Tag Archives: cameras
#437869 Video Friday: Japan’s Gundam Robot ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
ACRA 2020 – December 8-10, 2020 – [Online]
Let us know if you have suggestions for next week, and enjoy today’s videos.
Another BIG step for Japan’s Gundam project.
[ Gundam Factory ]
We present an interactive design system that allows users to create sculpting styles and fabricate clay models using a standard 6-axis robot arm. Given a general mesh as input, the user iteratively selects sub-areas of the mesh through decomposition and embeds the design expression into an initial set of toolpaths by modifying key parameters that affect the visual appearance of the sculpted surface finish. We demonstrate the versatility of our approach by designing and fabricating different sculpting styles over a wide range of clay models.
[ Disney Research ]
China’s Chang’e-5 completed the drilling, sampling and sealing of lunar soil at 04:53 BJT on Wednesday, marking the first automatic sampling on the Moon, the China National Space Administration (CNSA) announced Wednesday.
[ CCTV ]
Red Hat’s been putting together an excellent documentary on Willow Garage and ROS, and all five parts have just been released. We posted Part 1 a little while ago, so here’s Part 2 and Part 3.
Parts 4 and 5 are at the link below!
[ Red Hat ]
Congratulations to ANYbotics on a well-deserved raise!
ANYbotics has origins in the Robotic Systems Lab at ETH Zurich, and ANYmal’s heritage can be traced back at least as far as StarlETH, which we first met at ICRA 2013.
[ ANYbotics ]
Most conventional robots are working with 0.05-0.1mm accuracy. Such accuracy requires high-end components like low-backlash gears, high-resolution encoders, complicated CNC parts, powerful motor drives, etc. Those in combination end up an expensive solution, which is either unaffordable or unnecessary for many applications. As a result, we found the Apicoo Robotics to provide our customers solutions with a much lower cost and higher stability.
[ Apicoo Robotics ]
The Skydio 2 is an incredible drone that can take incredible footage fully autonomously, but it definitely helps if you do incredible things in incredible places.
[ Skydio ]
Jueying is the first domestic sensitive quadruped robot for industry applications and scenarios. It can coordinate (replace) humans to reach any place that can be reached. It has superior environmental adaptability, excellent dynamic balance capabilities and precise Environmental perception capabilities. By carrying functional modules for different application scenarios in the safe load area, the mobile superiority of the quadruped robot can be organically integrated with the commercialization of functional modules, providing smart factories, smart parks, scene display and public safety application solutions.
[ DeepRobotics ]
We have developed semi-autonomous quadruped robot, called LASER-D (Legged-Agile-Smart-Efficient Robot for Disinfection) for performing disinfection in cluttered environments. The robot is equipped with a spray-based disinfection system and leverages the body motion to controlling the spray action without the need for an extra stabilization mechanism. The system includes an image processing capability to verify disinfected regions with high accuracy. This system allows the robot to successfully carry out effective disinfection tasks while safely traversing through cluttered environments, climb stairs/slopes, and navigate on slippery surfaces.
[ USC Viterbi ]
We propose the “multi-vision hand”, in which a number of small high-speed cameras are mounted on the robot hand of a common 7 degrees-of-freedom robot. Also, we propose visual-servoing control by using a multi-vision system that combines the multi-vision hand and external fixed high-speed cameras. The target task was ball catching motion, which requires high-speed operation. In the proposed catching control, the catch position of the ball, which is estimated by the external fixed high-speed cameras, is corrected by the multi-vision hand in real-time.
More details available through IROS on-demand.
[ Namiki Laboratory ]
Shunichi Kurumaya wrote in to share his work on PneuFinger, a pneumatically actuated compliant robotic gripping system.
[ Nakamura Lab ]
Thanks Shunichi!
Motivated by insights into the human teaching process, we introduce a method for incorporating unstructured natural language into imitation learning. At training time, the expert can provide demonstrations along with verbal descriptions in order to describe the underlying intent, e.g., “Go to the large green bowl’’. The training process, then, interrelates the different modalities to encode the correlations between language, perception, and motion. The resulting language-conditioned visuomotor policies can be conditioned at run time on new human commands and instructions, which allows for more fine-grained control over the trained policies while also reducing situational ambiguity.
[ ASU ]
Thanks Heni!
Gita is on sale for the holidays for only $2,000.
[ Gita ]
This video introduces a computational approach for routing thin artificial muscle actuators through hyperelastic soft robots, in order to achieve a desired deformation behavior. Provided with a robot design, and a set of example deformations, we continuously co-optimize the routing of actuators, and their actuation, to approximate example deformations as closely as possible.
[ Disney Research ]
Researchers and mountain rescuers in Switzerland are making huge progress in the field of autonomous drones as the technology becomes more in-demand for global search-and-rescue operations.
[ SWI ]
This short clip of the Ghost Robotics V60 features an interesting, if awkward looking, righting behavior at the end.
[ Ghost Robotics ]
Europe’s Rosalind Franklin ExoMars rover has a younger ’sibling’, ExoMy. The blueprints and software for this mini-version of the full-size Mars explorer are available for free so that anyone can 3D print, assemble and program their own ExoMy.
[ ESA ]
The holiday season is here, and with the added impact of Covid-19 consumer demand is at an all-time high. Berkshire Grey is the partner that today’s leading organizations turn to when it comes to fulfillment automation.
[ Berkshire Grey ]
Until very recently, the vast majority of studies and reports on the use of cargo drones for public health were almost exclusively focused on the technology. The driving interest from was on the range that these drones could travel, how much they could carry and how they worked. Little to no attention was placed on the human side of these projects. Community perception, community engagement, consent and stakeholder feedback were rarely if ever addressed. This webinar presents the findings from a very recent study that finally sheds some light on the human side of drone delivery projects.
[ WeRobotics ] Continue reading
#437800 Malleable Structure Makes Robot Arm More ...
The majority of robot arms are built out of some combination of long straight tubes and actuated joints. This isn’t surprising, since our limbs are built the same way, which was a clever and efficient bit of design. By adding more tubes and joints (or degrees of freedom), you can increase the versatility of your robot arm, but the tradeoff is that complexity, weight, and cost will increase, too.
At ICRA, researchers from Imperial College London’s REDS Lab, headed by Nicolas Rojas, introduced a design for a robot that’s built around a malleable structure rather than a rigid one, allowing you to improve how versatile the arm is without having to add extra degrees of freedom. The idea is that you’re no longer constrained to static tubes and joints but can instead reconfigure your robot to set it up exactly the way you want and easily change it whenever you feel like.
Inside of that bendable section of arm are layers and layers of mylar sheets, cut into flaps and stacked on top of one another so that each flap is overlapping or overlapped by at least 11 other flaps. The mylar is slippery enough that under most circumstances, the flaps can move smoothly against each other, letting you adjust the shape of the arm. The flaps are sealed up between latex membranes, and when air is pumped out from between the membranes, they press down on each other and turn the whole structure rigid, locking itself in whatever shape you’ve put it in.
Image: Imperial College London
The malleable part of the robot consists of layers of mylar sheets, cut into flaps that can move smoothly against each other, letting you adjust the shape of the arm. The flaps are sealed up between latex membranes, and when air is pumped out from between the membranes, they press down on each other and turn the whole structure rigid, locking itself in whatever shape you’ve put it in.
The nice thing about this system is that it’s a sort of combination of a soft robot and a rigid robot—you get the flexibility (both physical and metaphorical) of a soft system, without necessarily having to deal with all of the control problems. It’s more mechanically complex than either (as hybrid systems tend to be), but you save on cost, size, and weight, and reduce the number of actuators you need, which tend to be points of failure. You do need to deal with creating and maintaining a vacuum, and the fact that the malleable arm is not totally rigid, but depending on your application, those tradeoffs could easily be worth it.
For more details, we spoke with first author Angus B. Clark via email.
IEEE Spectrum: Where did this idea come from?
Angus Clark: The idea of malleable robots came from the realization that the majority of serial robot arms have 6 or more degrees of freedom (DoF)—usually rotary joints—yet are typically performing tasks that only require 2 or 3 DoF. The idea of a robot arm that achieves flexibility and adaptation to tasks but maintains the simplicity of a low DoF system, along with the rapid development of variable stiffness continuum robots for medical applications, inspired us to develop the malleable robot concept.
What are some ways in which a malleable robot arm could provide unique advantages, and what are some potential applications that could leverage these advantages?
Malleable robots have the ability to complete multiple traditional tasks, such as pick and place or bin picking operations, without the added bulk of extra joints that are not directly used within each task, as the flexibility of the robot arm is provided by a malleable link instead. This results in an overall smaller form factor, including weight and footprint of the robot, as well as a lower power requirement and cost of the robot as fewer joints are needed, without sacrificing adaptability. This makes the robot ideal for scenarios where any of these factors are critical, such as in space robotics—where every kilogram saved is vital—or in rehabilitation robotics, where cost reduction may facilitate adoption, to name two examples. Moreover, the collaborative soft-robot-esque nature of malleable robots also tends towards collaborative robots in factories working safely alongside and with humans.
“The idea of malleable robots came from the realization that the majority of serial robot arms have 6 or more degrees of freedom (DoF), yet are typically performing tasks that only require 2 or 3 DoF”
—Angus B. Clark, Imperial College London
Compared to a conventional rigid link between joints, what are the disadvantages of using a malleable link?
Currently the maximum stiffness of a malleable link is considerably weaker than that of an equivalent solid steel rigid link, and this is one of the key areas we are focusing research on improving as motion precision and accuracy are impacted. We have created the largest existing variable stiffness link at roughly 800 mm length and 50 mm diameter, which suits malleable robots towards small and medium size workspaces. Our current results evaluating this accuracy are good, however achieving a uniform stiffness across the entire malleable link can be problematic due to the production of wrinkles under bending in the encapsulating membrane. As demonstrated by our SCARA topology results, this can produce slight structural variations resulting in reduced accuracy.
Does the robot have any way of knowing its own shape? Potentially, could this system reconfigure itself somehow?
Currently we compute the robot topology using motion tracking, with markers placed on the joints of the robot. Using distance geometry, we are then able to obtain the forward and inverse kinematics of the robot, of which we can use to control the end effector (the gripper) of the robot. Ideally, in the future we would love to develop a system that no longer requires the use of motion tracking cameras.
As for the robot reconfiguring itself, which we call an “intrinsic malleable link,” there are many methods that have been demonstrated for controlling a continuum structure, such as using positive pressure or via tendon wires, however the ability to in real-time determine the curvature of the link, not just the joint positions, is a significant hurdle to solve. However, we hope to see future development on malleable robots work towards solving this problem.
What are you working on next?
For us, refining the kinematics of the robot to enable a robust and complete system for allowing a user to collaboratively reshape the robot, while still achieving the accuracy expected from robotic systems, is our current main goal. Malleable robots are a brand new field we have introduced, and as such provide many opportunities for development and optimization. Over the coming years, we hope to see other researchers work alongside us to solve these problems.
“Design and Workspace Characterization of Malleable Robots,” by Angus B. Clark and Nicolas Rojas from Imperial College London, was presented at ICRA 2020.
< Back to IEEE Journal Watch Continue reading