Tag Archives: case

#438755 Soft Legged Robot Uses Pneumatic ...

Soft robots are inherently safe, highly resilient, and potentially very cheap, making them promising for a wide array of applications. But development on them has been a bit slow relative to other areas of robotics, at least partially because soft robots can’t directly benefit from the massive increase in computing power and sensor and actuator availability that we’ve seen over the last few decades. Instead, roboticists have had to get creative to find ways of achieving the functionality of conventional robotics components using soft materials and compatible power sources.

In the current issue of Science Robotics, researchers from UC San Diego demonstrate a soft walking robot with four legs that moves with a turtle-like gait controlled by a pneumatic circuit system made from tubes and valves. This air-powered nervous system can actuate multiple degrees of freedom in sequence from a single source of pressurized air, offering a huge reduction in complexity and bringing a very basic form of decision making onto the robot itself.

Generally, when people talk about soft robots, the robots are only mostly soft. There are some components that are very difficult to make soft, including pressure sources and the necessary electronics to direct that pressure between different soft actuators in a way that can be used for propulsion. What’s really cool about this robot is that researchers have managed to take a pressure source (either a single tether or an onboard CO2 cartridge) and direct it to four different legs, each with three different air chambers, using an oscillating three valve circuit made entirely of soft materials.

Photo: UCSD

The pneumatic circuit that powers and controls the soft quadruped.

The inspiration for this can be found in biology—natural organisms, including quadrupeds, use nervous system components called central pattern generators (CPGs) to prompt repetitive motions with limbs that are used for walking, flying, and swimming. This is obviously more complicated in some organisms than in others, and is typically mediated by sensory feedback, but the underlying structure of a CPG is basically just a repeating circuit that drives muscles in sequence to produce a stable, continuous gait. In this case, we’ve got pneumatic muscles being driven in opposing pairs, resulting in a diagonal couplet gait, where diagonally opposed limbs rotate forwards and backwards at the same time.

Diagram: Science Robotics

(J) Pneumatic logic circuit for rhythmic leg motion. A constant positive pressure source (P+) applied to three inverter components causes a high-pressure state to propagate around the circuit, with a delay at each inverter. While the input to one inverter is high, the attached actuator (i.e., A1, A2, or A3) is inflated. This sequence of high-pressure states causes each pair of legs of the robot to rotate in a direction determined by the pneumatic connections. (K) By reversing the sequence of activation of the pneumatic oscillator circuit, the attached actuators inflate in a new sequence (A1, A3, and A2), causing (L) the legs of the robot to rotate in reverse. (M) Schematic bottom view of the robot with the directions of leg motions indicated for forward walking.

Diagram: Science Robotics

Each of the valves acts as an inverter by switching the normally closed half (top) to open and the normally open half (bottom) to closed.

The circuit itself is made up of three bistable pneumatic valves connected by tubing that acts as a delay by providing resistance to the gas moving through it that can be adjusted by altering the tube’s length and inner diameter. Within the circuit, the movement of the pressurized gas acts as both a source of energy and as a signal, since wherever the pressure is in the circuit is where the legs are moving. The simplest circuit uses only three valves, and can keep the robot walking in one single direction, but more valves can add more complex leg control options. For example, the researchers were able to use seven valves to tune the phase offset of the gait, and even just one additional valve (albeit of a slightly more complex design) could enable reversal of the system, causing the robot to walk backwards in response to input from a soft sensor. And with another complex valve, a manual (tethered) controller could be used for omnidirectional movement.

This work has some similarities to the rover that JPL is developing to explore Venus—that rover isn’t a soft robot, of course, but it operates under similar constraints in that it can’t rely on conventional electronic systems for autonomous navigation or control. It turns out that there are plenty of clever ways to use mechanical (or in this case, pneumatic) intelligence to make robots with relatively complex autonomous behaviors, meaning that in the future, soft (or soft-ish) robots could find valuable roles in situations where using a non-compliant system is not a good option.

For more on why we should be so excited about soft robots and just how soft a soft robot needs to be, we spoke with Michael Tolley, who runs the Bioinspired Robotics and Design Lab at UCSD, and Dylan Drotman, the paper’s first author.

IEEE Spectrum: What can soft robots do for us that more rigid robotic designs can’t?

Michael Tolley: At the very highest level, one of the fundamental assumptions of robotics is that you have rigid bodies connected at joints, and all your motion happens at these joints. That's a really nice approach because it makes the math easy, frankly, and it simplifies control. But when you look around us in nature, even though animals do have bones and joints, the way we interact with the world is much more complicated than that simple story. I’m interested in where we can take advantage of material properties in robotics. If you look at robots that have to operate in very unknown environments, I think you can build in some of the intelligence for how to deal with those environments into the body of the robot itself. And that’s the category this work really falls under—it's about navigating the world.

Dylan Drotman: Walking through confined spaces is a good example. With the rigid legged robot, you would have to completely change the way that the legs move to walk through a confined space, while if you have flexible legs, like the robot in our paper, you can use relatively simple control strategies to squeeze through an area you wouldn’t be able to get through with a rigid system.

How smart can a soft robot get?

Drotman: Right now we have a sensor on the front that's connected through a fluidic transmission to a bistable valve that causes the robot to reverse. We could add other sensors around the robot to allow it to change direction whenever it runs into an obstacle to effectively make an electronics-free version of a Roomba.

Tolley: Stepping back a little bit from that, one could make an argument that we’re using basic memory elements to generate very basic signals. There’s nothing in principle that would stop someone from making a pneumatic computer—it’s just very complicated to make something that complex. I think you could build on this and do more intelligent decision making, but using this specific design and the components we’re using, it’s likely to be things that are more direct responses to the environment.

How well would robots like these scale down?

Drotman: At the moment we’re manufacturing these components by hand, so the idea would be to make something more like a printed circuit board instead, and looking at how the channel sizes and the valve design would affect the actuation properties. We’ll also be coming up with new circuits, and different designs for the circuits themselves.

Tolley: Down to centimeter or millimeter scale, I don’t think you’d have fundamental fluid flow problems. I think you’re going to be limited more by system design constraints. You’ll have to be able to locomote while carrying around your pressure source, and possibly some other components that are also still rigid. When you start to talk about really small scales, though, it's not as clear to me that you really need an intrinsically soft robot. If you think about insects, their structural geometry can make them behave like they’re soft, but they’re not intrinsically soft.

Should we be thinking about soft robots and compliant robots in the same way, or are they fundamentally different?

Tolley: There’s certainly a connection between the two. You could have a compliant robot that behaves in a very similar way to an intrinsically soft robot, or a robot made of intrinsically soft materials. At that point, it comes down to design and manufacturing and practical limitations on what you can make. I think when you get down to small scales, the two sort of get connected.

There was some interesting work several years ago on using explosions to power soft robots. Is that still a thing?

Tolley: One of the opportunities with soft robots is that with material compliance, you have the potential to store energy. I think there’s exciting potential there for rapid motion with a soft body. Combustion is one way of doing that with power coming from a chemical source all at once, but you could also use a relatively weak muscle that over time stores up energy in a soft body and then releases it.

Is it realistic to expect complete softness from soft robots, or will they likely always have rigid components because they have to store or generate and move pressurized gas somehow?

Tolley: If you look in nature, you do have soft pumps like the heart, but although it’s soft, it’s still relatively stiff. Like, if you grab a heart, it’s not totally squishy. I haven’t done it, but I’d imagine. If you have a container that you’re pressurizing, it has to be stiff enough to not just blow up like a balloon. Certainly pneumatics or hydraulics are not the only way to go for soft actuators; there has been some really nice work on smart muscles and smart materials like hydraulic electrostatic (HASEL) actuators. They seem promising, but all of these actuators have challenges. We’ve chosen to stick with pressurized pneumatics in the near term; longer term, I think you’ll start to see more of these smart material actuators become more practical.

Personally, I don’t have any problem with soft robots having some rigid components. Most animals on land have some rigid components, but they can still take advantage of being soft, so it’s probably going to be a combination. But I do also like the vision of making an entirely soft, squishy thing. Continue reading

Posted in Human Robots

#438751 Soft Legged Robot Uses Pneumatic ...

Soft robots are inherently safe, highly resilient, and potentially very cheap, making them promising for a wide array of applications. But development on them has been a bit slow relative to other areas of robotics, at least partially because soft robots can’t directly benefit from the massive increase in computing power and sensor and actuator availability that we’ve seen over the last few decades. Instead, roboticists have had to get creative to find ways of achieving the functionality of conventional robotics components using soft materials and compatible power sources.

In the current issue of Science Robotics, researchers from UC San Diego demonstrate a soft walking robot with four legs that moves with a turtle-like gait controlled by a pneumatic circuit system made from tubes and valves. This air-powered nervous system can actuate multiple degrees of freedom in sequence from a single source of pressurized air, offering a huge reduction in complexity and bringing a very basic form of decision making onto the robot itself.

Generally, when people talk about soft robots, the robots are only mostly soft. There are some components that are very difficult to make soft, including pressure sources and the necessary electronics to direct that pressure between different soft actuators in a way that can be used for propulsion. What’s really cool about this robot is that researchers have managed to take a pressure source (either a single tether or an onboard CO2 cartridge) and direct it to four different legs, each with three different air chambers, using an oscillating three valve circuit made entirely of soft materials.

Photo: UCSD

The pneumatic circuit that powers and controls the soft quadruped.

The inspiration for this can be found in biology—natural organisms, including quadrupeds, use nervous system components called central pattern generators (CPGs) to prompt repetitive motions with limbs that are used for walking, flying, and swimming. This is obviously more complicated in some organisms than in others, and is typically mediated by sensory feedback, but the underlying structure of a CPG is basically just a repeating circuit that drives muscles in sequence to produce a stable, continuous gait. In this case, we’ve got pneumatic muscles being driven in opposing pairs, resulting in a diagonal couplet gait, where diagonally opposed limbs rotate forwards and backwards at the same time.

Diagram: Science Robotics

(J) Pneumatic logic circuit for rhythmic leg motion. A constant positive pressure source (P+) applied to three inverter components causes a high-pressure state to propagate around the circuit, with a delay at each inverter. While the input to one inverter is high, the attached actuator (i.e., A1, A2, or A3) is inflated. This sequence of high-pressure states causes each pair of legs of the robot to rotate in a direction determined by the pneumatic connections. (K) By reversing the sequence of activation of the pneumatic oscillator circuit, the attached actuators inflate in a new sequence (A1, A3, and A2), causing (L) the legs of the robot to rotate in reverse. (M) Schematic bottom view of the robot with the directions of leg motions indicated for forward walking.

Diagram: Science Robotics

Each of the valves acts as an inverter by switching the normally closed half (top) to open and the normally open half (bottom) to closed.

The circuit itself is made up of three bistable pneumatic valves connected by tubing that acts as a delay by providing resistance to the gas moving through it that can be adjusted by altering the tube’s length and inner diameter. Within the circuit, the movement of the pressurized gas acts as both a source of energy and as a signal, since wherever the pressure is in the circuit is where the legs are moving. The simplest circuit uses only three valves, and can keep the robot walking in one single direction, but more valves can add more complex leg control options. For example, the researchers were able to use seven valves to tune the phase offset of the gait, and even just one additional valve (albeit of a slightly more complex design) could enable reversal of the system, causing the robot to walk backwards in response to input from a soft sensor. And with another complex valve, a manual (tethered) controller could be used for omnidirectional movement.

This work has some similarities to the rover that JPL is developing to explore Venus—that rover isn’t a soft robot, of course, but it operates under similar constraints in that it can’t rely on conventional electronic systems for autonomous navigation or control. It turns out that there are plenty of clever ways to use mechanical (or in this case, pneumatic) intelligence to make robots with relatively complex autonomous behaviors, meaning that in the future, soft (or soft-ish) robots could find valuable roles in situations where using a non-compliant system is not a good option.

For more on why we should be so excited about soft robots and just how soft a soft robot needs to be, we spoke with Michael Tolley, who runs the Bioinspired Robotics and Design Lab at UCSD, and Dylan Drotman, the paper’s first author.

IEEE Spectrum: What can soft robots do for us that more rigid robotic designs can’t?

Michael Tolley: At the very highest level, one of the fundamental assumptions of robotics is that you have rigid bodies connected at joints, and all your motion happens at these joints. That's a really nice approach because it makes the math easy, frankly, and it simplifies control. But when you look around us in nature, even though animals do have bones and joints, the way we interact with the world is much more complicated than that simple story. I’m interested in where we can take advantage of material properties in robotics. If you look at robots that have to operate in very unknown environments, I think you can build in some of the intelligence for how to deal with those environments into the body of the robot itself. And that’s the category this work really falls under—it's about navigating the world.

Dylan Drotman: Walking through confined spaces is a good example. With the rigid legged robot, you would have to completely change the way that the legs move to walk through a confined space, while if you have flexible legs, like the robot in our paper, you can use relatively simple control strategies to squeeze through an area you wouldn’t be able to get through with a rigid system.

How smart can a soft robot get?

Drotman: Right now we have a sensor on the front that's connected through a fluidic transmission to a bistable valve that causes the robot to reverse. We could add other sensors around the robot to allow it to change direction whenever it runs into an obstacle to effectively make an electronics-free version of a Roomba.

Tolley: Stepping back a little bit from that, one could make an argument that we’re using basic memory elements to generate very basic signals. There’s nothing in principle that would stop someone from making a pneumatic computer—it’s just very complicated to make something that complex. I think you could build on this and do more intelligent decision making, but using this specific design and the components we’re using, it’s likely to be things that are more direct responses to the environment.

How well would robots like these scale down?

Drotman: At the moment we’re manufacturing these components by hand, so the idea would be to make something more like a printed circuit board instead, and looking at how the channel sizes and the valve design would affect the actuation properties. We’ll also be coming up with new circuits, and different designs for the circuits themselves.

Tolley: Down to centimeter or millimeter scale, I don’t think you’d have fundamental fluid flow problems. I think you’re going to be limited more by system design constraints. You’ll have to be able to locomote while carrying around your pressure source, and possibly some other components that are also still rigid. When you start to talk about really small scales, though, it's not as clear to me that you really need an intrinsically soft robot. If you think about insects, their structural geometry can make them behave like they’re soft, but they’re not intrinsically soft.

Should we be thinking about soft robots and compliant robots in the same way, or are they fundamentally different?

Tolley: There’s certainly a connection between the two. You could have a compliant robot that behaves in a very similar way to an intrinsically soft robot, or a robot made of intrinsically soft materials. At that point, it comes down to design and manufacturing and practical limitations on what you can make. I think when you get down to small scales, the two sort of get connected.

There was some interesting work several years ago on using explosions to power soft robots. Is that still a thing?

Tolley: One of the opportunities with soft robots is that with material compliance, you have the potential to store energy. I think there’s exciting potential there for rapid motion with a soft body. Combustion is one way of doing that with power coming from a chemical source all at once, but you could also use a relatively weak muscle that over time stores up energy in a soft body and then releases it.

Is it realistic to expect complete softness from soft robots, or will they likely always have rigid components because they have to store or generate and move pressurized gas somehow?

Tolley: If you look in nature, you do have soft pumps like the heart, but although it’s soft, it’s still relatively stiff. Like, if you grab a heart, it’s not totally squishy. I haven’t done it, but I’d imagine. If you have a container that you’re pressurizing, it has to be stiff enough to not just blow up like a balloon. Certainly pneumatics or hydraulics are not the only way to go for soft actuators; there has been some really nice work on smart muscles and smart materials like hydraulic electrostatic (HASEL) actuators. They seem promising, but all of these actuators have challenges. We’ve chosen to stick with pressurized pneumatics in the near term; longer term, I think you’ll start to see more of these smart material actuators become more practical.

Personally, I don’t have any problem with soft robots having some rigid components. Most animals on land have some rigid components, but they can still take advantage of being soft, so it’s probably going to be a combination. But I do also like the vision of making an entirely soft, squishy thing. Continue reading

Posted in Human Robots

#438613 Video Friday: Digit Takes a Hike

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

It's winter in Oregon, so everything is damp, all the time. No problem for Digit!

Also the case for summer in Oregon.

[ Agility Robotics ]

While other organisms form collective flocks, schools, or swarms for such purposes as mating, predation, and protection, the Lumbriculus variegatus worms are unusual in their ability to braid themselves together to accomplish tasks that unconnected individuals cannot. A new study reported by researchers at the Georgia Institute of Technology describes how the worms self-organize to act as entangled “active matter,” creating surprising collective behaviors whose principles have been applied to help blobs of simple robots evolve their own locomotion.

No, this doesn't squick me out at all, why would it.

[ Georgia Tech ]

A few years ago, we wrote about Zhifeng Huang's jet-foot equipped bipedal robot, and he's been continuing to work on it to the point where it can now step over gaps that are an absolutely astonishing 147% of its leg length.

[ Paper ]

Thanks Zhifeng!

The Inception Drive is a novel, ultra-compact design for an Infinitely Variable Transmission (IVT) that uses nested-pulleys to adjust the gear ratio between input and output shafts. This video shows the first proof-of-concept prototype for a “Fully Balanced” design, where the spinning masses within the drive are completely balanced to reduce vibration, thereby allowing the drive to operate more efficiently and at higher speeds than achievable on an unbalanced design.

As shown in this video, the Inception Drive can change both the speed and direction of rotation of the output shaft while keeping the direction and speed of the input shaft constant. This ability to adjust speed and direction within such a compact package makes the Inception Drive a compelling choice for machine designers in a wide variety of fields, including robotics, automotive, and renewable-energy generation.

[ SRI ]

Robots with kinematic loops are known to have superior mechanical performance. However, due to these loops, their modeling and control is challenging, and prevents a more widespread use. In this paper, we describe a versatile Inverse Kinematics (IK) formulation for the retargeting of expressive motions onto mechanical systems with loops.

[ Disney Research ]

Watch Engineered Arts put together one of its Mesmer robots in a not at all uncanny way.

[ Engineered Arts ]

There's been a bunch of interesting research into vision-based tactile sensing recently; here's some from Van Ho at JAIST:

[ Paper ]

Thanks Van!

This is really more of an automated system than a robot, but these little levitating pucks are very very slick.

ACOPOS 6D is based on the principle of magnetic levitation: Shuttles with integrated permanent magnets float over the surface of electromagnetic motor segments. The modular motor segments are 240 x 240 millimeters in size and can be arranged freely in any shape. A variety of shuttle sizes carry payloads of 0.6 to 14 kilograms and reach speeds of up to 2 meters per second. They can move freely in two-dimensional space, rotate and tilt along three axes and offer precise control over the height of levitation. All together, that gives them six degrees of motion control freedom.

[ ACOPOS ]

Navigation and motion control of a robot to a destination are tasks that have historically been performed with the assumption that contact with the environment is harmful. This makes sense for rigid-bodied robots where obstacle collisions are fundamentally dangerous. However, because many soft robots have bodies that are low-inertia and compliant, obstacle contact is inherently safe. We find that a planner that takes into account and capitalizes on environmental contact produces paths that are more robust to uncertainty than a planner that avoids all obstacle contact.

[ CHARM Lab ]

The quadrotor experts at UZH have been really cranking it up recently.

Aerodynamic forces render accurate high-speed trajectory tracking with quadrotors extremely challenging. These complex aerodynamic effects become a significant disturbance at high speeds, introducing large positional tracking errors, and are extremely difficult to model. To fly at high speeds, feedback control must be able to account for these aerodynamic effects in real-time. This necessitates a modelling procedure that is both accurate and efficient to evaluate. Therefore, we present an approach to model aerodynamic effects using Gaussian Processes, which we incorporate into a Model Predictive Controller to achieve efficient and precise real-time feedback control, leading to up to 70% reduction in trajectory tracking error at high speeds. We verify our method by extensive comparison to a state-of-the-art linear drag model in synthetic and real-world experiments at speeds of up to 14m/s and accelerations beyond 4g.

[ Paper ]

I have not heard much from Harvest Automation over the last couple years and their website was last updated in 2016, but I guess they're selling robots in France, so that's good?

[ Harvest Automation ]

Last year, Clearpath Robotics introduced a ROS package for Spot which enables robotics developers to leverage ROS capabilities out-of-the-box. Here at OTTO Motors, we thought it would be a compelling test case to see just how easy it would be to integrate Spot into our test fleet of OTTO materials handling robots.

[ OTTO Motors ]

Video showcasing recent robotics activities at PRISMA Lab, coordinated by Prof. Bruno Siciliano, at Università di Napoli Federico II.

[ PRISMA Lab ]

Thanks Fan!

State estimation framework developed by the team CoSTAR for the DARPA Subterranean Challenge, where the team achieved 2nd and 1st places in the Tunnel and Urban circuits.

[ Paper ]

Highlights from the 2020 ROS Industrial conference.

[ ROS Industrial ]

Thanks Thilo!

Not robotics, but entertaining anyway. From the CHI 1995 Technical Video Program, “The Tablet Newspaper: a Vision for the Future.”

[ CHI 1995 ]

This week's GRASP on Robotics seminar comes from Allison Okamura at Stanford, on “Wearable Haptic Devices for Ubiquitous Communication.”

Haptic devices allow touch-based information transfer between humans and intelligent systems, enabling communication in a salient but private manner that frees other sensory channels. For such devices to become ubiquitous, their physical and computational aspects must be intuitive and unobtrusive. We explore the design of a wide array of haptic feedback mechanisms, ranging from devices that can be actively touched by the fingertips to multi-modal haptic actuation mounted on the arm. We demonstrate how these devices are effective in virtual reality, human-machine communication, and human-human communication.

[ UPenn ] Continue reading

Posted in Human Robots

#438606 Hyundai Motor Group Introduces Two New ...

Over the past few weeks, we’ve seen a couple of new robots from Hyundai Motor Group. This is a couple more robots than I think I’ve seen from Hyundai Motor Group, like, ever. We’re particularly interested in them right now mostly because Hyundai Motor Group are the new owners of Boston Dynamics, and so far, these robots represent one of the most explicit indications we’ve got about exactly what Hyundai Motor Group wants their robots to be doing.

We know it would be a mistake to read too much into these new announcements, but we can’t help reading something into them, right? So let’s take a look at what Hyundai Motor Group has been up to recently. This first robot is DAL-e, what HMG is calling an “Advanced Humanoid Robot.”

According to Hyundai, DAL-e is “designed to pioneer the future of automated customer services,” and is equipped with “state-of-the-art artificial intelligence technology for facial recognition as well as an automatic communication system based on a language-comprehension platform.” You’ll find it in car showrooms, but only in Seoul, for now.

We don’t normally write about robots like these because they tend not to represent much that’s especially new or interesting in terms of robotic technology, capabilities, or commercial potential. There’s certainly nothing wrong with DAL-e—it’s moderately cute and appears to be moderately functional. We’ve seen other platforms (like Pepper) take on similar roles, and our impression is that the long-term cost effectiveness of these greeter robots tends to be somewhat limited. And unless there’s some hidden functionality that we’re not aware of, this robot doesn’t really seem to be pushing the envelope, but we’d love to be wrong about that.

The other new robot, announced yesterday, is TIGER (Transforming Intelligent Ground Excursion Robot). It’s a bit more interesting, although you’ll have to skip ahead about 1:30 in the video to get to it.

We’ve talked about how adding wheels can make legged robots faster and more efficient, but I’m honestly not sure that it works all that well going the other way (adding legs to wheeled robots) because rather than adding a little complexity to get a multi-modal system that you can use much of the time, you’re instead adding a lot of complexity to get a multi-modal system that you’re going to use sometimes.

You could argue, as perhaps Hyundai would, that the multi-modal system is critical to get TIGER to do what they want it to do, which seems to be primarily remote delivery. They mention operating in urban areas as well, where TIGER could use its legs to climb stairs, but I think it would be beat by more traditional wheeled platforms, or even whegged platforms, that are almost as capable while being much simpler and cheaper. For remote delivery, though, legs might be a necessary feature.

That is, if you assume that using a ground-based system is really the best way to go.

The TIGER concept can be integrated with a drone to transport it from place to place, so why not just use the drone to make the remote delivery instead? I guess maybe if you’re dealing with a thick tree canopy, the drone could drop TIGER off in a clearing and the robot could drive to its destination, but now we’re talking about developing a very complex system for a very specific use case. Even though Hyundai has said that they’re going to attempt to commercialize TIGER over the next five years, I think it’ll be tricky for them to successfully do so.

The best part about these robots from Hyundai is that between the two of them, they suggest that the company is serious about developing commercial robots as well as willing to invest in something that seems a little crazy. And you know who else is both of those things? Boston Dynamics. To be clear, it’s almost certain that both of Hyundai’s robots were developed well before the company was even thinking about acquiring Boston Dynamics, so the real question is: Where do these two companies go from here? Continue reading

Posted in Human Robots

#437929 These Were Our Favorite Tech Stories ...

This time last year we were commemorating the end of a decade and looking ahead to the next one. Enter the year that felt like a decade all by itself: 2020. News written in January, the before-times, feels hopelessly out of touch with all that came after. Stories published in the early days of the pandemic are, for the most part, similarly naive.

The year’s news cycle was swift and brutal, ping-ponging from pandemic to extreme social and political tension, whipsawing economies, and natural disasters. Hope. Despair. Loneliness. Grief. Grit. More hope. Another lockdown. It’s been a hell of a year.

Though 2020 was dominated by big, hairy societal change, science and technology took significant steps forward. Researchers singularly focused on the pandemic and collaborated on solutions to a degree never before seen. New technologies converged to deliver vaccines in record time. The dark side of tech, from biased algorithms to the threat of omnipresent surveillance and corporate control of artificial intelligence, continued to rear its head.

Meanwhile, AI showed uncanny command of language, joined Reddit threads, and made inroads into some of science’s grandest challenges. Mars rockets flew for the first time, and a private company delivered astronauts to the International Space Station. Deprived of night life, concerts, and festivals, millions traveled to virtual worlds instead. Anonymous jet packs flew over LA. Mysterious monoliths appeared and disappeared worldwide.

It was all, you know, very 2020. For this year’s (in-no-way-all-encompassing) list of fascinating stories in tech and science, we tried to select those that weren’t totally dated by the news, but rose above it in some way. So, without further ado: This year’s picks.

How Science Beat the Virus
Ed Yong | The Atlantic
“Much like famous initiatives such as the Manhattan Project and the Apollo program, epidemics focus the energies of large groups of scientists. …But ‘nothing in history was even close to the level of pivoting that’s happening right now,’ Madhukar Pai of McGill University told me. … No other disease has been scrutinized so intensely, by so much combined intellect, in so brief a time.”

‘It Will Change Everything’: DeepMind’s AI Makes Gigantic Leap in Solving Protein Structures
Ewen Callaway | Nature
“In some cases, AlphaFold’s structure predictions were indistinguishable from those determined using ‘gold standard’ experimental methods such as X-ray crystallography and, in recent years, cryo-electron microscopy (cryo-EM). AlphaFold might not obviate the need for these laborious and expensive methods—yet—say scientists, but the AI will make it possible to study living things in new ways.”

OpenAI’s Latest Breakthrough Is Astonishingly Powerful, But Still Fighting Its Flaws
James Vincent | The Verge
“What makes GPT-3 amazing, they say, is not that it can tell you that the capital of Paraguay is Asunción (it is) or that 466 times 23.5 is 10,987 (it’s not), but that it’s capable of answering both questions and many more beside simply because it was trained on more data for longer than other programs. If there’s one thing we know that the world is creating more and more of, it’s data and computing power, which means GPT-3’s descendants are only going to get more clever.”

Artificial General Intelligence: Are We Close, and Does It Even Make Sense to Try?
Will Douglas Heaven | MIT Technology Review
“A machine that could think like a person has been the guiding vision of AI research since the earliest days—and remains its most divisive idea. …So why is AGI controversial? Why does it matter? And is it a reckless, misleading dream—or the ultimate goal?”

The Dark Side of Big Tech’s Funding for AI Research
Tom Simonite | Wired
“Timnit Gebru’s exit from Google is a powerful reminder of how thoroughly companies dominate the field, with the biggest computers and the most resources. …[Meredith] Whittaker of AI Now says properly probing the societal effects of AI is fundamentally incompatible with corporate labs. ‘That kind of research that looks at the power and politics of AI is and must be inherently adversarial to the firms that are profiting from this technology.’i”

We’re Not Prepared for the End of Moore’s Law
David Rotman | MIT Technology Review
“Quantum computing, carbon nanotube transistors, even spintronics, are enticing possibilities—but none are obvious replacements for the promise that Gordon Moore first saw in a simple integrated circuit. We need the research investments now to find out, though. Because one prediction is pretty much certain to come true: we’re always going to want more computing power.”

Inside the Race to Build the Best Quantum Computer on Earth
Gideon Lichfield | MIT Technology Review
“Regardless of whether you agree with Google’s position [on ‘quantum supremacy’] or IBM’s, the next goal is clear, Oliver says: to build a quantum computer that can do something useful. …The trouble is that it’s nearly impossible to predict what the first useful task will be, or how big a computer will be needed to perform it.”

The Secretive Company That Might End Privacy as We Know It
Kashmir Hill | The New York Times
“Searching someone by face could become as easy as Googling a name. Strangers would be able to listen in on sensitive conversations, take photos of the participants and know personal secrets. Someone walking down the street would be immediately identifiable—and his or her home address would be only a few clicks away. It would herald the end of public anonymity.”

Wrongfully Accused by an Algorithm
Kashmir Hill | The New York Times
“Mr. Williams knew that he had not committed the crime in question. What he could not have known, as he sat in the interrogation room, is that his case may be the first known account of an American being wrongfully arrested based on a flawed match from a facial recognition algorithm, according to experts on technology and the law.”

Predictive Policing Algorithms Are Racist. They Need to Be Dismantled.
Will Douglas Heaven | MIT Technology Review
“A number of studies have shown that these tools perpetuate systemic racism, and yet we still know very little about how they work, who is using them, and for what purpose. All of this needs to change before a proper reckoning can take pace. Luckily, the tide may be turning.”

The Panopticon Is Already Here
Ross Andersen | The Atlantic
“Artificial intelligence has applications in nearly every human domain, from the instant translation of spoken language to early viral-outbreak detection. But Xi [Jinping] also wants to use AI’s awesome analytical powers to push China to the cutting edge of surveillance. He wants to build an all-seeing digital system of social control, patrolled by precog algorithms that identify potential dissenters in real time.”

The Case For Cities That Aren’t Dystopian Surveillance States
Cory Doctorow | The Guardian
“Imagine a human-centered smart city that knows everything it can about things. It knows how many seats are free on every bus, it knows how busy every road is, it knows where there are short-hire bikes available and where there are potholes. …What it doesn’t know is anything about individuals in the city.”

The Modern World Has Finally Become Too Complex for Any of Us to Understand
Tim Maughan | OneZero
“One of the dominant themes of the last few years is that nothing makes sense. …I am here to tell you that the reason so much of the world seems incomprehensible is that it is incomprehensible. From social media to the global economy to supply chains, our lives rest precariously on systems that have become so complex, and we have yielded so much of it to technologies and autonomous actors that no one totally comprehends it all.”

The Conscience of Silicon Valley
Zach Baron | GQ
“What I really hoped to do, I said, was to talk about the future and how to live in it. This year feels like a crossroads; I do not need to explain what I mean by this. …I want to destroy my computer, through which I now work and ‘have drinks’ and stare at blurry simulations of my parents sometimes; I want to kneel down and pray to it like a god. I want someone—I want Jaron Lanier—to tell me where we’re going, and whether it’s going to be okay when we get there. Lanier just nodded. All right, then.”

Yes to Tech Optimism. And Pessimism.
Shira Ovide | The New York Times
“Technology is not something that exists in a bubble; it is a phenomenon that changes how we live or how our world works in ways that help and hurt. That calls for more humility and bridges across the optimism-pessimism divide from people who make technology, those of us who write about it, government officials and the public. We need to think on the bright side. And we need to consider the horribles.”

How Afrofuturism Can Help the World Mend
C. Brandon Ogbunu | Wired
“…[W. E. B. DuBois’] ‘The Comet’ helped lay the foundation for a paradigm known as Afrofuturism. A century later, as a comet carrying disease and social unrest has upended the world, Afrofuturism may be more relevant than ever. Its vision can help guide us out of the rubble, and help us to consider universes of better alternatives.”

Wikipedia Is the Last Best Place on the Internet
Richard Cooke | Wired
“More than an encyclopedia, Wikipedia has become a community, a library, a constitution, an experiment, a political manifesto—the closest thing there is to an online public square. It is one of the few remaining places that retains the faintly utopian glow of the early World Wide Web.”

Can Genetic Engineering Bring Back the American Chestnut?
Gabriel Popkin | The New York Times Magazine
“The geneticists’ research forces conservationists to confront, in a new and sometimes discomfiting way, the prospect that repairing the natural world does not necessarily mean returning to an unblemished Eden. It may instead mean embracing a role that we’ve already assumed: engineers of everything, including nature.”

At the Limits of Thought
David C. Krakauer | Aeon
“A schism is emerging in the scientific enterprise. On the one side is the human mind, the source of every story, theory, and explanation that our species holds dear. On the other stand the machines, whose algorithms possess astonishing predictive power but whose inner workings remain radically opaque to human observers.”

Is the Internet Conscious? If It Were, How Would We Know?
Meghan O’Gieblyn | Wired
“Does the internet behave like a creature with an internal life? Does it manifest the fruits of consciousness? There are certainly moments when it seems to. Google can anticipate what you’re going to type before you fully articulate it to yourself. Facebook ads can intuit that a woman is pregnant before she tells her family and friends. It is easy, in such moments, to conclude that you’re in the presence of another mind—though given the human tendency to anthropomorphize, we should be wary of quick conclusions.”

The Internet Is an Amnesia Machine
Simon Pitt | OneZero
“There was a time when I didn’t know what a Baby Yoda was. Then there was a time I couldn’t go online without reading about Baby Yoda. And now, Baby Yoda is a distant, shrugging memory. Soon there will be a generation of people who missed the whole thing and for whom Baby Yoda is as meaningless as it was for me a year ago.”

Digital Pregnancy Tests Are Almost as Powerful as the Original IBM PC
Tom Warren | The Verge
“Each test, which costs less than $5, includes a processor, RAM, a button cell battery, and a tiny LCD screen to display the result. …Foone speculates that this device is ‘probably faster at number crunching and basic I/O than the CPU used in the original IBM PC.’ IBM’s original PC was based on Intel’s 8088 microprocessor, an 8-bit chip that operated at 5Mhz. The difference here is that this is a pregnancy test you pee on and then throw away.”

The Party Goes on in Massive Online Worlds
Cecilia D’Anastasio | Wired
“We’re more stand-outside types than the types to cast a flashy glamour spell and chat up the nearest cat girl. But, hey, it’s Final Fantasy XIV online, and where my body sat in New York, the epicenter of America’s Covid-19 outbreak, there certainly weren’t any parties.”

The Facebook Groups Where People Pretend the Pandemic Isn’t Happening
Kaitlyn Tiffany | The Atlantic
“Losing track of a friend in a packed bar or screaming to be heard over a live band is not something that’s happening much in the real world at the moment, but it happens all the time in the 2,100-person Facebook group ‘a group where we all pretend we’re in the same venue.’ So does losing shoes and Juul pods, and shouting matches over which bands are the saddest, and therefore the greatest.”

Did You Fly a Jetpack Over Los Angeles This Weekend? Because the FBI Is Looking for You
Tom McKay | Gizmodo
“Did you fly a jetpack over Los Angeles at approximately 3,000 feet on Sunday? Some kind of tiny helicopter? Maybe a lawn chair with balloons tied to it? If the answer to any of the above questions is ‘yes,’ you should probably lay low for a while (by which I mean cool it on the single-occupant flying machine). That’s because passing airline pilots spotted you, and now it’s this whole thing with the FBI and the Federal Aviation Administration, both of which are investigating.”

Image Credit: Thomas Kinto / Unsplash Continue reading

Posted in Human Robots