Tag Archives: cars

#434843 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
Open AI’s Dota 2 AI Steamrolls World Champion e-Sports Team With Back-to-Back Victories
Nick Statt | The Verge
“…[OpenAI cofounder and CEO, Sam Altman] tells me there probably does not exist a video game out there right now that a system like OpenAI Five can’t eventually master at a level beyond human capability. For the broader AI industry, mastering video games may soon become passé, simple table stakes required to prove your system can learn fast and act in a way required to tackle tougher, real-world tasks with more meaningful benefits.”

ROBOTICS
Boston Dynamics Debuts the Production Version of SpotMini
Brian Heater, Catherine Shu | TechCrunch
“SpotMini is the first commercial robot Boston Dynamics is set to release, but as we learned earlier, it certainly won’t be the last. The company is looking to its wheeled Handle robot in an effort to push into the logistics space. It’s a super-hot category for robotics right now. Notably, Amazon recently acquired Colorado-based start up Canvas to add to its own arm of fulfillment center robots.”

NEUROSCIENCE
Scientists Restore Some Brain Cell Functions in Pigs Four Hours After Death
Joel Achenbach | The Washington Post
“The ethicists say this research can blur the line between life and death, and could complicate the protocols for organ donation, which rely on a clear determination of when a person is dead and beyond resuscitation.”

BIOTECH
How Scientists 3D Printed a Tiny Heart From Human Cells
Yasmin Saplakoglu | Live Science
“Though the heart is much smaller than a human’s (it’s only the size of a rabbit’s), and there’s still a long way to go until it functions like a normal heart, the proof-of-concept experiment could eventually lead to personalized organs or tissues that could be used in the human body…”

SPACE
The Next Clash of Silicon Valley Titans Will Take Place in Space
Luke Dormehl | Digital Trends
“With bold plans that call for thousands of new satellites being put into orbit and astronomical costs, it’s going to be fascinating to observe the next phase of the tech platform battle being fought not on our desktops or mobile devices in our pockets, but outside of Earth’s atmosphere.”

FUTURE HISTORY
The Images That Could Help Rebuild Notre-Dame Cathedral
Alexis C. Madrigal | The Atlantic
“…in 2010, [Andrew] Tallon, an art professor at Vassar, took a Leica ScanStation C10 to Notre-Dame and, with the assistance of Columbia’s Paul Blaer, began to painstakingly scan every piece of the structure, inside and out. …Over five days, they positioned the scanner again and again—50 times in all—to create an unmatched record of the reality of one of the world’s most awe-inspiring buildings, represented as a series of points in space.”

AUGMENTED REALITY
Mapping Our World in 3D Will Let Us Paint Streets With Augmented Reality
Charlotte Jee | MIT Technology Review
“Scape wants to use its location services to become the underlying infrastructure upon which driverless cars, robotics, and augmented-reality services sit. ‘Our end goal is a one-to-one map of the world covering everything,’ says Miller. ‘Our ambition is to be as invisible as GPS is today.’i”

Image Credit: VAlex / Shutterstock.com Continue reading

Posted in Human Robots

#434792 Extending Human Longevity With ...

Lizards can regrow entire limbs. Flatworms, starfish, and sea cucumbers regrow entire bodies. Sharks constantly replace lost teeth, often growing over 20,000 teeth throughout their lifetimes. How can we translate these near-superpowers to humans?

The answer: through the cutting-edge innovations of regenerative medicine.

While big data and artificial intelligence transform how we practice medicine and invent new treatments, regenerative medicine is about replenishing, replacing, and rejuvenating our physical bodies.

In Part 5 of this blog series on Longevity and Vitality, I detail three of the regenerative technologies working together to fully augment our vital human organs.

Replenish: Stem cells, the regenerative engine of the body
Replace: Organ regeneration and bioprinting
Rejuvenate: Young blood and parabiosis

Let’s dive in.

Replenish: Stem Cells – The Regenerative Engine of the Body
Stem cells are undifferentiated cells that can transform into specialized cells such as heart, neurons, liver, lung, skin and so on, and can also divide to produce more stem cells.

In a child or young adult, these stem cells are in large supply, acting as a built-in repair system. They are often summoned to the site of damage or inflammation to repair and restore normal function.

But as we age, our supply of stem cells begins to diminish as much as 100- to 10,000-fold in different tissues and organs. In addition, stem cells undergo genetic mutations, which reduce their quality and effectiveness at renovating and repairing your body.

Imagine your stem cells as a team of repairmen in your newly constructed mansion. When the mansion is new and the repairmen are young, they can fix everything perfectly. But as the repairmen age and reduce in number, your mansion eventually goes into disrepair and finally crumbles.

What if you could restore and rejuvenate your stem cell population?

One option to accomplish this restoration and rejuvenation is to extract and concentrate your own autologous adult stem cells from places like your adipose (or fat) tissue or bone marrow.

These stem cells, however, are fewer in number and have undergone mutations (depending on your age) from their original ‘software code.’ Many scientists and physicians now prefer an alternative source, obtaining stem cells from the placenta or umbilical cord, the leftovers of birth.

These stem cells, available in large supply and expressing the undamaged software of a newborn, can be injected into joints or administered intravenously to rejuvenate and revitalize.

Think of these stem cells as chemical factories generating vital growth factors that can help to reduce inflammation, fight autoimmune disease, increase muscle mass, repair joints, and even revitalize skin and grow hair.

Over the last decade, the number of publications per year on stem cell-related research has increased 40x, and the stem cell market is expected to increase to $297 billion by 2022.

Rising research and development initiatives to develop therapeutic options for chronic diseases and growing demand for regenerative treatment options are the most significant drivers of this budding industry.

Biologists led by Kohji Nishida at Osaka University in Japan have discovered a new way to nurture and grow the tissues that make up the human eyeball. The scientists are able to grow retinas, corneas, the eye’s lens, and more, using only a small sample of adult skin.

In a Stanford study, seven of 18 stroke victims who agreed to stem cell treatments showed remarkable motor function improvements. This treatment could work for other neurodegenerative conditions such as Alzheimer’s, Parkinson’s, and ALS.

Doctors from the USC Neurorestoration Center and Keck Medicine of USC injected stem cells into the damaged cervical spine of a recently paralyzed 21-year-old man. Three months later, he showed dramatic improvement in sensation and movement of both arms.

In 2019, doctors in the U.K. cured a patient with HIV for the second time ever thanks to the efficacy of stem cells. After giving the cancer patient (who also had HIV) an allogeneic haematopoietic (e.g. blood) stem cell treatment for his Hodgkin’s lymphoma, the patient went into long-term HIV remission—18 months and counting at the time of the study’s publication.

Replace: Organ Regeneration and 3D Printing
Every 10 minutes, someone is added to the US organ transplant waiting list, totaling over 113,000 people waiting for replacement organs as of January 2019.

Countless more people in need of ‘spare parts’ never make it onto the waiting list. And on average, 20 people die each day while waiting for a transplant.

As a result, 35 percent of all US deaths (~900,000 people) could be prevented or delayed with access to organ replacements.

The excessive demand for donated organs will only intensify as technologies like self-driving cars make the world safer, given that many organ donors result from auto and motorcycle accidents. Safer vehicles mean less accidents and donations.

Clearly, replacement and regenerative medicine represent a massive opportunity.

Organ Entrepreneurs
Enter United Therapeutics CEO, Dr. Martine Rothblatt. A one-time aerospace entrepreneur (she was the founder of Sirius Satellite Radio), Rothblatt changed careers in the 1990s after her daughter developed a rare lung disease.

Her moonshot today is to create an industry of replacement organs. With an initial focus on diseases of the lung, Rothblatt set out to create replacement lungs. To accomplish this goal, her company United Therapeutics has pursued a number of technologies in parallel.

3D Printing Lungs
In 2017, United teamed up with one of the world’s largest 3D printing companies, 3D Systems, to build a collagen bioprinter and is paying another company, 3Scan, to slice up lungs and create detailed maps of their interior.

This 3D Systems bioprinter now operates according to a method called stereolithography. A UV laser flickers through a shallow pool of collagen doped with photosensitive molecules. Wherever the laser lingers, the collagen cures and becomes solid.

Gradually, the object being printed is lowered and new layers are added. The printer can currently lay down collagen at a resolution of around 20 micrometers, but will need to achieve resolution of a micrometer in size to make the lung functional.

Once a collagen lung scaffold has been printed, the next step is to infuse it with human cells, a process called recellularization.

The goal here is to use stem cells that grow on scaffolding and differentiate, ultimately providing the proper functionality. Early evidence indicates this approach can work.

In 2018, Harvard University experimental surgeon Harald Ott reported that he pumped billions of human cells (from umbilical cords and diced lungs) into a pig lung stripped of its own cells. When Ott’s team reconnected it to a pig’s circulation, the resulting organ showed rudimentary function.

Humanizing Pig Lungs
Another of Rothblatt’s organ manufacturing strategies is called xenotransplantation, the idea of transplanting an animal’s organs into humans who need a replacement.

Given the fact that adult pig organs are similar in size and shape to those of humans, United Therapeutics has focused on genetically engineering pigs to allow humans to use their organs. “It’s actually not rocket science,” said Rothblatt in her 2015 TED talk. “It’s editing one gene after another.”

To accomplish this goal, United Therapeutics made a series of investments in companies such as Revivicor Inc. and Synthetic Genomics Inc., and signed large funding agreements with the University of Maryland, University of Alabama, and New York Presbyterian/Columbia University Medical Center to create xenotransplantation programs for new hearts, kidneys, and lungs, respectively. Rothblatt hopes to see human translation in three to four years.

In preparation for that day, United Therapeutics owns a 132-acre property in Research Triangle Park and built a 275,000-square-foot medical laboratory that will ultimately have the capability to annually produce up to 1,000 sets of healthy pig lungs—known as xenolungs—from genetically engineered pigs.

Lung Ex Vivo Perfusion Systems
Beyond 3D printing and genetically engineering pig lungs, Rothblatt has already begun implementing a third near-term approach to improve the supply of lungs across the US.

Only about 30 percent of potential donor lungs meet transplant criteria in the first place; of those, only about 85 percent of those are usable once they arrive at the surgery center. As a result, nearly 75 percent of possible lungs never make it to the recipient in need.

What if these lungs could be rejuvenated? This concept informs Dr. Rothblatt’s next approach.

In 2016, United Therapeutics invested $41.8 million in TransMedics Inc., an Andover, Massachusetts company that develops ex vivo perfusion systems for donor lungs, hearts, and kidneys.

The XVIVO Perfusion System takes marginal-quality lungs that initially failed to meet transplantation standard-of-care criteria and perfuses and ventilates them at normothermic conditions, providing an opportunity for surgeons to reassess transplant suitability.

Rejuvenate Young Blood and Parabiosis
In HBO’s parody of the Bay Area tech community, Silicon Valley, one of the episodes (Season 4, Episode 5) is named “The Blood Boy.”

In this installment, tech billionaire Gavin Belson (Matt Ross) is meeting with Richard Hendricks (Thomas Middleditch) and his team, speaking about the future of the decentralized internet. A young, muscled twenty-something disrupts the meeting when he rolls in a transfusion stand and silently hooks an intravenous connection between himself and Belson.

Belson then introduces the newcomer as his “transfusion associate” and begins to explain the science of parabiosis: “Regular transfusions of the blood of a younger physically fit donor can significantly retard the aging process.”

While the sitcom is fiction, that science has merit, and the scenario portrayed in the episode is already happening today.

On the first point, research at Stanford and Harvard has demonstrated that older animals, when transfused with the blood of young animals, experience regeneration across many tissues and organs.

The opposite is also true: young animals, when transfused with the blood of older animals, experience accelerated aging. But capitalizing on this virtual fountain of youth has been tricky.

Ambrosia
One company, a San Francisco-based startup called Ambrosia, recently commenced one of the trials on parabiosis. Their protocol is simple: Healthy participants aged 35 and older get a transfusion of blood plasma from donors under 25, and researchers monitor their blood over the next two years for molecular indicators of health and aging.

Ambrosia’s founder Jesse Karmazin became interested in launching a company around parabiosis after seeing impressive data from animals and studies conducted abroad in humans: In one trial after another, subjects experience a reversal of aging symptoms across every major organ system. “The effects seem to be almost permanent,” he said. “It’s almost like there’s a resetting of gene expression.”

Infusing your own cord blood stem cells as you age may have tremendous longevity benefits. Following an FDA press release in February 2019, Ambrosia halted its consumer-facing treatment after several months of operation.

Understandably, the FDA raised concerns about the practice of parabiosis because to date, there is a marked lack of clinical data to support the treatment’s effectiveness.

Elevian
On the other end of the reputability spectrum is a startup called Elevian, spun out of Harvard University. Elevian is approaching longevity with a careful, scientifically validated strategy. (Full Disclosure: I am both an advisor to and investor in Elevian.)

CEO Mark Allen, MD, is joined by a dozen MDs and Ph.Ds out of Harvard. Elevian’s scientific founders started the company after identifying specific circulating factors that may be responsible for the “young blood” effect.

One example: A naturally occurring molecule known as “growth differentiation factor 11,” or GDF11, when injected into aged mice, reproduces many of the regenerative effects of young blood, regenerating heart, brain, muscles, lungs, and kidneys.

More specifically, GDF11 supplementation reduces age-related cardiac hypertrophy, accelerates skeletal muscle repair, improves exercise capacity, improves brain function and cerebral blood flow, and improves metabolism.

Elevian is developing a number of therapeutics that regulate GDF11 and other circulating factors. The goal is to restore our body’s natural regenerative capacity, which Elevian believes can address some of the root causes of age-associated disease with the promise of reversing or preventing many aging-related diseases and extending the healthy lifespan.

Conclusion
In 1992, futurist Leland Kaiser coined the term “regenerative medicine”:

“A new branch of medicine will develop that attempts to change the course of chronic disease and in many instances will regenerate tired and failing organ systems.”

Since then, the powerful regenerative medicine industry has grown exponentially, and this rapid growth is anticipated to continue.

A dramatic extension of the human healthspan is just over the horizon. Soon, we’ll all have the regenerative superpowers previously relegated to a handful of animals and comic books.

What new opportunities open up when anybody, anywhere, and at anytime can regenerate, replenish, and replace entire organs and metabolic systems on command?

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Giovanni Cancemi / Shutterstock.com Continue reading

Posted in Human Robots

#434781 What Would It Mean for AI to Become ...

As artificial intelligence systems take on more tasks and solve more problems, it’s hard to say which is rising faster: our interest in them or our fear of them. Futurist Ray Kurzweil famously predicted that “By 2029, computers will have emotional intelligence and be convincing as people.”

We don’t know how accurate this prediction will turn out to be. Even if it takes more than 10 years, though, is it really possible for machines to become conscious? If the machines Kurzweil describes say they’re conscious, does that mean they actually are?

Perhaps a more relevant question at this juncture is: what is consciousness, and how do we replicate it if we don’t understand it?

In a panel discussion at South By Southwest titled “How AI Will Design the Human Future,” experts from academia and industry discussed these questions and more.

Wait, What Is AI?
Most of AI’s recent feats—diagnosing illnesses, participating in debate, writing realistic text—involve machine learning, which uses statistics to find patterns in large datasets then uses those patterns to make predictions. However, “AI” has been used to refer to everything from basic software automation and algorithms to advanced machine learning and deep learning.

“The term ‘artificial intelligence’ is thrown around constantly and often incorrectly,” said Jennifer Strong, a reporter at the Wall Street Journal and host of the podcast “The Future of Everything.” Indeed, one study found that 40 percent of European companies that claim to be working on or using AI don’t actually use it at all.

Dr. Peter Stone, associate chair of computer science at UT Austin, was the study panel chair on the 2016 One Hundred Year Study on Artificial Intelligence (or AI100) report. Based out of Stanford University, AI100 is studying and anticipating how AI will impact our work, our cities, and our lives.

“One of the first things we had to do was define AI,” Stone said. They defined it as a collection of different technologies inspired by the human brain to be able to perceive their surrounding environment and figure out what actions to take given these inputs.

Modeling on the Unknown
Here’s the crazy thing about that definition (and about AI itself): we’re essentially trying to re-create the abilities of the human brain without having anything close to a thorough understanding of how the human brain works.

“We’re starting to pair our brains with computers, but brains don’t understand computers and computers don’t understand brains,” Stone said. Dr. Heather Berlin, cognitive neuroscientist and professor of psychiatry at the Icahn School of Medicine at Mount Sinai, agreed. “It’s still one of the greatest mysteries how this three-pound piece of matter can give us all our subjective experiences, thoughts, and emotions,” she said.

This isn’t to say we’re not making progress; there have been significant neuroscience breakthroughs in recent years. “This has been the stuff of science fiction for a long time, but now there’s active work being done in this area,” said Amir Husain, CEO and founder of Austin-based AI company Spark Cognition.

Advances in brain-machine interfaces show just how much more we understand the brain now than we did even a few years ago. Neural implants are being used to restore communication or movement capabilities in people who’ve been impaired by injury or illness. Scientists have been able to transfer signals from the brain to prosthetic limbs and stimulate specific circuits in the brain to treat conditions like Parkinson’s, PTSD, and depression.

But much of the brain’s inner workings remain a deep, dark mystery—one that will have to be further solved if we’re ever to get from narrow AI, which refers to systems that can perform specific tasks and is where the technology stands today, to artificial general intelligence, or systems that possess the same intelligence level and learning capabilities as humans.

The biggest question that arises here, and one that’s become a popular theme across stories and films, is if machines achieve human-level general intelligence, does that also mean they’d be conscious?

Wait, What Is Consciousness?
As valuable as the knowledge we’ve accumulated about the brain is, it seems like nothing more than a collection of disparate facts when we try to put it all together to understand consciousness.

“If you can replace one neuron with a silicon chip that can do the same function, then replace another neuron, and another—at what point are you still you?” Berlin asked. “These systems will be able to pass the Turing test, so we’re going to need another concept of how to measure consciousness.”

Is consciousness a measurable phenomenon, though? Rather than progressing by degrees or moving through some gray area, isn’t it pretty black and white—a being is either conscious or it isn’t?

This may be an outmoded way of thinking, according to Berlin. “It used to be that only philosophers could study consciousness, but now we can study it from a scientific perspective,” she said. “We can measure changes in neural pathways. It’s subjective, but depends on reportability.”

She described three levels of consciousness: pure subjective experience (“Look, the sky is blue”), awareness of one’s own subjective experience (“Oh, it’s me that’s seeing the blue sky”), and relating one subjective experience to another (“The blue sky reminds me of a blue ocean”).

“These subjective states exist all the way down the animal kingdom. As humans we have a sense of self that gives us another depth to that experience, but it’s not necessary for pure sensation,” Berlin said.

Husain took this definition a few steps farther. “It’s this self-awareness, this idea that I exist separate from everything else and that I can model myself,” he said. “Human brains have a wonderful simulator. They can propose a course of action virtually, in their minds, and see how things play out. The ability to include yourself as an actor means you’re running a computation on the idea of yourself.”

Most of the decisions we make involve envisioning different outcomes, thinking about how each outcome would affect us, and choosing which outcome we’d most prefer.

“Complex tasks you want to achieve in the world are tied to your ability to foresee the future, at least based on some mental model,” Husain said. “With that view, I as an AI practitioner don’t see a problem implementing that type of consciousness.”

Moving Forward Cautiously (But Not too Cautiously)
To be clear, we’re nowhere near machines achieving artificial general intelligence or consciousness, and whether a “conscious machine” is possible—not to mention necessary or desirable—is still very much up for debate.

As machine intelligence continues to advance, though, we’ll need to walk the line between progress and risk management carefully.

Improving the transparency and explainability of AI systems is one crucial goal AI developers and researchers are zeroing in on. Especially in applications that could mean the difference between life and death, AI shouldn’t advance without people being able to trace how it’s making decisions and reaching conclusions.

Medicine is a prime example. “There are already advances that could save lives, but they’re not being used because they’re not trusted by doctors and nurses,” said Stone. “We need to make sure there’s transparency.” Demanding too much transparency would also be a mistake, though, because it will hinder the development of systems that could at best save lives and at worst improve efficiency and free up doctors to have more face time with patients.

Similarly, self-driving cars have great potential to reduce deaths from traffic fatalities. But even though humans cause thousands of deadly crashes every day, we’re terrified by the idea of self-driving cars that are anything less than perfect. “If we only accept autonomous cars when there’s zero probability of an accident, then we will never accept them,” Stone said. “Yet we give 16-year-olds the chance to take a road test with no idea what’s going on in their brains.”

This brings us back to the fact that, in building tech modeled after the human brain—which has evolved over millions of years—we’re working towards an end whose means we don’t fully comprehend, be it something as basic as choosing when to brake or accelerate or something as complex as measuring consciousness.

“We shouldn’t charge ahead and do things just because we can,” Stone said. “The technology can be very powerful, which is exciting, but we have to consider its implications.”

Image Credit: agsandrew / Shutterstock.com Continue reading

Posted in Human Robots

#434759 To Be Ethical, AI Must Become ...

As over-hyped as artificial intelligence is—everyone’s talking about it, few fully understand it, it might leave us all unemployed but also solve all the world’s problems—its list of accomplishments is growing. AI can now write realistic-sounding text, give a debating champ a run for his money, diagnose illnesses, and generate fake human faces—among much more.

After training these systems on massive datasets, their creators essentially just let them do their thing to arrive at certain conclusions or outcomes. The problem is that more often than not, even the creators don’t know exactly why they’ve arrived at those conclusions or outcomes. There’s no easy way to trace a machine learning system’s rationale, so to speak. The further we let AI go down this opaque path, the more likely we are to end up somewhere we don’t want to be—and may not be able to come back from.

In a panel at the South by Southwest interactive festival last week titled “Ethics and AI: How to plan for the unpredictable,” experts in the field shared their thoughts on building more transparent, explainable, and accountable AI systems.

Not New, but Different
Ryan Welsh, founder and director of explainable AI startup Kyndi, pointed out that having knowledge-based systems perform advanced tasks isn’t new; he cited logistical, scheduling, and tax software as examples. What’s new is the learning component, our inability to trace how that learning occurs, and the ethical implications that could result.

“Now we have these systems that are learning from data, and we’re trying to understand why they’re arriving at certain outcomes,” Welsh said. “We’ve never actually had this broad society discussion about ethics in those scenarios.”

Rather than continuing to build AIs with opaque inner workings, engineers must start focusing on explainability, which Welsh broke down into three subcategories. Transparency and interpretability come first, and refer to being able to find the units of high influence in a machine learning network, as well as the weights of those units and how they map to specific data and outputs.

Then there’s provenance: knowing where something comes from. In an ideal scenario, for example, Open AI’s new text generator would be able to generate citations in its text that reference academic (and human-created) papers or studies.

Explainability itself is the highest and final bar and refers to a system’s ability to explain itself in natural language to the average user by being able to say, “I generated this output because x, y, z.”

“Humans are unique in our ability and our desire to ask why,” said Josh Marcuse, executive director of the Defense Innovation Board, which advises Department of Defense senior leaders on innovation. “The reason we want explanations from people is so we can understand their belief system and see if we agree with it and want to continue to work with them.”

Similarly, we need to have the ability to interrogate AIs.

Two Types of Thinking
Welsh explained that one big barrier standing in the way of explainability is the tension between the deep learning community and the symbolic AI community, which see themselves as two different paradigms and historically haven’t collaborated much.

Symbolic or classical AI focuses on concepts and rules, while deep learning is centered around perceptions. In human thought this is the difference between, for example, deciding to pass a soccer ball to a teammate who is open (you make the decision because conceptually you know that only open players can receive passes), and registering that the ball is at your feet when someone else passes it to you (you’re taking in information without making a decision about it).

“Symbolic AI has abstractions and representation based on logic that’s more humanly comprehensible,” Welsh said. To truly mimic human thinking, AI needs to be able to both perceive information and conceptualize it. An example of perception (deep learning) in an AI is recognizing numbers within an image, while conceptualization (symbolic learning) would give those numbers a hierarchical order and extract rules from the hierachy (4 is greater than 3, and 5 is greater than 4, therefore 5 is also greater than 3).

Explainability comes in when the system can say, “I saw a, b, and c, and based on that decided x, y, or z.” DeepMind and others have recently published papers emphasizing the need to fuse the two paradigms together.

Implications Across Industries
One of the most prominent fields where AI ethics will come into play, and where the transparency and accountability of AI systems will be crucial, is defense. Marcuse said, “We’re accountable beings, and we’re responsible for the choices we make. Bringing in tech or AI to a battlefield doesn’t strip away that meaning and accountability.”

In fact, he added, rather than worrying about how AI might degrade human values, people should be asking how the tech could be used to help us make better moral choices.

It’s also important not to conflate AI with autonomy—a worst-case scenario that springs to mind is an intelligent destructive machine on a rampage. But in fact, Marcuse said, in the defense space, “We have autonomous systems today that don’t rely on AI, and most of the AI systems we’re contemplating won’t be autonomous.”

The US Department of Defense released its 2018 artificial intelligence strategy last month. It includes developing a robust and transparent set of principles for defense AI, investing in research and development for AI that’s reliable and secure, continuing to fund research in explainability, advocating for a global set of military AI guidelines, and finding ways to use AI to reduce the risk of civilian casualties and other collateral damage.

Though these were designed with defense-specific aims in mind, Marcuse said, their implications extend across industries. “The defense community thinks of their problems as being unique, that no one deals with the stakes and complexity we deal with. That’s just wrong,” he said. Making high-stakes decisions with technology is widespread; safety-critical systems are key to aviation, medicine, and self-driving cars, to name a few.

Marcuse believes the Department of Defense can invest in AI safety in a way that has far-reaching benefits. “We all depend on technology to keep us alive and safe, and no one wants machines to harm us,” he said.

A Creation Superior to Its Creator
That said, we’ve come to expect technology to meet our needs in just the way we want, all the time—servers must never be down, GPS had better not take us on a longer route, Google must always produce the answer we’re looking for.

With AI, though, our expectations of perfection may be less reasonable.

“Right now we’re holding machines to superhuman standards,” Marcuse said. “We expect them to be perfect and infallible.” Take self-driving cars. They’re conceived of, built by, and programmed by people, and people as a whole generally aren’t great drivers—just look at traffic accident death rates to confirm that. But the few times self-driving cars have had fatal accidents, there’s been an ensuing uproar and backlash against the industry, as well as talk of implementing more restrictive regulations.

This can be extrapolated to ethics more generally. We as humans have the ability to explain our decisions, but many of us aren’t very good at doing so. As Marcuse put it, “People are emotional, they confabulate, they lie, they’re full of unconscious motivations. They don’t pass the explainability test.”

Why, then, should explainability be the standard for AI?

Even if humans aren’t good at explaining our choices, at least we can try, and we can answer questions that probe at our decision-making process. A deep learning system can’t do this yet, so working towards being able to identify which input data the systems are triggering on to make decisions—even if the decisions and the process aren’t perfect—is the direction we need to head.

Image Credit: a-image / Shutterstock.com Continue reading

Posted in Human Robots

#434755 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
DeepMind and Google: The Battle to Control Artificial Intelligence
Hal Hodson | 1843
“Hassabis thought DeepMind would be a hybrid: it would have the drive of a startup, the brains of the greatest universities, and the deep pockets of one of the world’s most valuable companies. Every element was in place to hasten the arrival of AGI and solve the causes of human misery.”

ROBOTICS
Robot Valets Are Now Parking Cars in One of France’s Busiest Airports
James Vincent | The Verge
“Stanley Robotics say its system uses space much more efficiently than humans, fitting 50 percent more cars into the same area. This is thanks in part to the robots’ precision driving, but also because the system keeps track of when customers will return. This means the robots can park cars three or four deep, but then dig out the right vehicle ready for its owner’s return.”

COMPUTING
Quantum Computing Should Supercharge This Machine-Learning Technique
Will Knight | MIT Technology Review
“Quantum computing and artificial intelligence are both hyped ridiculously. But it seems a combination of the two may indeed combine to open up new possibilities.”

BIOTECH
Scientists Reawaken Cells From a 28,000-Year-Old Mammoth
Becky Ferreira | Motherboard
“Yuka the woolly mammoth died a long time ago, but scientists gave her cells a short second life in mouse egg cells.”

ETHICS
CRISPR Experts Are Calling for a Global Moratorium on Heritable Gene Editing
Niall Firth | MIT Technology Review
“We still don’t know what the majority of our genes do, so the risks of unintended consequences or so-called off-target effects—good or bad—are huge. …Changes in a genome might have unforeseen outcomes in future generations as well. ‘Attempting to reshape the species on the basis of our current state of knowledge would be hubris,’ the letter reads.”

GENETICS
Unleash the Full Potential of the Human Genome Project
Paul Glimcher | The Hill
“So how do the risks embedded in our genes become the diseases, the so-called phenotypes, we seek to cure or prevent? …It is not just nature, but also nurture, which leads to disease. This is something that we have known for centuries, but which we seem to have conveniently forgotten in our rush to embrace the technology of genetics. In 1990 the only thing we could measure comprehensively was genetics, so we did it. But why did we stop there?”

Image Credit: Fernanda Marin / Unsplash Continue reading

Posted in Human Robots