Tag Archives: cars

#431414 This Week’s Awesome Stories From ...

QUANTUM COMPUTING IBM Raises the Bar With a 50-Qubit Quantum ComputerWill Knight | MIT Technology Review “50 qubits is a significant landmark in progress toward practical quantum computers. Other systems built so far have had limited capabilities and could perform only calculations that could also be done on a conventional supercomputer. A 50-qubit machine can do things that are extremely difficult to simulate without quantum technology.”
ARTIFICIAL INTELLIGENCE AI Startup Embodied Intelligence Wants Robots to Learn From Humans in Virtual RealityEvan Ackerman | IEEE Spectrum “This is a defining problem for robotics right now: Robots can do anything you want, as long as you tell them exactly what that is, every single time… This week, Abbeel and several of his colleagues from UC Berkeley and OpenAI are announcing a new startup (with US $7 million in seed funding) called Embodied Intelligence, which will ‘enable industrial robot arms to perceive and act like humans instead of just strictly following pre-programmed trajectories.’”
TRANSPORTATION Uber’s Plan to Launch Flying Cars in LA by 2020 Really Could Take OffJack Stewart | Wired“After grabbing an elevator, passengers will tap their phones to pass through a turnstile and access the roof. Presumably they’ve been prescreened, because there’s no airport-style security in evidence. An agent in an orange vest takes a group of four passengers out to the waiting aircraft. There’s a pilot up front, and a small overhead display with the estimated arrival time.”
ROBOTICS This Robot Swarm Finishes Your Grocery Shopping in MinutesJesus Diaz | Fast Company “At an Ocado warehouse in the English town of Andover, a swarm of 1,000 robots races over a grid the size of a soccer field, filling orders and replacing stock. The new system, which went live earlier this year, can fulfill a 50-item order in under five minutes—something that used to take about two hours at human-only facilities. It’s been so successful that Ocado is now building a new warehouse that’s three times larger in Erith, southeast of London.”
BIOTECH Meet the Scientists Building a Library of Designer DrugsAngela Chen | The Verge“One of the most prominent categories of designer drugs are those intended to mimic marijuana, called synthetic cannabinoids. Marijuana, or cannabis, is widely considered one of the safest drugs, but synthetic cannabinoids are some of the most dangerous synthetic drugs.”
Image Credit: anucha sirivisansuwan / Shutterstock.com Continue reading

Posted in Human Robots

#431412 3 Dangerous Ideas From Ray Kurzweil

Recently, I interviewed my friend Ray Kurzweil at the Googleplex for a 90-minute webinar on disruptive and dangerous ideas, a prelude to my fireside chat with Ray at Abundance 360 this January.

Ray is my friend and cofounder and chancellor of Singularity University. He is also an XPRIZE trustee, a director of engineering at Google, and one of the best predictors of our exponential future.
It’s my pleasure to share with you three compelling ideas that came from our conversation.
1. The nation-state will soon be irrelevant.
Historically, we humans don’t like change. We like waking up in the morning and knowing that the world is the same as the night before.
That’s one reason why government institutions exist: to stabilize society.
But how will this change in 20 or 30 years? What role will stabilizing institutions play in a world of continuous, accelerating change?
“Institutions stick around, but they change their role in our lives,” Ray explained. “They already have. The nation-state is not as profound as it was. Religion used to direct every aspect of your life, minute to minute. It’s still important in some ways, but it’s much less important, much less pervasive. [It] plays a much smaller role in most people’s lives than it did, and the same is true for governments.”
Ray continues: “We are fantastically interconnected already. Nation-states are not islands anymore. So we’re already much more of a global community. The generation growing up today really feels like world citizens much more than ever before, because they’re talking to people all over the world, and it’s not a novelty.”
I’ve previously shared my belief that national borders have become extremely porous, with ideas, people, capital, and technology rapidly flowing between nations. In decades past, your cultural identity was tied to your birthplace. In the decades ahead, your identify is more a function of many other external factors. If you love space, you’ll be connected with fellow space-cadets around the globe more than you’ll be tied to someone born next door.
2. We’ll hit longevity escape velocity before we realize we’ve hit it.
Ray and I share a passion for extending the healthy human lifespan.
I frequently discuss Ray’s concept of “longevity escape velocity”—the point at which, for every year that you’re alive, science is able to extend your life for more than a year.
Scientists are continually extending the human lifespan, helping us cure heart disease, cancer, and eventually, neurodegenerative disease. This will keep accelerating as technology improves.
During my discussion with Ray, I asked him when he expects we’ll reach “escape velocity…”
His answer? “I predict it’s likely just another 10 to 12 years before the general public will hit longevity escape velocity.”
“At that point, biotechnology is going to have taken over medicine,” Ray added. “The next decade is going to be a profound revolution.”
From there, Ray predicts that nanorobots will “basically finish the job of the immune system,” with the ability to seek and destroy cancerous cells and repair damaged organs.
As we head into this sci-fi-like future, your most important job for the next 15 years is to stay alive. “Wear your seatbelt until we get the self-driving cars going,” Ray jokes.
The implications to society will be profound. While the scarcity-minded in government will react saying, “Social Security will be destroyed,” the more abundance-minded will realize that extending a person’s productive earning life space from 65 to 75 or 85 years old would be a massive boon to GDP.
3. Technology will help us define and actualize human freedoms.
The third dangerous idea from my conversation with Ray is about how technology will enhance our humanity, not detract from it.
You may have heard critics complain that technology is making us less human and increasingly disconnected.
Ray and I share a slightly different viewpoint: that technology enables us to tap into the very essence of what it means to be human.
“I don’t think humans even have to be biological,” explained Ray. “I think humans are the species that changes who we are.”
Ray argues that this began when humans developed the earliest technologies—fire and stone tools. These tools gave people new capabilities and became extensions of our physical bodies.
At its base level, technology is the means by which we change our environment and change ourselves. This will continue, even as the technologies themselves evolve.
“People say, ‘Well, do I really want to become part machine?’ You’re not even going to notice it,” Ray says, “because it’s going to be a sensible thing to do at each point.”
Today, we take medicine to fight disease and maintain good health and would likely consider it irresponsible if someone refused to take a proven, life-saving medicine.
In the future, this will still happen—except the medicine might have nanobots that can target disease or will also improve your memory so you can recall things more easily.
And because this new medicine works so well for so many, public perception will change. Eventually, it will become the norm… as ubiquitous as penicillin and ibuprofen are today.
In this way, ingesting nanorobots, uploading your brain to the cloud, and using devices like smart contact lenses can help humans become, well, better at being human.
Ray sums it up: “We are the species that changes who we are to become smarter and more profound, more beautiful, more creative, more musical, funnier, sexier.”
Speaking of sexuality and beauty, Ray also sees technology expanding these concepts. “In virtual reality, you can be someone else. Right now, actually changing your gender in real reality is a pretty significant, profound process, but you could do it in virtual reality much more easily and you can be someone else. A couple could become each other and discover their relationship from the other’s perspective.”
In the 2030s, when Ray predicts sensor-laden nanorobots will be able to go inside the nervous system, virtual or augmented reality will become exceptionally realistic, enabling us to “be someone else and have other kinds of experiences.”
Why Dangerous Ideas Matter
Why is it so important to discuss dangerous ideas?
I often say that the day before something is a breakthrough, it’s a crazy idea.
By consuming and considering a steady diet of “crazy ideas,” you train yourself to think bigger and bolder, a critical requirement for making impact.
As humans, we are linear and scarcity-minded.
As entrepreneurs, we must think exponentially and abundantly.
At the end of the day, the formula for a true breakthrough is equal to “having a crazy idea” you believe in, plus the passion to pursue that idea against all naysayers and obstacles.
Image Credit: Tithi Luadthong / Shutterstock.com Continue reading

Posted in Human Robots

#431371 Amazon Is Quietly Building the Robots of ...

Science fiction is the siren song of hard science. How many innocent young students have been lured into complex, abstract science, technology, engineering, or mathematics because of a reckless and irresponsible exposure to Arthur C. Clarke at a tender age? Yet Arthur C. Clarke has a very famous quote: “Any sufficiently advanced technology is indistinguishable from magic.”
It’s the prospect of making that… ahem… magic leap that entices so many people into STEM in the first place. A magic leap that would change the world. How about, for example, having humanoid robots? They could match us in dexterity and speed, perceive the world around them as we do, and be programmed to do, well, more or less anything we can do.
Such a technology would change the world forever.
But how will it arrive? While true sci-fi robots won’t get here right away—the pieces are coming together, and the company best developing them at the moment is Amazon. Where others have struggled to succeed, Amazon has been quietly progressing. Notably, Amazon has more than just a dream, it has the most practical of reasons driving it into robotics.
This practicality matters. Technological development rarely proceeds by magic; it’s a process filled with twists, turns, dead-ends, and financial constraints. New technologies often have to answer questions like “What is this good for, are you being realistic?” A good strategy, then, can be to build something more limited than your initial ambition, but useful for a niche market. That way, you can produce a prototype, have a reasonable business plan, and turn a profit within a decade. You might call these “stepping stone” applications that allow for new technologies to be developed in an economically viable way.
You need something you can sell to someone, soon: that’s how you get investment in your idea. It’s this model that iRobot, developers of the Roomba, used: migrating from military prototypes to robotic vacuum cleaners to become the “boring, successful robot company.” Compare this to Willow Garage, a genius factory if ever there was one: they clearly had ambitions towards a general-purpose, multi-functional robot. They built an impressive device—PR2—and programmed the operating system, ROS, that is still the industry and academic standard to this day.
But since they were unable to sell their robot for much less than $250,000, it was never likely to be a profitable business. This is why Willow Garage is no more, and many workers at the company went into telepresence robotics. Telepresence is essentially videoconferencing with a fancy robot attached to move the camera around. It uses some of the same software (for example, navigation and mapping) without requiring you to solve difficult problems of full autonomy for the robot, or manipulating its environment. It’s certainly one of the stepping-stone areas that various companies are investigating.
Another approach is to go to the people with very high research budgets: the military.
This was the Boston Dynamics approach, and their incredible achievements in bipedal locomotion saw them getting snapped up by Google. There was a great deal of excitement and speculation about Google’s “nightmare factory” whenever a new slick video of a futuristic militarized robot surfaced. But Google broadly backed away from Replicant, their robotics program, and Boston Dynamics was sold. This was partly due to PR concerns over the Terminator-esque designs, but partly because they didn’t see the robotics division turning a profit. They hadn’t found their stepping stones.
This is where Amazon comes in. Why Amazon? First off, they just announced that their profits are up by 30 percent, and yet the company is well-known for their constantly-moving Day One philosophy where a great deal of the profits are reinvested back into the business. But lots of companies have ambition.
One thing Amazon has that few other corporations have, as well as big financial resources, is viable stepping stones for developing the technologies needed for this sort of robotics to become a reality. They already employ 100,000 robots: these are of the “pragmatic, boring, useful” kind that we’ve profiled, which move around the shelves in warehouses. These robots are allowing Amazon to develop localization and mapping software for robots that can autonomously navigate in the simple warehouse environment.
But their ambitions don’t end there. The Amazon Robotics Challenge is a multi-million dollar competition, open to university teams, to produce a robot that can pick and package items in warehouses. The problem of grasping and manipulating a range of objects is not a solved one in robotics, so this work is still done by humans—yet it’s absolutely fundamental for any sci-fi dream robot.
Google, for example, attempted to solve this problem by hooking up 14 robot hands to machine learning algorithms and having them grasp thousands of objects. Although results were promising, the 10 to 20 percent failure rate for grasps is too high for warehouse use. This is a perfect stepping stone for Amazon; should they crack the problem, they will likely save millions in logistics.
Another area where humanoid robotics—especially bipedal locomotion, or walking, has been seriously suggested—is in the last mile delivery problem. Amazon has shown willingness to be creative in this department with their notorious drone delivery service. In other words, it’s all very well to have your self-driving car or van deliver packages to people’s doors, but who puts the package on the doorstep? It’s difficult for wheeled robots to navigate the full range of built environments that exist. That’s why bipedal robots like CASSIE, developed by Oregon State, may one day be used to deliver parcels.
Again: no one more than Amazon stands to profit from cracking this technology. The line from robotics research to profit is very clear.
So, perhaps one day Amazon will have robots that can move around and manipulate their environments. But they’re also working on intelligence that will guide those robots and make them truly useful for a variety of tasks. Amazon has an AI, or at least the framework for an AI: it’s called Alexa, and it’s in tens of millions of homes. The Alexa Prize, another multi-million-dollar competition, is attempting to make Alexa more social.
To develop a conversational AI, at least using the current methods of machine learning, you need data on tens of millions of conversations. You need to understand how people will try to interact with the AI. Amazon has access to this in Alexa, and they’re using it. As owners of the leading voice-activated personal assistant, they have an ecosystem of developers creating apps for Alexa. It will be integrated with the smart home and the Internet of Things. It is a very marketable product, a stepping stone for robot intelligence.
What’s more, the company can benefit from its huge sales infrastructure. For Amazon, having an AI in your home is ideal, because it can persuade you to buy more products through its website. Unlike companies like Google, Amazon has an easy way to make a direct profit from IoT devices, which could fuel funding.
For a humanoid robot to be truly useful, though, it will need vision and intelligence. It will have to understand and interpret its environment, and react accordingly. The way humans learn about our environment is by getting out and seeing it. This is something that, for example, an Alexa coupled to smart glasses would be very capable of doing. There are rumors that Alexa’s AI will soon be used in security cameras, which is an ideal stepping stone task to train an AI to process images from its environment, truly perceiving the world and any threats it might contain.
It’s a slight exaggeration to say that Amazon is in the process of building a secret robot army. The gulf between our sci-fi vision of robots that can intelligently serve us, rather than mindlessly assemble cars, is still vast. But in quietly assembling many of the technologies needed for intelligent, multi-purpose robotics—and with the unique stepping stones they have along the way—Amazon might just be poised to leap that gulf. As if by magic.
Image Credit: Denis Starostin / Shutterstock.com Continue reading

Posted in Human Robots

#431343 How Technology Is Driving Us Toward Peak ...

At some point in the future—and in some ways we are already seeing this—the amount of physical stuff moving around the world will peak and begin to decline. By “stuff,” I am referring to liquid fuels, coal, containers on ships, food, raw materials, products, etc.
New technologies are moving us toward “production-at-the-point-of-consumption” of energy, food, and products with reduced reliance on a global supply chain.
The trade of physical stuff has been central to globalization as we’ve known it. So, this declining movement of stuff may signal we are approaching “peak globalization.”
To be clear, even as the movement of stuff may slow, if not decline, the movement of people, information, data, and ideas around the world is growing exponentially and is likely to continue doing so for the foreseeable future.
Peak globalization may provide a pathway to preserving the best of globalization and global interconnectedness, enhancing economic and environmental sustainability, and empowering individuals and communities to strengthen democracy.
At the same time, some of the most troublesome aspects of globalization may be eased, including massive financial transfers to energy producers and loss of jobs to manufacturing platforms like China. This shift could bring relief to the “losers” of globalization and ease populist, nationalist political pressures that are roiling the developed countries.
That is quite a claim, I realize. But let me explain the vision.
New Technologies and Businesses: Digital, Democratized, Decentralized
The key factors moving us toward peak globalization and making it economically viable are new technologies and innovative businesses and business models allowing for “production-at-the-point-of-consumption” of energy, food, and products.
Exponential technologies are enabling these trends by sharply reducing the “cost of entry” for creating businesses. Driven by Moore’s Law, powerful technologies have become available to almost anyone, anywhere.
Beginning with the microchip, which has had a 100-billion-fold improvement in 40 years—10,000 times faster and 10 million times cheaper—the marginal cost of producing almost everything that can be digitized has fallen toward zero.
A hard copy of a book, for example, will always entail the cost of materials, printing, shipping, etc., even if the marginal cost falls as more copies are produced. But the marginal cost of a second digital copy, such as an e-book, streaming video, or song, is nearly zero as it is simply a digital file sent over the Internet, the world’s largest copy machine.* Books are one product, but there are literally hundreds of thousands of dollars in once-physical, separate products jammed into our devices at little to no cost.
A smartphone alone provides half the human population access to artificial intelligence—from SIRI, search, and translation to cloud computing—geolocation, free global video calls, digital photography and free uploads to social network sites, free access to global knowledge, a million apps for a huge variety of purposes, and many other capabilities that were unavailable to most people only a few years ago.
As powerful as dematerialization and demonetization are for private individuals, they’re having a stronger effect on businesses. A small team can access expensive, advanced tools that before were only available to the biggest organizations. Foundational digital platforms, such as the internet and GPS, and the platforms built on top of them by the likes of Google, Apple, Amazon, and others provide the connectivity and services democratizing business tools and driving the next generation of new startups.

“As these trends gain steam in coming decades, they’ll bleed into and fundamentally transform global supply chains.”

An AI startup, for example, doesn’t need its own server farm to train its software and provide service to customers. The team can rent computing power from Amazon Web Services. This platform model enables small teams to do big things on the cheap. And it isn’t just in software. Similar trends are happening in hardware too. Makers can 3D print or mill industrial grade prototypes of physical stuff in a garage or local maker space and send or sell designs to anyone with a laptop and 3D printer via online platforms.
These are early examples of trends that are likely to gain steam in coming decades, and as they do, they’ll bleed into and fundamentally transform global supply chains.
The old model is a series of large, connected bits of centralized infrastructure. It makes sense to mine, farm, or manufacture in bulk when the conditions, resources, machines, and expertise to do so exist in particular places and are specialized and expensive. The new model, however, enables smaller-scale production that is local and decentralized.
To see this more clearly, let’s take a look at the technological trends at work in the three biggest contributors to the global trade of physical stuff—products, energy, and food.
Products
3D printing (additive manufacturing) allows for distributed manufacturing near the point of consumption, eliminating or reducing supply chains and factory production lines.
This is possible because product designs are no longer made manifest in assembly line parts like molds or specialized mechanical tools. Rather, designs are digital and can be called up at will to guide printers. Every time a 3D printer prints, it can print a different item, so no assembly line needs to be set up for every different product. 3D printers can also print an entire finished product in one piece or reduce the number of parts of larger products, such as engines. This further lessens the need for assembly.
Because each item can be customized and printed on demand, there is no cost benefit from scaling production. No inventories. No shipping items across oceans. No carbon emissions transporting not only the final product but also all the parts in that product shipped from suppliers to manufacturer. Moreover, 3D printing builds items layer by layer with almost no waste, unlike “subtractive manufacturing” in which an item is carved out of a piece of metal, and much or even most of the material can be waste.
Finally, 3D printing is also highly scalable, from inexpensive 3D printers (several hundred dollars) for home and school use to increasingly capable and expensive printers for industrial production. There are also 3D printers being developed for printing buildings, including houses and office buildings, and other infrastructure.
The technology for finished products is only now getting underway, and there are still challenges to overcome, such as speed, quality, and range of materials. But as methods and materials advance, it will likely creep into more manufactured goods.
Ultimately, 3D printing will be a general purpose technology that involves many different types of printers and materials—such as plastics, metals, and even human cells—to produce a huge range of items, from human tissue and potentially human organs to household items and a range of industrial items for planes, trains, and automobiles.
Energy
Renewable energy production is located at or relatively near the source of consumption.
Although electricity generated by solar, wind, geothermal, and other renewable sources can of course be transmitted over longer distances, it is mostly generated and consumed locally or regionally. It is not transported around the world in tankers, ships, and pipelines like petroleum, coal, and natural gas.
Moreover, the fuel itself is free—forever. There is no global price on sun or wind. The people relying on solar and wind power need not worry about price volatility and potential disruption of fuel supplies as a result of political, market, or natural causes.
Renewables have their problems, of course, including intermittency and storage, and currently they work best if complementary to other sources, especially natural gas power plants that, unlike coal plants, can be turned on or off and modulated like a gas stove, and are half the carbon emissions of coal.
Within the next decades or so, it is likely the intermittency and storage problems will be solved or greatly mitigated. In addition, unlike coal and natural gas power plants, solar is scalable, from solar panels on individual homes or even cars and other devices, to large-scale solar farms. Solar can be connected with microgrids and even allow for autonomous electricity generation by homes, commercial buildings, and communities.
It may be several decades before fossil fuel power plants can be phased out, but the development cost of renewables has been falling exponentially and, in places, is beginning to compete with coal and gas. Solar especially is expected to continue to increase in efficiency and decline in cost.
Given these trends in cost and efficiency, renewables should become obviously cheaper over time—if the fuel is free for solar and has to be continually purchased for coal and gas, at some point the former is cheaper than the latter. Renewables are already cheaper if externalities such as carbon emissions and environmental degradation involved in obtaining and transporting the fuel are included.
Food
Food can be increasingly produced near the point of consumption with vertical farms and eventually with printed food and even printed or cultured meat.
These sources bring production of food very near the consumer, so transportation costs, which can be a significant portion of the cost of food to consumers, are greatly reduced. The use of land and water are reduced by 95% or more, and energy use is cut by nearly 50%. In addition, fertilizers and pesticides are not required and crops can be grown 365 days a year whatever the weather and in more climates and latitudes than is possible today.
While it may not be practical to grow grains, corn, and other such crops in vertical farms, many vegetables and fruits can flourish in such facilities. In addition, cultured or printed meat is being developed—the big challenge is scaling up and reducing cost—that is based on cells from real animals without slaughtering the animals themselves.
There are currently some 70 billion animals being raised for food around the world [PDF] and livestock alone counts for about 15% of global emissions. Moreover, livestock places huge demands on land, water, and energy. Like vertical farms, cultured or printed meat could be produced with no more land use than a brewery and with far less water and energy.
A More Democratic Economy Goes Bottom Up
This is a very brief introduction to the technologies that can bring “production-at-the-point-of-consumption” of products, energy, and food to cities and regions.
What does this future look like? Here’s a simplified example.
Imagine a universal manufacturing facility with hundreds of 3D printers printing tens of thousands of different products on demand for the local community—rather than assembly lines in China making tens of thousands of the same product that have to be shipped all over the world since no local market can absorb all of the same product.
Nearby, a vertical farm and cultured meat facility produce much of tomorrow night’s dinner. These facilities would be powered by local or regional wind and solar. Depending on need and quality, some infrastructure and machinery, like solar panels and 3D printers, would live in these facilities and some in homes and businesses.
The facilities could be owned by a large global corporation—but still locally produce goods—or they could be franchised or even owned and operated independently by the local population. Upkeep and management at each would provide jobs for communities nearby. Eventually, not only would global trade of parts and products diminish, but even required supplies of raw materials and feed stock would decline since there would be less waste in production, and many materials would be recycled once acquired.

“Peak globalization could be a viable pathway to an economic foundation that puts people first while building a more economically and environmentally sustainable future.”

This model suggests a shift toward a “bottom up” economy that is more democratic, locally controlled, and likely to generate more local jobs.
The global trends in democratization of technology make the vision technologically plausible. Much of this technology already exists and is improving and scaling while exponentially decreasing in cost to become available to almost anyone, anywhere.
This includes not only access to key technologies, but also to education through digital platforms available globally. Online courses are available for free, ranging from advanced physics, math, and engineering to skills training in 3D printing, solar installations, and building vertical farms. Social media platforms can enable local and global collaboration and sharing of knowledge and best practices.
These new communities of producers can be the foundation for new forms of democratic governance as they recognize and “capitalize” on the reality that control of the means of production can translate to political power. More jobs and local control could weaken populist, anti-globalization political forces as people recognize they could benefit from the positive aspects of globalization and international cooperation and connectedness while diminishing the impact of globalization’s downsides.
There are powerful vested interests that stand to lose in such a global structural shift. But this vision builds on trends that are already underway and are gaining momentum. Peak globalization could be a viable pathway to an economic foundation that puts people first while building a more economically and environmentally sustainable future.
This article was originally posted on Open Democracy (CC BY-NC 4.0). The version above was edited with the author for length and includes additions. Read the original article on Open Democracy.
* See Jeremy Rifkin, The Zero Marginal Cost Society, (New York: Palgrave Macmillan, 2014), Part II, pp. 69-154.
Image Credit: Sergey Nivens / Shutterstock.com Continue reading

Posted in Human Robots

#431170 This Week’s Awesome Stories From ...

AUGMENTED REALITY
ZED Mini Turns Rift and Vive Into an AR Headset From the FutureBen Lang | Road to VR“When attached, the camera provides stereo pass-through video and real-time depth and environment mapping, turning the headsets into dev kits emulating the capabilities of high-end AR headsets of the future. The ZED Mini will launch in November.”
ROBOTICS
Life-Size Humanoid Robot Is Designed to Fall Over (and Over and Over)Evan Ackerman | IEEE Spectrum “The researchers came up with a new strategy for not worrying about falls: not worrying about falls. Instead, they’ve built their robot from the ground up with an armored structure that makes it totally okay with falling over and getting right back up again.”
SPACE
Russia Will Team up With NASA to Build a Lunar Space StationAnatoly Zak | Popular Mechanics “NASA and its partner agencies plan to begin the construction of the modular habitat known as the Deep-Space Gateway in orbit around the Moon in the early 2020s. It will become the main destination for astronauts for at least a decade, extending human presence beyond the Earth’s orbit for the first time since the end of the Apollo program in 1972. Launched on NASA’s giant SLS rocket and serviced by the crews of the Orion spacecraft, the outpost would pave the way to a mission to Mars in the 2030s.”
TRANSPORTATION
Dubai Starts Testing Crewless Two-Person ‘Flying Taxis’Thuy Ong | The Verge“The drone was uncrewed and hovered 200 meters high during the test flight, according to Reuters. The AAT, which is about two meters high, was supplied by specialist German manufacturer Volocopter, known for its eponymous helicopter drone hybrid with 18 rotors…Dubai has a target for autonomous transport to account for a quarter of total trips by 2030.”
AUTONOMOUS CARS
Toyota Is Trusting a Startup for a Crucial Part of Its Newest Self-Driving CarsJohana Bhuiyan | Recode “Toyota unveiled the next generation of its self-driving platform today, which features more accurate object detection technology and mapping, among other advancements. These test cars—which Toyota is testing on both a closed driving course and on some public roads—will also be using Luminar’s lidar sensors, or radars that use lasers to detect the distance to an object.”
Image Credit: KHIUS / Shutterstock.com Continue reading

Posted in Human Robots