Tag Archives: cars
#435619 Video Friday: Watch This Robot Dog ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, CA, USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.
Team PLUTO (University of Pennsylvania, Ghost Robotics, and Exyn Technologies) put together this video giving us a robot’s-eye-view (or whatever they happen to be using for eyes) of the DARPA Subterranean Challenge tunnel circuits.
[ PLUTO ]
Zhifeng Huang has been improving his jet-stepping humanoid robot, which features new hardware and the ability to take larger and more complex steps.
This video reported the last progress of an ongoing project utilizing ducted-fan propulsion system to improve humanoid robot’s ability in stepping over large ditches. The landing point of the robot’s swing foot can be not only forward but also side direction. With keeping quasi-static balance, the robot was able to step over a ditch with 450mm in width (up to 97% of the robot’s leg’s length) in 3D stepping.
[ Paper ]
Thanks Zhifeng!
These underacuated hands from Matei Ciocarlie’s lab at Columbia are magically able to reconfigure themselves to grasp different object types with just one or two motors.
[ Paper ] via [ ROAM Lab ]
This is one reason we should pursue not “autonomous cars” but “fully autonomous cars” that never require humans to take over. We can’t be trusted.
During our early days as the Google self-driving car project, we invited some employees to test our vehicles on their commutes and weekend trips. What we were testing at the time was similar to the highway driver assist features that are now available on cars today, where the car takes over the boring parts of the driving, but if something outside its ability occurs, the driver has to take over immediately.
What we saw was that our testers put too much trust in that technology. They were doing things like texting, applying makeup, and even falling asleep that made it clear they would not be ready to take over driving if the vehicle asked them to. This is why we believe that nothing short of full autonomy will do.
[ Waymo ]
Buddy is a DIY and fetchingly minimalist social robot (of sorts) that will be coming to Kickstarter this month.
We have created a new arduino kit. His name is Buddy. He is a DIY social robot to serve as a replacement for Jibo, Cozmo, or any of the other bots that are no longer available. Fully 3D printed and supported he adds much more to our series of Arduino STEM robotics kits.
Buddy is able to look around and map his surroundings and react to changes within them. He can be surprised and he will always have a unique reaction to changes. The kit can be built very easily in less than an hour. It is even robust enough to take the abuse that kids can give it in a classroom.
[ Littlebots ]
The android Mindar, based on the Buddhist deity of mercy, preaches sermons at Kodaiji temple in Kyoto, and its human colleagues predict that with artificial intelligence it could one day acquire unlimited wisdom. Developed at a cost of almost $1 million (¥106 million) in a joint project between the Zen temple and robotics professor Hiroshi Ishiguro, the robot teaches about compassion and the dangers of desire, anger and ego.
[ Japan Times ]
I’m not sure whether it’s the sound or what, but this thing scares me for some reason.
[ BIRL ]
This gripper uses magnets as a sort of adjustable spring for dynamic stiffness control, which seems pretty clever.
[ Buffalo ]
What a package of medicine sees while being flown by drone from a hospital to a remote clinic in the Dominican Republic. The drone flew 11 km horizontally and 800 meters vertically, and I can’t even imagine what it would take to make that drive.
[ WeRobotics ]
My first ride in a fully autonomous car was at Stanford in 2009. I vividly remember getting in the back seat of a descendant of Junior, and watching the steering wheel turn by itself as the car executed a perfect parking maneuver. Ten years later, it’s still fun to watch other people have that experience.
[ Waymo ]
Flirtey, the pioneer of the commercial drone delivery industry, has unveiled the much-anticipated first video of its next-generation delivery drone, the Flirtey Eagle. The aircraft designer and manufacturer also unveiled the Flirtey Portal, a sophisticated take off and landing platform that enables scalable store-to-door operations; and an autonomous software platform that enables drones to deliver safely to homes.
[ Flirtey ]
EPFL scientists are developing new approaches for improved control of robotic hands – in particular for amputees – that combines individual finger control and automation for improved grasping and manipulation. This interdisciplinary proof-of-concept between neuroengineering and robotics was successfully tested on three amputees and seven healthy subjects.
[ EPFL ]
This video is a few years old, but we’ll take any excuse to watch the majestic sage-grouse be majestic in all their majesticness.
[ UC Davis ]
I like the idea of a game of soccer (or, football to you weirdos in the rest of the world) where the ball has a mind of its own.
[ Sphero ]
Looks like the whole delivery glider idea is really taking off! Or, you know, not taking off.
Weird that they didn’t show the landing, because it sure looked like it was going to plow into the side of the hill at full speed.
[ Yates ] via [ sUAS News ]
This video is from a 2018 paper, but it’s not like we ever get tired of seeing quadrupeds do stuff, right?
[ MIT ]
Founder and Head of Product, Ian Bernstein, and Head of Engineering, Morgan Bell, have been involved in the Misty project for years and they have learned a thing or two about building robots. Hear how and why Misty evolved into a robot development platform, learn what some of the earliest prototypes did (and why they didn’t work for what we envision), and take a deep dive into the technology decisions that form the Misty II platform.
[ Misty Robotics ]
Lex Fridman interviews Vijay Kumar on the Artifiical Intelligence Podcast.
[ AI Podcast ]
This week’s CMU RI Seminar is from Ross Knepper at Cornell, on Formalizing Teamwork in Human-Robot Interaction.
Robots out in the world today work for people but not with people. Before robots can work closely with ordinary people as part of a human-robot team in a home or office setting, robots need the ability to acquire a new mix of functional and social skills. Working with people requires a shared understanding of the task, capabilities, intentions, and background knowledge. For robots to act jointly as part of a team with people, they must engage in collaborative planning, which involves forming a consensus through an exchange of information about goals, capabilities, and partial plans. Often, much of this information is conveyed through implicit communication. In this talk, I formalize components of teamwork involving collaboration, communication, and representation. I illustrate how these concepts interact in the application of social navigation, which I argue is a first-class example of teamwork. In this setting, participants must avoid collision by legibly conveying intended passing sides via nonverbal cues like path shape. A topological representation using the braid groups enables the robot to reason about a small enumerable set of passing outcomes. I show how implicit communication of topological group plans achieves rapid covergence to a group consensus, and how a robot in the group can deliberately influence the ultimate outcome to maximize joint performance, yielding pedestrian comfort with the robot.
[ CMU RI ]
In this week’s episode of Robots in Depth, Per speaks with Julien Bourgeois about Claytronics, a project from Carnegie Mellon and Intel to develop “programmable matter.”
Julien started out as a computer scientist. He was always interested in robotics privately but then had the opportunity to get into micro robots when his lab was merged into the FEMTO-ST Institute. He later worked with Seth Copen Goldstein at Carnegie Mellon on the Claytronics project.
Julien shows an enlarged mock-up of the small robots that make up programmable matter, catoms, and speaks about how they are designed. Currently he is working on a unit that is one centimeter in diameter and he shows us the very small CPU that goes into that model.
[ Robots in Depth ] Continue reading
#435520 These Are the Meta-Trends Shaping the ...
Life is pretty different now than it was 20 years ago, or even 10 years ago. It’s sort of exciting, and sort of scary. And hold onto your hat, because it’s going to keep changing—even faster than it already has been.
The good news is, maybe there won’t be too many big surprises, because the future will be shaped by trends that have already been set in motion. According to Singularity University co-founder and XPRIZE founder Peter Diamandis, a lot of these trends are unstoppable—but they’re also pretty predictable.
At SU’s Global Summit, taking place this week in San Francisco, Diamandis outlined some of the meta-trends he believes are key to how we’ll live our lives and do business in the (not too distant) future.
Increasing Global Abundance
Resources are becoming more abundant all over the world, and fewer people are seeing their lives limited by scarcity. “It’s hard for us to realize this as we see crisis news, but what people have access to is more abundant than ever before,” Diamandis said. Products and services are becoming cheaper and thus available to more people, and having more resources then enables people to create more, thus producing even more resources—and so on.
Need evidence? The proportion of the world’s population living in extreme poverty is currently lower than it’s ever been. The average human life expectancy is longer than it’s ever been. The costs of day-to-day needs like food, energy, transportation, and communications are on a downward trend.
Take energy. In most of the world, though its costs are decreasing, it’s still a fairly precious commodity; we turn off our lights and our air conditioners when we don’t need them (ideally, both to save money and to avoid wastefulness). But the cost of solar energy has plummeted, and the storage capacity of batteries is improving, and solar technology is steadily getting more efficient. Bids for new solar power plants in the past few years have broken each other’s records for lowest cost per kilowatt hour.
“We’re not far from a penny per kilowatt hour for energy from the sun,” Diamandis said. “And if you’ve got energy, you’ve got water.” Desalination, for one, will be much more widely feasible once the cost of the energy needed for it drops.
Knowledge is perhaps the most crucial resource that’s going from scarce to abundant. All the world’s knowledge is now at the fingertips of anyone who has a mobile phone and an internet connection—and the number of people connected is only going to grow. “Everyone is being connected at gigabit connection speeds, and this will be transformative,” Diamandis said. “We’re heading towards a world where anyone can know anything at any time.”
Increasing Capital Abundance
It’s not just goods, services, and knowledge that are becoming more plentiful. Money is, too—particularly money for business. “There’s more and more capital available to invest in companies,” Diamandis said. As a result, more people are getting the chance to bring their world-changing ideas to life.
Venture capital investments reached a new record of $130 billion in 2018, up from $84 billion in 2017—and that’s just in the US. Globally, VC funding grew 21 percent from 2017 to a total of $207 billion in 2018.
Through crowdfunding, any person in any part of the world can present their idea and ask for funding. That funding can come in the form of a loan, an equity investment, a reward, or an advanced purchase of the proposed product or service. “Crowdfunding means it doesn’t matter where you live, if you have a great idea you can get it funded by people from all over the world,” Diamandis said.
All this is making a difference; the number of unicorns—privately-held startups valued at over $1 billion—currently stands at an astounding 360.
One of the reasons why the world is getting better, Diamandis believes, is because entrepreneurs are trying more crazy ideas—not ideas that are reasonable or predictable or linear, but ideas that seem absurd at first, then eventually end up changing the world.
Everyone and Everything, Connected
As already noted, knowledge is becoming abundant thanks to the proliferation of mobile phones and wireless internet; everyone’s getting connected. In the next decade or sooner, connectivity will reach every person in the world. 5G is being tested and offered for the first time this year, and companies like Google, SpaceX, OneWeb, and Amazon are racing to develop global satellite internet constellations, whether by launching 12,000 satellites, as SpaceX’s Starlink is doing, or by floating giant balloons into the stratosphere like Google’s Project Loon.
“We’re about to reach a period of time in the next four to six years where we’re going from half the world’s people being connected to the whole world being connected,” Diamandis said. “What happens when 4.2 billion new minds come online? They’re all going to want to create, discover, consume, and invent.”
And it doesn’t stop at connecting people. Things are becoming more connected too. “By 2020 there will be over 20 billion connected devices and more than one trillion sensors,” Diamandis said. By 2030, those projections go up to 500 billion and 100 trillion. Think about it: there’s home devices like refrigerators, TVs, dishwashers, digital assistants, and even toasters. There’s city infrastructure, from stoplights to cameras to public transportation like buses or bike sharing. It’s all getting smart and connected.
Soon we’ll be adding autonomous cars to the mix, and an unimaginable glut of data to go with them. Every turn, every stop, every acceleration will be a data point. Some cars already collect over 25 gigabytes of data per hour, Diamandis said, and car data is projected to generate $750 billion of revenue by 2030.
“You’re going to start asking questions that were never askable before, because the data is now there to be mined,” he said.
Increasing Human Intelligence
Indeed, we’ll have data on everything we could possibly want data on. We’ll also soon have what Diamandis calls just-in-time education, where 5G combined with artificial intelligence and augmented reality will allow you to learn something in the moment you need it. “It’s not going and studying, it’s where your AR glasses show you how to do an emergency surgery, or fix something, or program something,” he said.
We’re also at the beginning of massive investments in research working towards connecting our brains to the cloud. “Right now, everything we think, feel, hear, or learn is confined in our synaptic connections,” Diamandis said. What will it look like when that’s no longer the case? Companies like Kernel, Neuralink, Open Water, Facebook, Google, and IBM are all investing billions of dollars into brain-machine interface research.
Increasing Human Longevity
One of the most important problems we’ll use our newfound intelligence to solve is that of our own health and mortality, making 100 years old the new 60—then eventually, 120 or 150.
“Our bodies were never evolved to live past age 30,” Diamandis said. “You’d go into puberty at age 13 and have a baby, and by the time you were 26 your baby was having a baby.”
Seeing how drastically our lifespans have changed over time makes you wonder what aging even is; is it natural, or is it a disease? Many companies are treating it as one, and using technologies like senolytics, CRISPR, and stem cell therapy to try to cure it. Scaffolds of human organs can now be 3D printed then populated with the recipient’s own stem cells so that their bodies won’t reject the transplant. Companies are testing small-molecule pharmaceuticals that can stop various forms of cancer.
“We don’t truly know what’s going on inside our bodies—but we can,” Diamandis said. “We’re going to be able to track our bodies and find disease at stage zero.”
Chins Up
The world is far from perfect—that’s not hard to see. What’s less obvious but just as true is that we’re living in an amazing time. More people are coming together, and they have more access to information, and that information moves faster, than ever before.
“I don’t think any of us understand how fast the world is changing,” Diamandis said. “Most people are fearful about the future. But we should be excited about the tools we now have to solve the world’s problems.”
Image Credit: spainter_vfx / Shutterstock.com Continue reading
#435119 Are These Robots Better Than You at ...
Robot technology is evolving at breakneck speed. SoftBank’s Pepper is found in companies across the globe and is rapidly improving its conversation skills. Telepresence robots open up new opportunities for remote working, while Boston Dynamics’ Handle robot could soon (literally) take a load off human colleagues in warehouses.
But warehouses and offices aren’t the only places where robots are lining up next to humans.
Toyota’s Cue 3 robot recently showed off its basketball skills, putting up better numbers than the NBA’s most accurate three-point shooter, the Golden State Warriors’ Steph Curry.
Cue 3 is still some way from being ready to take on Curry, or even amateur basketball players, in a real game. However, it is the latest member of a growing cast of robots challenging human dominance in sports.
As these robots continue to develop, they not only exemplify the speed of exponential technology development, but also how those technologies are improving human capabilities.
Meet the Contestants
The list of robots in sports is surprisingly long and diverse. There are robot skiers, tumblers, soccer players, sumos, and even robot game jockeys. Introductions to a few of them are in order.
Robot: Forpheus
Sport: Table tennis
Intro: Looks like something out of War of the Worlds equipped with a ping pong bat instead of a death ray.
Ability level: Capable of counteracting spin shots and good enough to beat many beginners.
Robot: Sumo bot
Sport: Sumo wrestling
Intro: Hyper-fast, hyper-aggressive. Think robot equivalent to an angry wasp on six cans of Red Bull crossed with a very small tank.
Ability level: Flies around the ring way faster than any human sumo. Tend to drive straight out of the ring at times.
Robot: Cue 3
Sport: Basketball
Intro: Stands at an imposing 6 foot and 10 inches, so pretty much built for the NBA. Looks a bit like something that belongs in a video game.
Ability level: A 62.5 percent three-pointer percentage, which is better than Steph Curry’s; is less mobile than Charles Barkley – in his current form.
Robot: Robo Cup Robots
Intro: The future of soccer. If everything goes to plan, a team of robots will take on the Lionel Messis and Cristiano Ronaldos of 2050 and beat them in a full 11 vs. 11 game.
Ability level: Currently plays soccer more like the six-year-olds I used to coach than Lionel Messi.
The Limiting Factor
The skill level of all the robots above is impressive, and they are doing things that no human contestant can. The sumo bots’ inhuman speed is self-evident. Forpheus’ ability to track the ball with two cameras while simultaneously tracking its opponent with two other cameras requires a look at the spec sheet, but is similarly beyond human capability. While Cue 3 can’t move, it makes shots from the mid-court logo look easy.
Robots are performing at a level that was confined to the realm of science fiction at the start of the millennium. The speed of development indicates that in the near future, my national team soccer coach would likely call up a robot instead of me (he must have lost my number since he hasn’t done so yet. It’s the only logical explanation), and he’d be right to do so.
It is also worth considering that many current sports robots have a humanoid form, which limits their ability. If engineers were to optimize robot design to outperform humans in specific categories, many world champions would likely already be metallic.
Swimming is perhaps one of the most obvious. Even Michael Phelps would struggle to keep up with a torpedo-shaped robot, and if you beefed up a sumo robot to human size, human sumos might impress you by running away from them with a 100-meter speed close to Usain Bolt’s.
In other areas, the playing field for humans and robots is rapidly leveling. One likely candidate for the first head-to-head competitions is racing, where self-driving cars from the Roborace League could perhaps soon be ready to race the likes of Lewis Hamilton.
Tech Pushing Humans
Perhaps one of the biggest reasons why it may still take some time for robots to surpass us is that they, along with other exponential technologies, are already making us better at sports.
In Japan, elite volleyball players use a robot to practice their attacks. Some American football players also practice against robot opponents and hone their skills using VR.
On the sidelines, AI is being used to analyze and improve athletes’ performance, and we may soon see the first AI coaches, not to mention referees.
We may even compete in games dreamt up by our electronic cousins. SpeedGate, a new game created by an AI by studying 400 different sports, is a prime example of that quickly becoming a possibility.
However, we will likely still need to make the final call on what constitutes a good game. The AI that created SpeedGate reportedly also suggested less suitable pastimes, like underwater parkour and a game that featured exploding frisbees. Both of these could be fun…but only if you’re as sturdy as a robot.
Image Credit: RoboCup Standard Platform League 2018, ©The Robocup Federation. Published with permission of reproduction granted by the RoboCup Federation. Continue reading