, so this has been going on a long time,” he said. “Espionage was the prime reason before that. After the war, the possibility of expanding the types of targets utilized expanded somewhat. What is really interesting is the use of social media and things like websites for [psychological operation] purposes during a conflict.”

The 2008 conflict between Russia and the Republic of Georgia is often cited as a cyberwarfare case study due to the large scale and overt nature of the cyber attacks. Russian hackers managed to bring down more than 50 news, government, and financial websites through denial-of-service attacks. In addition, about 35 percent of Georgia’s internet networks suffered decreased functionality during the attacks, coinciding with the Russian invasion of South Ossetia.

The cyberwar also offers lessons for today on Russia’s approach to cyberspace as a tool for “holistic psychological manipulation and information warfare,” according to a 2018 report called Understanding Cyberwarfare from the Modern War Institute at West Point.

US Fights Back
News in recent years has highlighted how Russian hackers have attacked various US government entities and critical infrastructure such as energy and manufacturing. In particular, a shadowy group known as Unit 26165 within the country’s military intelligence directorate is believed to be behind the 2016 US election interference campaign.

However, the US hasn’t been standing idly by. Since at least 2012, the US has put reconnaissance probes into the control systems of the Russian electric grid, The New York Times reported. More recently, we learned that the US military has gone on the offensive, putting “crippling malware” inside the Russian power grid as the U.S. Cyber Command flexes its online muscles thanks to new authority granted to it last year.

“Access to the power grid that is obtained now could be used to shut something important down in the future when we are in a war,” White noted. “Espionage is part of the whole program. It is important to remember that cyber has just provided a new domain in which to conduct the types of activities we have been doing in the real world for years.”

The US is also beginning to pour more money into cybersecurity. The 2020 fiscal budget calls for spending $17.4 billion throughout the government on cyber-related activities, with the Department of Defense (DoD) alone earmarked for $9.6 billion.

Despite the growing emphasis on cybersecurity in the US and around the world, the demand for skilled security professionals is well outpacing the supply, with a projected shortfall of nearly three million open or unfilled positions according to the non-profit IT security organization (ISC)².

UTSA is rare among US educational institutions in that security courses and research are being conducted across three different colleges, according to White. About 10 percent of the school’s 30,000-plus students are enrolled in a cyber-related program, he added, and UTSA is one of only 21 schools that has received the Cyber Operations Center of Excellence designation from the National Security Agency.

“This track in the computer science program is specifically designed to prepare students for the type of jobs they might be involved in if they went to work for the DoD,” White said.

However, White is extremely doubtful there will ever be enough cyber security professionals to meet demand. “I’ve been preaching that we’ve got to worry about cybersecurity in the workforce, not just the cybersecurity workforce, not just cybersecurity professionals. Everybody has a responsibility for cybersecurity.”

Artificial Intelligence in Cybersecurity
Indeed, humans are often seen as the weak link in cybersecurity. That point was driven home at a cybersecurity roundtable discussion during this year’s Brainstorm Tech conference in Aspen, Colorado.

Participant Dorian Daley, general counsel at Oracle, said insider threats are at the top of the list when it comes to cybersecurity. “Sadly, I think some of the biggest challenges are people, and I mean that in a number of ways. A lot of the breaches really come from insiders. So the more that you can automate things and you can eliminate human malicious conduct, the better.”

White noted that automation is already the norm in cybersecurity. “Humans can’t react as fast as systems can launch attacks, so we need to rely on automated defenses as well,” he said. “This doesn’t mean that humans are not in the loop, but much of what is done these days is ‘scripted’.”

The use of artificial intelligence, machine learning, and other advanced automation techniques have been part of the cybersecurity conversation for quite some time, according to White, such as pattern analysis to look for specific behaviors that might indicate an attack is underway.

“What we are seeing quite a bit of today falls under the heading of big data and data analytics,” he explained.

But there are signs that AI is going off-script when it comes to cyber attacks. In the hands of threat groups, AI applications could lead to an increase in the number of cyberattacks, wrote Michelle Cantos, a strategic intelligence analyst at cybersecurity firm FireEye.

“Current AI technology used by businesses to analyze consumer behavior and find new customer bases can be appropriated to help attackers find better targets,” she said. “Adversaries can use AI to analyze datasets and generate recommendations for high-value targets they think the adversary should hit.”

In fact, security researchers have already demonstrated how a machine learning system could be used for malicious purposes. The Social Network Automated Phishing with Reconnaissance system, or SNAP_R, generated more than four times as many spear-phishing tweets on Twitter than a human—and was just as successful at targeting victims in order to steal sensitive information.

Cyber war is upon us. And like the current war on terrorism, there are many battlefields from which the enemy can attack and then disappear. While total victory is highly unlikely in the traditional sense, innovations through AI and other technologies can help keep the lights on against the next cyber attack.

Image Credit: pinkeyes / Shutterstock.com Continue reading

Posted in Human Robots

#435224 Can AI Save the Internet from Fake News?

There’s an old proverb that says “seeing is believing.” But in the age of artificial intelligence, it’s becoming increasingly difficult to take anything at face value—literally.

The rise of so-called “deepfakes,” in which different types of AI-based techniques are used to manipulate video content, has reached the point where Congress held its first hearing last month on the potential abuses of the technology. The congressional investigation coincided with the release of a doctored video of Facebook CEO Mark Zuckerberg delivering what appeared to be a sinister speech.

View this post on Instagram

‘Imagine this…’ (2019) Mark Zuckerberg reveals the truth about Facebook and who really owns the future… see more @sheffdocfest VDR technology by @cannyai #spectreknows #privacy #democracy #surveillancecapitalism #dataism #deepfake #deepfakes #contemporaryartwork #digitalart #generativeart #newmediaart #codeart #markzuckerberg #artivism #contemporaryart

A post shared by Bill Posters (@bill_posters_uk) on Jun 7, 2019 at 7:15am PDT

Scientists are scrambling for solutions on how to combat deepfakes, while at the same time others are continuing to refine the techniques for less nefarious purposes, such as automating video content for the film industry.

At one end of the spectrum, for example, researchers at New York University’s Tandon School of Engineering have proposed implanting a type of digital watermark using a neural network that can spot manipulated photos and videos.

The idea is to embed the system directly into a digital camera. Many smartphone cameras and other digital devices already use AI to boost image quality and make other corrections. The authors of the study out of NYU say their prototype platform increased the chances of detecting manipulation from about 45 percent to more than 90 percent without sacrificing image quality.

On the other hand, researchers at Carnegie Mellon University recently hit on a technique for automatically and rapidly converting large amounts of video content from one source into the style of another. In one example, the scientists transferred the facial expressions of comedian John Oliver onto the bespectacled face of late night show host Stephen Colbert.

The CMU team says the method could be a boon to the movie industry, such as by converting black and white films to color, though it also conceded that the technology could be used to develop deepfakes.

Words Matter with Fake News
While the current spotlight is on how to combat video and image manipulation, a prolonged trench warfare on fake news is being fought by academia, nonprofits, and the tech industry.

This isn’t the fake news that some have come to use as a knee-jerk reaction to fact-based information that might be less than flattering to the subject of the report. Rather, fake news is deliberately-created misinformation that is spread via the internet.

In a recent Pew Research Center poll, Americans said fake news is a bigger problem than violent crime, racism, and terrorism. Fortunately, many of the linguistic tools that have been applied to determine when people are being deliberately deceitful can be baked into algorithms for spotting fake news.

That’s the approach taken by a team at the University of Michigan (U-M) to develop an algorithm that was better than humans at identifying fake news—76 percent versus 70 percent—by focusing on linguistic cues like grammatical structure, word choice, and punctuation.

For example, fake news tends to be filled with hyperbole and exaggeration, using terms like “overwhelming” or “extraordinary.”

“I think that’s a way to make up for the fact that the news is not quite true, so trying to compensate with the language that’s being used,” Rada Mihalcea, a computer science and engineering professor at U-M, told Singularity Hub.

The paper “Automatic Detection of Fake News” was based on the team’s previous studies on how people lie in general, without necessarily having the intention of spreading fake news, she said.

“Deception is a complicated and complex phenomenon that requires brain power,” Mihalcea noted. “That often results in simpler language, where you have shorter sentences or shorter documents.”

AI Versus AI
While most fake news is still churned out by humans with identifiable patterns of lying, according to Mihalcea, other researchers are already anticipating how to detect misinformation manufactured by machines.

A group led by Yejin Choi, with the Allen Institute of Artificial Intelligence and the University of Washington in Seattle, is one such team. The researchers recently introduced the world to Grover, an AI platform that is particularly good at catching autonomously-generated fake news because it’s equally good at creating it.

“This is due to a finding that is perhaps counterintuitive: strong generators for neural fake news are themselves strong detectors of it,” wrote Rowan Zellers, a PhD student and team member, in a Medium blog post. “A generator of fake news will be most familiar with its own peculiarities, such as using overly common or predictable words, as well as the peculiarities of similar generators.”

The team found that the best current discriminators can classify neural fake news from real, human-created text with 73 percent accuracy. Grover clocks in with 92 percent accuracy based on a training set of 5,000 neural network-generated fake news samples. Zellers wrote that Grover got better at scale, identifying 97.5 percent of made-up machine mumbo jumbo when trained on 80,000 articles.

It performed almost as well against fake news created by a powerful new text-generation system called GPT-2 built by OpenAI, a nonprofit research lab founded by Elon Musk, classifying 96.1 percent of the machine-written articles.

OpenAI had so feared that the platform could be abused that it has only released limited versions of the software. The public can play with a scaled-down version posted by a machine learning engineer named Adam King, where the user types in a short prompt and GPT-2 bangs out a short story or poem based on the snippet of text.

No Silver AI Bullet
While real progress is being made against fake news, the challenges of using AI to detect and correct misinformation are abundant, according to Hugo Williams, outreach manager for Logically, a UK-based startup that is developing different detectors using elements of deep learning and natural language processing, among others. He explained that the Logically models analyze information based on a three-pronged approach.

Publisher metadata: Is the article from a known, reliable, and trustworthy publisher with a history of credible journalism?
Network behavior: Is the article proliferating through social platforms and networks in ways typically associated with misinformation?
Content: The AI scans articles for hundreds of known indicators typically found in misinformation.

“There is no single algorithm which is capable of doing this,” Williams wrote in an email to Singularity Hub. “Even when you have a collection of different algorithms which—when combined—can give you relatively decent indications of what is unreliable or outright false, there will always need to be a human layer in the pipeline.”

The company released a consumer app in India back in February just before that country’s election cycle that was a “great testing ground” to refine its technology for the next app release, which is scheduled in the UK later this year. Users can submit articles for further scrutiny by a real person.

“We see our technology not as replacing traditional verification work, but as a method of simplifying and streamlining a very manual process,” Williams said. “In doing so, we’re able to publish more fact checks at a far quicker pace than other organizations.”

“With heightened analysis and the addition of more contextual information around the stories that our users are reading, we are not telling our users what they should or should not believe, but encouraging critical thinking based upon reliable, credible, and verified content,” he added.

AI may never be able to detect fake news entirely on its own, but it can help us be smarter about what we read on the internet.

Image Credit: Dennis Lytyagin / Shutterstock.com Continue reading

Posted in Human Robots