Tag Archives: cameras
#438553 New Drone Software Handles Motor ...
Good as some drones are becoming at obstacle avoidance, accidents do still happen. And as far as robots go, drones are very much on the fragile side of things. Any sort of significant contact between a drone and almost anything else usually results in a catastrophic, out-of-control spin followed by a death plunge to the ground. Bad times. Bad, expensive times.
A few years ago, we saw some interesting research into software that can keep the most common drone form factor, the quadrotor, aloft and controllable even after the failure of one motor. The big caveat to that software was that it relied on GPS for state estimation, meaning that without a GPS signal, the drone is unable to get the information it needs to keep itself under control. In a paper recently accepted to RA-L, researchers at the University of Zurich report that they have developed a vision-based system that brings state estimation completely on-board. The upshot: potentially any drone with some software and a camera can keep itself safe even under the most challenging conditions.
A few years ago, we wrote about first author Sihao Sun’s work on high speed controlled flight of a quadrotor with a non-functional motor. But that innovation relied on an external motion capture system. Since then, Sun has moved from Tu Delft to Davide Scaramuzza’s lab at UZH, and it looks like he’s been able to combine his work on controlled spinning flight with the Robotics and Perception Group’s expertise in vision. Now, a downward-facing camera is all it takes for a spinning drone to remain stable and controllable:
Remember, this software isn’t just about guarding against motor failure. Drone motors themselves don’t just up and fail all that often, either with respect to their software or hardware. But they do represent the most likely point of failure for any drone, usually because when you run into something, what ultimately causes your drone to crash is damage to a motor or a propeller that causes loss of control.
The reason that earlier solutions relied on GPS was because the spinning drone needs a method of state estimation—that is, in order to be closed-loop controllable, the drone needs to have a reasonable understanding of what its position is and how that position is changing over time. GPS is an easy way to take care of this, but GPS is also an external system that doesn’t work everywhere. Having a state estimation system that’s completely internal to the drone itself is much more fail safe, and Sun got his onboard system to work through visual feature tracking with a downward-facing camera, even as the drone is spinning at over 20 rad/s.
While the system works well enough with a regular downward-facing camera—something that many consumer drones are equipped with for stabilization purposes—replacing it with an event camera (you remember event cameras, right?) makes the performance even better, especially in low light.
For more details on this, including what you’re supposed to do with a rapidly spinning partially disabled quadrotor (as well as what it’ll take to make this a standard feature on consumer hardware), we spoke with Sihao Sun via email.
IEEE Spectrum: what usually happens when a drone spinning this fast lands? Is there any way to do it safely?
Sihao Sun: Our experience shows that we can safely land the drone while it is spinning. When the range sensor measurements are lower than a threshold (around 10 cm, indicating that the drone is close to the ground), we switch off the rotors. During the landing procedure, despite the fast spinning motion, the thrust direction oscillates around the gravity vector, thus the drone touches the ground with its legs without damaging other components.
Can your system handle more than one motor failure?
Yes, the system can also handle the failure of two opposing rotors. However, if two adjacent rotors or more than two rotors fail, our method cannot save the quadrotor. Some research has shown that it is possible to control a quadrotor with only one remaining rotor. But the drone requires a very special inertial property, which is hard to satisfy in real applications.
How different is your system's performance from a similar system that relies on GPS, in a favorable environment?
In a favorable environment, our system outperforms those relying on GPS signals because it obtains better position estimates. Since a damaged quadrotor spins fast, the accelerometer readings are largely affected by centrifugal forces. When the GPS signal is lost or degraded, a drone relying on GPS needs to integrate these biased accelerometer measurements for position estimation, leading to large position estimation errors. Feeding these erroneous estimates to the flight controller can easily crash the drone.
When you say that your solution requires “only onboard sensors and computation,” are those requirements specialized, or would they be generally compatible with the current generation of recreational and commercial quadrotors?
We use an NVIDIA Jetson TX2 to run our solution, which includes two parts: the control algorithm and the vision-based state estimation algorithm. The control algorithm is lightweight; thus, we believe that it is compatible with the current generation of quadrotors. On the other hand, the vision-based state estimation requires relatively more computational resources, which may not be affordable for cheap recreational platforms. But this is not an issue for commercial quadrotors because many of them have more powerful processors than a TX2.
What else can event cameras be used for, in recreational or commercial applications?
Many drone applications can benefit from event cameras, especially those in high-speed or low-light conditions, such as autonomous drone racing, cave exploration, drone delivery during night time, etc. Event cameras also consume very little power, which is a significant advantage for energy-critical missions, such as planetary aerial vehicles for Mars explorations. Regarding space applications, we are currently collaborating with JPL to explore the use of event cameras to address the key limitations of standard cameras for the next Mars helicopter.
[ UZH RPG ] Continue reading
#438014 Meet Blueswarm, a Smart School of ...
Anyone who’s seen an undersea nature documentary has marveled at the complex choreography that schooling fish display, a darting, synchronized ballet with a cast of thousands.
Those instinctive movements have inspired researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), and the Wyss Institute for Biologically Inspired Engineering. The results could improve the performance and dependability of not just underwater robots, but other vehicles that require decentralized locomotion and organization, such as self-driving cars and robotic space exploration.
The fish collective called Blueswarm was created by a team led by Radhika Nagpal, whose lab is a pioneer in self-organizing systems. The oddly adorable robots can sync their movements like biological fish, taking cues from their plastic-bodied neighbors with no external controls required. Nagpal told IEEE Spectrum that this marks a milestone, demonstrating complex 3D behaviors with implicit coordination in underwater robots.
“Insights from this research will help us develop future miniature underwater swarms that can perform environmental monitoring and search in visually-rich but fragile environments like coral reefs,” Nagpal said. “This research also paves a way to better understand fish schools, by synthetically recreating their behavior.”
The research is published in Science Robotics, with Florian Berlinger as first author. Berlinger said the “Bluedot” robots integrate a trio of blue LED lights, a lithium-polymer battery, a pair of cameras, a Raspberry Pi computer and four controllable fins within a 3D-printed hull. The fish-lens cameras detect LED’s of their fellow swimmers, and apply a custom algorithm to calculate distance, direction and heading.
Based on that simple production and detection of LED light, the team proved that Blueswarm could self-organize behaviors, including aggregation, dispersal and circle formation—basically, swimming in a clockwise synchronization. Researchers also simulated a successful search mission, an autonomous Finding Nemo. Using their dispersion algorithm, the robot school spread out until one could detect a red light in the tank. Its blue LEDs then flashed, triggering the aggregation algorithm to gather the school around it. Such a robot swarm might prove valuable in search-and-rescue missions at sea, covering miles of open water and reporting back to its mates.
“Each Bluebot implicitly reacts to its neighbors’ positions,” Berlinger said. The fish—RoboCod, perhaps?—also integrate a Wifi module to allow uploading new behaviors remotely. The lab’s previous efforts include a 1,000-strong army of “Kilobots,” and a robotic construction crew inspired by termites. Both projects operated in two-dimensional space. But a 3D environment like air or water posed a tougher challenge for sensing and movement.
In nature, Berlinger notes, there’s no scaly CEO to direct the school’s movements. Nor do fish communicate their intentions. Instead, so-called “implicit coordination” guides the school’s collective behavior, with individual members executing high-speed moves based on what they see their neighbors doing. That decentralized, autonomous organization has long fascinated scientists, including in robotics.
“In these situations, it really benefits you to have a highly autonomous robot swarm that is self-sufficient. By using implicit rules and 3D visual perception, we were able to create a system with a high degree of autonomy and flexibility underwater where things like GPS and WiFi are not accessible.”
Berlinger adds the research could one day translate to anything that requires decentralized robots, from self-driving cars and Amazon warehouse vehicles to exploration of faraway planets, where poor latency makes it impossible to transmit commands quickly. Today’s semi-autonomous cars face their own technical hurdles in reliably sensing and responding to their complex environments, including when foul weather obscures onboard sensors or road markers, or when they can’t fix position via GPS. An entire subset of autonomous-car research involves vehicle-to-vehicle (V2V) communications that could give cars a hive mind to guide individual or collective decisions— avoiding snarled traffic, driving safely in tight convoys, or taking group evasive action during a crash that’s beyond their sensory range.
“Once we have millions of cars on the road, there can’t be one computer orchestrating all the traffic, making decisions that work for all the cars,” Berlinger said.
The miniature robots could also work long hours in places that are inaccessible to humans and divers, or even large tethered robots. Nagpal said the synthetic swimmers could monitor and collect data on reefs or underwater infrastructure 24/7, and work into tiny places without disturbing fragile equipment or ecosystems.
“If we could be as good as fish in that environment, we could collect information and be non-invasive, in cluttered environments where everything is an obstacle,” Nagpal said. Continue reading
#437924 How a Software Map of the Entire Planet ...
i
“3D map data is the scaffolding of the 21st century.”
–Edward Miller, Founder, Scape Technologies, UK
Covered in cameras, sensors, and a distinctly spaceship looking laser system, Google’s autonomous vehicles were easy to spot when they first hit public roads in 2015. The key hardware ingredient is a spinning laser fixed to the roof, called lidar, which provides the car with a pair of eyes to see the world. Lidar works by sending out beams of light and measuring the time it takes to bounce off objects back to the source. By timing the light’s journey, these depth-sensing systems construct fully 3D maps of their surroundings.
3D maps like these are essentially software copies of the real world. They will be crucial to the development of a wide range of emerging technologies including autonomous driving, drone delivery, robotics, and a fast-approaching future filled with augmented reality.
Like other rapidly improving technologies, lidar is moving quickly through its development cycle. What was an expensive technology on the roof of a well-funded research project is now becoming cheaper, more capable, and readily available to consumers. At some point, lidar will come standard on most mobile devices and is now available to early-adopting owners of the iPhone 12 Pro.
Consumer lidar represents the inevitable shift from wealthy tech companies generating our world’s map data, to a more scalable crowd-sourced approach. To develop the repository for their Street View Maps product, Google reportedly spent $1-2 billion sending cars across continents photographing every street. Compare that to a live-mapping service like Waze, which uses crowd-sourced user data from its millions of users to generate accurate and real-time traffic conditions. Though these maps serve different functions, one is a static, expensive, unchanging map of the world while the other is dynamic, real-time, and constructed by users themselves.
Soon millions of people may be scanning everything from bedrooms to neighborhoods, resulting in 3D maps of significant quality. An online search for lidar room scans demonstrates just how richly textured these three-dimensional maps are compared to anything we’ve had before. With lidar and other depth-sensing systems, we now have the tools to create exact software copies of everywhere and everything on earth.
At some point, likely aided by crowdsourcing initiatives, these maps will become living breathing, real-time representations of the world. Some refer to this idea as a “digital twin” of the planet. In a feature cover story, Kevin Kelly, the cofounder of Wired magazine, calls this concept the “mirrorworld,” a one-to-one software map of everything.
So why is that such a big deal? Take augmented reality as an example.
Of all the emerging industries dependent on such a map, none are more invested in seeing this concept emerge than those within the AR landscape. Apple, for example, is not-so-secretly developing a pair of AR glasses, which they hope will deliver a mainstream turning point for the technology.
For Apple’s AR devices to work as anticipated, they will require virtual maps of the world, a concept AR insiders call the “AR cloud,” which is synonymous with the “mirrorworld” concept. These maps will be two things. First, they will be a tool that creators use to place AR content in very specific locations; like a world canvas to paint on. Second, they will help AR devices both locate and understand the world around them so they can render content in a believable way.
Imagine walking down a street wanting to check the trading hours of a local business. Instead of pulling out your phone to do a tedious search online, you conduct the equivalent of a visual google search simply by gazing at the store. Albeit a trivial example, the AR cloud represents an entirely non-trivial new way of managing how we organize the world’s information. Access to knowledge can be shifted away from the faraway monitors in our pocket, to its relevant real-world location.
Ultimately this describes a blurring of physical and digital infrastructure. Our public and private spaces will thus be comprised equally of both.
No example demonstrates this idea better than Pokémon Go. The game is straightforward enough; users capture virtual characters scattered around the real world. Today, the game relies on traditional GPS technology to place its characters, but GPS is accurate only to within a few meters of a location. For a car navigating on a highway or locating Pikachus in the world, that level of precision is sufficient. For drone deliveries, driverless cars, or placing a Pikachu in a specific location, say on a tree branch in a park, GPS isn’t accurate enough. As astonishing as it may seem, many experimental AR cloud concepts, even entirely mapped cities, are location specific down to the centimeter.
Niantic, the $4 billion publisher behind Pokémon Go, is aggressively working on developing a crowd-sourced approach to building better AR Cloud maps by encouraging their users to scan the world for them. Their recent acquisition of 6D.ai, a mapping software company developed by the University of Oxford’s Victor Prisacariu through his work at Oxford’s Active Vision Lab, indicates Niantic’s ambition to compete with the tech giants in this space.
With 6D.ai’s technology, Niantic is developing the in-house ability to generate their own 3D maps while gaining better semantic understanding of the world. By going beyond just knowing there’s a temporary collection of orange cones in a certain location, for example, the game may one day understand the meaning behind this; that a temporary construction zone means no Pokémon should spawn here to avoid drawing players to this location.
Niantic is not the only company working on this. Many of the big tech firms you would expect have entire teams focused on map data. Facebook, for example, recently acquired the UK-based Scape technologies, a computer vision startup mapping entire cities with centimeter precision.
As our digital maps of the world improve, expect a relentless and justified discussion of privacy concerns as well. How will society react to the idea of a real-time 3D map of their bedroom living on a Facebook or Amazon server? Those horrified by the use of facial recognition AI being used in public spaces are unlikely to find comfort in the idea of a machine-readable world subject to infinite monitoring.
The ability to build high-precision maps of the world could reshape the way we engage with our planet and promises to be one of the biggest technology developments of the next decade. While these maps may stay hidden as behind-the-scenes infrastructure powering much flashier technologies that capture the world’s attention, they will soon prop up large portions of our technological future.
Keep that in mind when a car with no driver is sharing your road.
Image credit: sergio souza / Pexels Continue reading