Tag Archives: care
#431733 Why Humanoid Robots Are Still So Hard to ...
Picture a robot. In all likelihood, you just pictured a sleek metallic or chrome-white humanoid. Yet the vast majority of robots in the world around us are nothing like this; instead, they’re specialized for specific tasks. Our cultural conception of what robots are dates back to the coining of the term robots in the Czech play, Rossum’s Universal Robots, which originally envisioned them as essentially synthetic humans.
The vision of a humanoid robot is tantalizing. There are constant efforts to create something that looks like the robots of science fiction. Recently, an old competitor in this field returned with a new model: Toyota has released what they call the T-HR3. As humanoid robots go, it appears to be pretty dexterous and have a decent grip, with a number of degrees of freedom making the movements pleasantly human.
This humanoid robot operates mostly via a remote-controlled system that allows the user to control the robot’s limbs by exerting different amounts of pressure on a framework. A VR headset completes the picture, allowing the user to control the robot’s body and teleoperate the machine. There’s no word on a price tag, but one imagines a machine with a control system this complicated won’t exactly be on your Christmas list, unless you’re a billionaire.
Toyota is no stranger to robotics. They released a series of “Partner Robots” that had a bizarre affinity for instrument-playing but weren’t often seen doing much else. Given that they didn’t seem to have much capability beyond the automaton that Leonardo da Vinci made hundreds of years ago, they promptly vanished. If, as the name suggests, the T-HR3 is a sequel to these robots, which came out shortly after ASIMO back in 2003, it’s substantially better.
Slightly less humanoid (and perhaps the more useful for it), Toyota’s HSR-2 is a robot base on wheels with a simple mechanical arm. It brings to mind earlier machines produced by dream-factory startup Willow Garage like the PR-2. The idea of an affordable robot that could simply move around on wheels and pick up and fetch objects, and didn’t harbor too-lofty ambitions to do anything else, was quite successful.
So much so that when Robocup, the international robotics competition, looked for a platform for their robot-butler competition @Home, they chose HSR-2 for its ability to handle objects. HSR-2 has been deployed in trial runs to care for the elderly and injured, but has yet to be widely adopted for these purposes five years after its initial release. It’s telling that arguably the most successful multi-purpose humanoid robot isn’t really humanoid at all—and it’s curious that Toyota now seems to want to return to a more humanoid model a decade after they gave up on the project.
What’s unclear, as is often the case with humanoid robots, is what, precisely, the T-HR3 is actually for. The teleoperation gets around the complex problem of control by simply having the machine controlled remotely by a human. That human then handles all the sensory perception, decision-making, planning, and manipulation; essentially, the hardest problems in robotics.
There may not be a great deal of autonomy for the T-HR3, but by sacrificing autonomy, you drastically cut down the uses of the robot. Since it can’t act alone, you need a convincing scenario where you need a teleoperated humanoid robot that’s less precise and vastly more expensive than just getting a person to do the same job. Perhaps someday more autonomy will be developed for the robot, and the master maneuvering system that allows humans to control it will only be used in emergencies to control the robot if it gets stuck.
Toyota’s press release says it is “a platform with capabilities that can safely assist humans in a variety of settings, such as the home, medical facilities, construction sites, disaster-stricken areas and even outer space.” In reality, it’s difficult to see such a robot being affordable or even that useful in the home or in medical facilities (unless it’s substantially stronger than humans). Equally, it certainly doesn’t seem robust enough to be deployed in disaster zones or outer space. These tasks have been mooted for robots for a very long time and few have proved up to the challenge.
Toyota’s third generation humanoid robot, the T-HR3. Image Credit: Toyota
Instead, the robot seems designed to work alongside humans. Its design, standing 1.5 meters tall, weighing 75 kilograms, and possessing 32 degrees of freedom in its body, suggests it is built to closely mimic a person, rather than a robot like ATLAS which is robust enough that you can imagine it being useful in a war zone. In this case, it might be closer to the model of the collaborative robots or co-bots developed by Rethink Robotics, whose tons of safety features, including force-sensitive feedback for the user, reduce the risk of terrible PR surrounding killer robots.
Instead the emphasis is on graceful precision engineering: in the promo video, the robot can be seen balancing on one leg before showing off a few poised, yoga-like poses. This perhaps suggests that an application in elderly care, which Toyota has ventured into before and which was the stated aim of their simple HSR-2, might be more likely than deployment to a disaster zone.
The reason humanoid robots remain so elusive and so tempting is probably because of a simple cognitive mistake. We make two bad assumptions. First, we assume that if you build a humanoid robot, give its joints enough flexibility, throw in a little AI and perhaps some pre-programmed behaviors, then presto, it will be able to do everything humans can. When you see a robot that moves well and looks humanoid, it seems like the hardest part is done; surely this robot could do anything. The reality is never so simple.
We also make the reverse assumption: we assume that when we are finally replaced, it will be by perfect replicas of our own bodies and brains that can fulfill all the functions we used to fulfill. Perhaps, in reality, the future of robots and AI is more like its present: piecemeal, with specialized algorithms and specialized machines gradually learning to outperform humans at every conceivable task without ever looking convincingly human.
It may well be that the T-HR3 is angling towards this concept of machine learning as a platform for future research. Rather than trying to program an omni-capable robot out of the box, it will gradually learn from its human controllers. In this way, you could see the platform being used to explore the limits of what humans can teach robots to do simply by having them mimic sequences of our bodies’ motion, in the same way the exploitation of neural networks is testing the limits of training algorithms on data. No one machine will be able to perform everything a human can, but collectively, they will vastly outperform us at anything you’d want one to do.
So when you see a new android like Toyota’s, feel free to marvel at its technical abilities and indulge in the speculation about whether it’s a PR gimmick or a revolutionary step forward along the road to human replacement. Just remember that, human-level bots or not, we’re already strolling down that road.
Image Credit: Toyota Continue reading
#431671 The Doctor in the Machine: How AI Is ...
Artificial intelligence has received its fair share of hype recently. However, it’s hype that’s well-founded: IDC predicts worldwide spend on AI and cognitive computing will culminate to a whopping $46 billion (with a “b”) by 2020, and all the tech giants are jumping on board faster than you can say “ROI.” But what is AI, exactly?
According to Hilary Mason, AI today is being misused as a sort of catch-all term to basically describe “any system that uses data to do anything.” But it’s so much more than that. A truly artificially intelligent system is one that learns on its own, one that’s capable of crunching copious amounts of data in order to create associations and intelligently mimic actual human behavior.
It’s what powers the technology anticipating our next online purchase (Amazon), or the virtual assistant that deciphers our voice commands with incredible accuracy (Siri), or even the hipster-friendly recommendation engine that helps you discover new music before your friends do (Pandora). But AI is moving past these consumer-pleasing “nice-to-haves” and getting down to serious business: saving our butts.
Much in the same way robotics entered manufacturing, AI is making its mark in healthcare by automating mundane, repetitive tasks. This is especially true in the case of detecting cancer. By leveraging the power of deep learning, algorithms can now be trained to distinguish between sets of pixels in an image that represents cancer versus sets that don’t—not unlike how Facebook’s image recognition software tags pictures of our friends without us having to type in their names first. This software can then go ahead and scour millions of medical images (MRIs, CT scans, etc.) in a single day to detect anomalies on a scope that humans just aren’t capable of. That’s huge.
As if that wasn’t enough, these algorithms are constantly learning and evolving, getting better at making these associations with each new data set that gets fed to them. Radiology, dermatology, and pathology will experience a giant upheaval as tech giants and startups alike jump in to bring these deep learning algorithms to a hospital near you.
In fact, some already are: the FDA recently gave their seal of approval for an AI-powered medical imaging platform that helps doctors analyze and diagnose heart anomalies. This is the first time the FDA has approved a machine learning application for use in a clinical setting.
But how efficient is AI compared to humans, really? Well, aside from the obvious fact that software programs don’t get bored or distracted or have to check Facebook every twenty minutes, AI is exponentially better than us at analyzing data.
Take, for example, IBM’s Watson. Watson analyzed genomic data from both tumor cells and healthy cells and was ultimately able to glean actionable insights in a mere 10 minutes. Compare that to the 160 hours it would have taken a human to analyze that same data. Diagnoses aside, AI is also being leveraged in pharmaceuticals to aid in the very time-consuming grunt work of discovering new drugs, and all the big players are getting involved.
But AI is far from being just a behind-the-scenes player. Gartner recently predicted that by 2025, 50 percent of the population will rely on AI-powered “virtual personal health assistants” for their routine primary care needs. What this means is that consumer-facing voice and chat-operated “assistants” (think Siri or Cortana) would, in effect, serve as a central hub of interaction for all our connected health devices and the algorithms crunching all our real-time biometric data. These assistants would keep us apprised of our current state of well-being, acting as a sort of digital facilitator for our personal health objectives and an always-on health alert system that would notify us when we actually need to see a physician.
Slowly, and thanks to the tsunami of data and advancements in self-learning algorithms, healthcare is transitioning from a reactive model to more of a preventative model—and it’s completely upending the way care is delivered. Whether Elon Musk’s dystopian outlook on AI holds any weight or not is yet to be determined. But one thing’s certain: for the time being, artificial intelligence is saving our lives.
Image Credit: Jolygon / Shutterstock.com Continue reading
#431662 Toyota showcases humanoid robot that ...
Japanese auto giant Toyota Wednesday showcased a humanoid robot that can mirror its user's movements, a product it says has uses as varied as elderly care and disaster response. Continue reading
#431599 8 Ways AI Will Transform Our Cities by ...
How will AI shape the average North American city by 2030? A panel of experts assembled as part of a century-long study into the impact of AI thinks its effects will be profound.
The One Hundred Year Study on Artificial Intelligence is the brainchild of Eric Horvitz, technical fellow and a managing director at Microsoft Research.
Every five years a panel of experts will assess the current state of AI and its future directions. The first panel, comprised of experts in AI, law, political science, policy, and economics, was launched last fall and decided to frame their report around the impact AI will have on the average American city. Here’s how they think it will affect eight key domains of city life in the next fifteen years.
1. Transportation
The speed of the transition to AI-guided transport may catch the public by surprise. Self-driving vehicles will be widely adopted by 2020, and it won’t just be cars — driverless delivery trucks, autonomous delivery drones, and personal robots will also be commonplace.
Uber-style “cars as a service” are likely to replace car ownership, which may displace public transport or see it transition towards similar on-demand approaches. Commutes will become a time to relax or work productively, encouraging people to live further from home, which could combine with reduced need for parking to drastically change the face of modern cities.
Mountains of data from increasing numbers of sensors will allow administrators to model individuals’ movements, preferences, and goals, which could have major impact on the design city infrastructure.
Humans won’t be out of the loop, though. Algorithms that allow machines to learn from human input and coordinate with them will be crucial to ensuring autonomous transport operates smoothly. Getting this right will be key as this will be the public’s first experience with physically embodied AI systems and will strongly influence public perception.
2. Home and Service Robots
Robots that do things like deliver packages and clean offices will become much more common in the next 15 years. Mobile chipmakers are already squeezing the power of last century’s supercomputers into systems-on-a-chip, drastically boosting robots’ on-board computing capacity.
Cloud-connected robots will be able to share data to accelerate learning. Low-cost 3D sensors like Microsoft’s Kinect will speed the development of perceptual technology, while advances in speech comprehension will enhance robots’ interactions with humans. Robot arms in research labs today are likely to evolve into consumer devices around 2025.
But the cost and complexity of reliable hardware and the difficulty of implementing perceptual algorithms in the real world mean general-purpose robots are still some way off. Robots are likely to remain constrained to narrow commercial applications for the foreseeable future.
3. Healthcare
AI’s impact on healthcare in the next 15 years will depend more on regulation than technology. The most transformative possibilities of AI in healthcare require access to data, but the FDA has failed to find solutions to the difficult problem of balancing privacy and access to data. Implementation of electronic health records has also been poor.
If these hurdles can be cleared, AI could automate the legwork of diagnostics by mining patient records and the scientific literature. This kind of digital assistant could allow doctors to focus on the human dimensions of care while using their intuition and experience to guide the process.
At the population level, data from patient records, wearables, mobile apps, and personal genome sequencing will make personalized medicine a reality. While fully automated radiology is unlikely, access to huge datasets of medical imaging will enable training of machine learning algorithms that can “triage” or check scans, reducing the workload of doctors.
Intelligent walkers, wheelchairs, and exoskeletons will help keep the elderly active while smart home technology will be able to support and monitor them to keep them independent. Robots may begin to enter hospitals carrying out simple tasks like delivering goods to the right room or doing sutures once the needle is correctly placed, but these tasks will only be semi-automated and will require collaboration between humans and robots.
4. Education
The line between the classroom and individual learning will be blurred by 2030. Massive open online courses (MOOCs) will interact with intelligent tutors and other AI technologies to allow personalized education at scale. Computer-based learning won’t replace the classroom, but online tools will help students learn at their own pace using techniques that work for them.
AI-enabled education systems will learn individuals’ preferences, but by aggregating this data they’ll also accelerate education research and the development of new tools. Online teaching will increasingly widen educational access, making learning lifelong, enabling people to retrain, and increasing access to top-quality education in developing countries.
Sophisticated virtual reality will allow students to immerse themselves in historical and fictional worlds or explore environments and scientific objects difficult to engage with in the real world. Digital reading devices will become much smarter too, linking to supplementary information and translating between languages.
5. Low-Resource Communities
In contrast to the dystopian visions of sci-fi, by 2030 AI will help improve life for the poorest members of society. Predictive analytics will let government agencies better allocate limited resources by helping them forecast environmental hazards or building code violations. AI planning could help distribute excess food from restaurants to food banks and shelters before it spoils.
Investment in these areas is under-funded though, so how quickly these capabilities will appear is uncertain. There are fears valueless machine learning could inadvertently discriminate by correlating things with race or gender, or surrogate factors like zip codes. But AI programs are easier to hold accountable than humans, so they’re more likely to help weed out discrimination.
6. Public Safety and Security
By 2030 cities are likely to rely heavily on AI technologies to detect and predict crime. Automatic processing of CCTV and drone footage will make it possible to rapidly spot anomalous behavior. This will not only allow law enforcement to react quickly but also forecast when and where crimes will be committed. Fears that bias and error could lead to people being unduly targeted are justified, but well-thought-out systems could actually counteract human bias and highlight police malpractice.
Techniques like speech and gait analysis could help interrogators and security guards detect suspicious behavior. Contrary to concerns about overly pervasive law enforcement, AI is likely to make policing more targeted and therefore less overbearing.
7. Employment and Workplace
The effects of AI will be felt most profoundly in the workplace. By 2030 AI will be encroaching on skilled professionals like lawyers, financial advisers, and radiologists. As it becomes capable of taking on more roles, organizations will be able to scale rapidly with relatively small workforces.
AI is more likely to replace tasks rather than jobs in the near term, and it will also create new jobs and markets, even if it’s hard to imagine what those will be right now. While it may reduce incomes and job prospects, increasing automation will also lower the cost of goods and services, effectively making everyone richer.
These structural shifts in the economy will require political rather than purely economic responses to ensure these riches are shared. In the short run, this may include resources being pumped into education and re-training, but longer term may require a far more comprehensive social safety net or radical approaches like a guaranteed basic income.
8. Entertainment
Entertainment in 2030 will be interactive, personalized, and immeasurably more engaging than today. Breakthroughs in sensors and hardware will see virtual reality, haptics and companion robots increasingly enter the home. Users will be able to interact with entertainment systems conversationally, and they will show emotion, empathy, and the ability to adapt to environmental cues like the time of day.
Social networks already allow personalized entertainment channels, but the reams of data being collected on usage patterns and preferences will allow media providers to personalize entertainment to unprecedented levels. There are concerns this could endow media conglomerates with unprecedented control over people’s online experiences and the ideas to which they are exposed.
But advances in AI will also make creating your own entertainment far easier and more engaging, whether by helping to compose music or choreograph dances using an avatar. Democratizing the production of high-quality entertainment makes it nearly impossible to predict how highly fluid human tastes for entertainment will develop.
Image Credit: Asgord / Shutterstock.com Continue reading
#431427 Why the Best Healthcare Hacks Are the ...
Technology has the potential to solve some of our most intractable healthcare problems. In fact, it’s already doing so, with inventions getting us closer to a medical Tricorder, and progress toward 3D printed organs, and AIs that can do point-of-care diagnosis.
No doubt these applications of cutting-edge tech will continue to push the needle on progress in medicine, diagnosis, and treatment. But what if some of the healthcare hacks we need most aren’t high-tech at all?
According to Dr. Darshak Sanghavi, this is exactly the case. In a talk at Singularity University’s Exponential Medicine last week, Sanghavi told the audience, “We often think in extremely complex ways, but I think a lot of the improvements in health at scale can be done in an analog way.”
Sanghavi is the chief medical officer and senior vice president of translation at OptumLabs, and was previously director of preventive and population health at the Center for Medicare and Medicaid Innovation, where he oversaw the development of large pilot programs aimed at improving healthcare costs and quality.
“How can we improve health at scale, not for only a small number of people, but for entire populations?” Sanghavi asked. With programs that benefit a small group of people, he explained, what tends to happen is that the average health of a population improves, but the disparities across the group worsen.
“My mantra became, ‘The denominator is everybody,’” he said. He shared details of some low-tech but crucial fixes he believes could vastly benefit the US healthcare system.
1. Regulatory Hacking
Healthcare regulations are ultimately what drive many aspects of patient care, for better or worse. Worse because the mind-boggling complexity of regulations (exhibit A: the Affordable Care Act is reportedly about 20,000 pages long) can make it hard for people to get the care they need at a cost they can afford, but better because, as Sanghavi explained, tweaking these regulations in the right way can result in across-the-board improvements in a given population’s health.
An adjustment to Medicare hospitalization rules makes for a relevant example. The code was updated to state that if people who left the hospital were re-admitted within 30 days, that hospital had to pay a penalty. The result was hospitals taking more care to ensure patients were released not only in good health, but also with a solid understanding of what they had to do to take care of themselves going forward. “Here, arguably the writing of a few lines of regulatory code resulted in a remarkable decrease in 30-day re-admissions, and the savings of several billion dollars,” Sanghavi said.
2. Long-Term Focus
It’s easy to focus on healthcare hacks that have immediate, visible results—but what about fixes whose benefits take years to manifest? How can we motivate hospitals, regulators, and doctors to take action when they know they won’t see changes anytime soon?
“I call this the reality TV problem,” Sanghavi said. “Reality shows don’t really care about who’s the most talented recording artist—they care about getting the most viewers. That is exactly how we think about health care.”
Sanghavi’s team wanted to address this problem for heart attacks. They found they could reliably determine someone’s 10-year risk of having a heart attack based on a simple risk profile. Rather than monitoring patients’ cholesterol, blood pressure, weight, and other individual factors, the team took the average 10-year risk across entire provider panels, then made providers responsible for controlling those populations.
“Every percentage point you lower that risk, by hook or by crook, you get some people to stop smoking, you get some people on cholesterol medication. It’s patient-centered decision-making, and the provider then makes money. This is the world’s first predictive analytic model, at scale, that’s actually being paid for at scale,” he said.
3. Aligned Incentives
If hospitals are held accountable for the health of the communities they’re based in, those hospitals need to have the right incentives to follow through. “Hospitals have to spend money on community benefit, but linking that benefit to a meaningful population health metric can catalyze significant improvements,” Sanghavi said.
Darshak Sanghavi speaking at Singularity University’s 2017 Exponential Medicine Summit in San Diego, CA.
He used smoking cessation as an example. His team designed a program where hospitals were given a score (determined by the Centers for Disease Control and Prevention) based on the smoking rate in the counties where they’re located, then given monetary incentives to improve their score. Improving their score, in turn, resulted in better health for their communities, which meant fewer patients to treat for smoking-related health problems.
4. Social Determinants of Health
Social determinants of health include factors like housing, income, family, and food security. The answer to getting people to pay attention to these factors at scale, and creating aligned incentives, Sanghavi said, is “Very simple. We just have to measure it to start with, and measure it universally.”
His team was behind a $157 million pilot program called Accountable Health Communities that went live this year. The program requires all Medicare and Medicaid beneficiaries get screened for various social determinants of health. With all that data being collected, analysts can pinpoint local trends, then target funds to address the underlying problem, whether it’s job training, drug use, or nutritional education. “You’re then free to invest the dollars where they’re needed…this is how we can improve health at scale, with very simple changes in the incentive structures that are created,” he said.
5. ‘Securitizing’ Public Health
Sanghavi’s final point tied back to his discussion of aligning incentives. As misguided as it may seem, the reality is that financial incentives can make a huge difference in healthcare outcomes, from both a patient and a provider perspective.
Sanghavi’s team did an experiment in which they created outcome benchmarks for three major health problems that exist across geographically diverse areas: smoking, adolescent pregnancy, and binge drinking. The team proposed measuring the baseline of these issues then creating what they called a social impact bond. If communities were able to lower their frequency of these conditions by a given percent within a stated period of time, they’d get paid for it.
“What that did was essentially say, ‘you have a buyer for this outcome if you can achieve it,’” Sanghavi said. “And you can try to get there in any way you like.” The program is currently in CMS clearance.
AI and Robots Not Required
Using robots to perform surgery and artificial intelligence to diagnose disease will undoubtedly benefit doctors and patients around the US and the world. But Sanghavi’s talk made it clear that our healthcare system needs much more than this, and that improving population health on a large scale is really a low-tech project—one involving more regulatory and financial innovation than technological innovation.
“The things that get measured are the things that get changed,” he said. “If we choose the right outcomes to predict long-term benefit, and we pay for those outcomes, that’s the way to make progress.”
Image Credit: Wonderful Nature / Shutterstock.com Continue reading