Tag Archives: business

#432893 These 4 Tech Trends Are Driving Us ...

From a first-principles perspective, the task of feeding eight billion people boils down to converting energy from the sun into chemical energy in our bodies.

Traditionally, solar energy is converted by photosynthesis into carbohydrates in plants (i.e., biomass), which are either eaten by the vegans amongst us, or fed to animals, for those with a carnivorous preference.

Today, the process of feeding humanity is extremely inefficient.

If we could radically reinvent what we eat, and how we create that food, what might you imagine that “future of food” would look like?

In this post we’ll cover:

Vertical farms
CRISPR engineered foods
The alt-protein revolution
Farmer 3.0

Let’s dive in.

Vertical Farming
Where we grow our food…

The average American meal travels over 1,500 miles from farm to table. Wine from France, beef from Texas, potatoes from Idaho.

Imagine instead growing all of your food in a 50-story tall vertical farm in downtown LA or off-shore on the Great Lakes where the travel distance is no longer 1,500 miles but 50 miles.

Delocalized farming will minimize travel costs at the same time that it maximizes freshness.

Perhaps more importantly, vertical farming also allows tomorrow’s farmer the ability to control the exact conditions of her plants year round.

Rather than allowing the vagaries of the weather and soil conditions to dictate crop quality and yield, we can now perfectly control the growing cycle.

LED lighting provides the crops with the maximum amount of light, at the perfect frequency, 24 hours a day, 7 days a week.

At the same time, sensors and robots provide the root system the exact pH and micronutrients required, while fine-tuning the temperature of the farm.

Such precision farming can generate yields that are 200% to 400% above normal.

Next let’s explore how we can precision-engineer the genetic properties of the plant itself.

CRISPR and Genetically Engineered Foods
What food do we grow?

A fundamental shift is occurring in our relationship with agriculture. We are going from evolution by natural selection (Darwinism) to evolution by human direction.

CRISPR (the cutting edge gene editing tool) is providing a pathway for plant breeding that is more predictable, faster and less expensive than traditional breeding methods.

Rather than our crops being subject to nature’s random, environmental whim, CRISPR unlocks our capability to modify our crops to match the available environment.

Further, using CRISPR we will be able to optimize the nutrient density of our crops, enhancing their value and volume.

CRISPR may also hold the key to eliminating common allergens from crops. As we identify the allergen gene in peanuts, for instance, we can use CRISPR to silence that gene, making the crops we raise safer for and more accessible to a rapidly growing population.

Yet another application is our ability to make plants resistant to infection or more resistant to drought or cold.

Helping to accelerate the impact of CRISPR, the USDA recently announced that genetically engineered crops will not be regulated—providing an opening for entrepreneurs to capitalize on the opportunities for optimization CRISPR enables.

CRISPR applications in agriculture are an opportunity to help a billion people and become a billionaire in the process.

Protecting crops against volatile environments, combating crop diseases and increasing nutrient values, CRISPR is a promising tool to help feed the world’s rising population.

The Alt-Protein/Lab-Grown Meat Revolution
Something like a third of the Earth’s arable land is used for raising livestock—a massive amount of land—and global demand for meat is predicted to double in the coming decade.

Today, we must grow an entire cow—all bones, skin, and internals included—to produce a steak.

Imagine if we could instead start with a single muscle stem cell and only grow the steak, without needing the rest of the cow? Think of it as cellular agriculture.

Imagine returning millions, perhaps billions, of acres of grazing land back to the wilderness? This is the promise of lab-grown meats.

Lab-grown meat can also be engineered (using technology like CRISPR) to be packed with nutrients and be the healthiest, most delicious protein possible.

We’re watching this technology develop in real time. Several startups across the globe are already working to bring artificial meats to the food industry.

JUST, Inc. (previously Hampton Creek) run by my friend Josh Tetrick, has been on a mission to build a food system where everyone can get and afford delicious, nutritious food. They started by exploring 300,000+ species of plants all around the world to see how they can make food better and now are investing heavily in stem-cell-grown meats.

Backed by Richard Branson and Bill Gates, Memphis Meats is working on ways to produce real meat from animal cells, rather than whole animals. So far, they have produced beef, chicken, and duck using cultured cells from living animals.

As with vertical farming, transitioning production of our majority protein source to a carefully cultivated environment allows for agriculture to optimize inputs (water, soil, energy, land footprint), nutrients and, importantly, taste.

Farmer 3.0
Vertical farming and cellular agriculture are reinventing how we think about our food supply chain and what food we produce.

The next question to answer is who will be producing the food?

Let’s look back at how farming evolved through history.

Farmers 0.0 (Neolithic Revolution, around 9000 BCE): The hunter-gatherer to agriculture transition gains momentum, and humans cultivated the ability to domesticate plants for food production.

Farmers 1.0 (until around the 19th century): Farmers spent all day in the field performing backbreaking labor, and agriculture accounted for most jobs.

Farmers 2.0 (mid-20th century, Green Revolution): From the invention of the first farm tractor in 1812 through today, transformative mechanical biochemical technologies (fertilizer) boosted yields and made the job of farming easier, driving the US farm job rate down to less than two percent today.

Farmers 3.0: In the near future, farmers will leverage exponential technologies (e.g., AI, networks, sensors, robotics, drones), CRISPR and genetic engineering, and new business models to solve the world’s greatest food challenges and efficiently feed the eight-billion-plus people on Earth.

An important driver of the Farmer 3.0 evolution is the delocalization of agriculture driven by vertical and urban farms. Vertical farms and urban agriculture are empowering a new breed of agriculture entrepreneurs.

Let’s take a look at an innovative incubator in Brooklyn, New York called Square Roots.

Ten farm-in-a-shipping-containers in a Brooklyn parking lot represent the first Square Roots campus. Each 8-foot x 8.5-foot x 20-foot shipping container contains an equivalent of 2 acres of produce and can yield more than 50 pounds of produce each week.

For 13 months, one cohort of next-generation food entrepreneurs takes part in a curriculum with foundations in farming, business, community and leadership.

The urban farming incubator raised a $5.4 million seed funding round in August 2017.

Training a new breed of entrepreneurs to apply exponential technology to growing food is essential to the future of farming.

One of our massive transformative purposes at the Abundance Group is to empower entrepreneurs to generate extraordinary wealth while creating a world of abundance. Vertical farms and cellular agriculture are key elements enabling the next generation of food and agriculture entrepreneurs.

Conclusion
Technology is driving food abundance.

We’re already seeing food become demonetized, as the graph below shows.

From 1960 to 2014, the percent of income spent on food in the U.S. fell from 19 percent to under 10 percent of total disposable income—a dramatic decrease over the 40 percent of household income spent on food in 1900.

The dropping percent of per-capita disposable income spent on food. Source: USDA, Economic Research Service, Food Expenditure Series
Ultimately, technology has enabled a massive variety of food at a significantly reduced cost and with fewer resources used for production.

We’re increasingly going to optimize and fortify the food supply chain to achieve more reliable, predictable, and nutritious ways to obtain basic sustenance.

And that means a world with abundant, nutritious, and inexpensive food for every man, woman, and child.

What an extraordinary time to be alive.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital.

Abundance-Digital is my ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Nejron Photo / Shutterstock.com Continue reading

Posted in Human Robots

#432482 This Week’s Awesome Stories From ...

CYBERNETICS
A Brain-Boosting Prosthesis Moves From Rats to Humans
Robbie Gonzalez | WIRED
“Today, their proof-of-concept prosthetic lives outside a patient’s head and connects to the brain via wires. But in the future, Hampson hopes, surgeons could implant a similar apparatus entirely within a person’s skull, like a neural pacemaker. It could augment all manner of brain functions—not just in victims of dementia and brain injury, but healthy individuals, as well.”

ARTIFICIAL INTELLIGENCE
Here’s How the US Needs to Prepare for the Age of Artificial Intelligence
Will Knight | MIT Technology Review
“The Trump administration has abandoned this vision and has no intention of devising its own AI plan, say those working there. They say there is no need for an AI moonshot, and that minimizing government interference is the best way to make sure the technology flourishes… That looks like a huge mistake. If it essentially ignores such a technological transformation, the US might never make the most of an opportunity to reboot its economy and kick-start both wage growth and job creation. Failure to plan could also cause the birthplace of AI to lose ground to international rivals.”

BIOMIMICRY
Underwater GPS Inspired by Shrimp Eyes
Jeremy Hsu | IEEE Spectrum
“A few years ago, U.S. and Australian researchers developed a special camera inspired by the eyes of mantis shrimp that can see the polarization patterns of light waves, which resemble those in a rope being waved up and down. That means the bio-inspired camera can detect how light polarization patterns change once the light enters the water and gets deflected or scattered.”

POLITICS & TECHNOLOGY
‘The Business of War’: Google Employees Protest Work for the Pentagon
Scott Shane and Daisuke Wakabayashi | The New York Times
“Thousands of Google employees, including dozens of senior engineers, have signed a letter protesting the company’s involvement in a Pentagon program that uses artificial intelligence to interpret video imagery and could be used to improve the targeting of drone strikes.

The letter, which is circulating inside Google and has garnered more than 3,100 signatures, reflects a culture clash between Silicon Valley and the federal government that is likely to intensify as cutting-edge artificial intelligence is increasingly employed for military purposes. ‘We believe that Google should not be in the business of war,’ says the letter, addressed to Sundar Pichai, the company’s chief executive. It asks that Google pull out of Project Maven, a Pentagon pilot program, and announce a policy that it will not ‘ever build warfare technology.’ (Read the text of the letter.)”

CYBERNETICS
MIT’s New Headset Reads the ‘Words in Your Head’
Brian Heater | TechCrunch
“A team at MIT has been working on just such a device, though the hardware design, admittedly, doesn’t go too far toward removing that whole self-consciousness bit from the equation. AlterEgo is a headmounted—or, more properly, jaw-mounted—device that’s capable of reading neuromuscular signals through built-in electrodes. The hardware, as MIT puts it, is capable of reading ‘words in your head.’”



Image Credit: christitzeimaging.com / Shutterstock.com Continue reading

Posted in Human Robots

#432431 Why Slowing Down Can Actually Help Us ...

Leah Weiss believes that when we pay attention to how we do our work—our thoughts and feelings about what we do and why we do it—we can tap into a much deeper reservoir of courage, creativity, meaning, and resilience.

As a researcher, educator, and author, Weiss teaches a course called “Leading with Compassion and Mindfulness” at the Stanford Graduate School of Business, one of the most competitive MBA programs in the world, and runs programs at HopeLab.

Weiss is the author of the new book How We Work: Live Your Purpose, Reclaim your Sanity and Embrace the Daily Grind, endorsed by the Dalai Lama, among others. I caught up with Leah to learn more about how the practice of mindfulness can deepen our individual and collective purpose and passion.

Lisa Kay Solomon: We’re hearing a lot about mindfulness these days. What is mindfulness and why is it so important to bring into our work? Can you share some of the basic tenets of the practice?

Leah Weiss, PhD: Mindfulness is, in its most literal sense, “the attention to inattention.” It’s as simple as noticing when you’re not paying attention and then re-focusing. It is prioritizing what is happening right now over internal and external noise.

The ability to work well with difficult coworkers, handle constructive feedback and criticism, regulate emotions at work—all of these things can come from regular mindfulness practice.

Some additional benefits of mindfulness are a greater sense of compassion (both self-compassion and compassion for others) and a way to seek and find purpose in even mundane things (and especially at work). From the business standpoint, mindfulness at work leads to increased productivity and creativity, mostly because when we are focused on one task at a time (as opposed to multitasking), we produce better results.

We spend more time with our co-workers than we do with our families; if our work relationships are negative, we suffer both mentally and physically. Even worse, we take all of those negative feelings home with us at the end of the work day. The antidote to this prescription for unhappiness is to have clear, strong purpose (one third of people do not have purpose at work and this is a major problem in the modern workplace!). We can use mental training to grow as people and as employees.

LKS: What are some recommendations you would make to busy leaders who are working around the clock to change the world?

LW: I think the most important thing is to remember to tend to our relationship with ourselves while trying to change the world. If we’re beating up on ourselves all the time we’ll be depleted.

People passionate about improving the world can get into habits of believing self-care isn’t important. We demand a lot of ourselves. It’s okay to fail, to mess up, to make mistakes—what’s important is how we learn from those mistakes and what we tell ourselves about those instances. What is the “internal script” playing in your own head? Is it positive, supporting, and understanding? It should be. If it isn’t, you can work on it. And the changes you make won’t just improve your quality of life, they’ll make you more resilient to weather life’s inevitable setbacks.

A close second recommendation is to always consider where everyone in an organization fits and help everyone (including yourself) find purpose. When you know what your own purpose is and show others their purpose, you can motivate a team and help everyone on a team gain pride in and at work. To get at this, make sure to ask people on your team what really lights them up. What sucks their energy and depletes them? If we know our own answers to these questions and relate them to the people we work with, we can create more engaged organizations.

LKS: Can you envision a future where technology and mindfulness can work together?

LW: Technology and mindfulness are already starting to work together. Some artificial intelligence companies are considering things like mindfulness and compassion when building robots, and there are numerous apps that target spreading mindfulness meditations in a widely-accessible way.

LKS: Looking ahead at our future generations who seem more attached to their devices than ever, what advice do you have for them?

LW: It’s unrealistic to say “stop using your device so much,” so instead, my suggestion is to make time for doing things like scrolling social media and make the same amount of time for putting your phone down and watching a movie or talking to a friend. No matter what it is that you are doing, make sure you have meta-awareness or clarity about what you’re paying attention to. Be clear about where your attention is and recognize that you can be a steward of attention. Technology can support us in this or pull us away from this; it depends on how we use it.

Image Credit: frankie’s / Shutterstock.com Continue reading

Posted in Human Robots

#432311 Everyone Is Talking About AI—But Do ...

In 2017, artificial intelligence attracted $12 billion of VC investment. We are only beginning to discover the usefulness of AI applications. Amazon recently unveiled a brick-and-mortar grocery store that has successfully supplanted cashiers and checkout lines with computer vision, sensors, and deep learning. Between the investment, the press coverage, and the dramatic innovation, “AI” has become a hot buzzword. But does it even exist yet?

At the World Economic Forum Dr. Kai-Fu Lee, a Taiwanese venture capitalist and the founding president of Google China, remarked, “I think it’s tempting for every entrepreneur to package his or her company as an AI company, and it’s tempting for every VC to want to say ‘I’m an AI investor.’” He then observed that some of these AI bubbles could burst by the end of 2018, referring specifically to “the startups that made up a story that isn’t fulfillable, and fooled VCs into investing because they don’t know better.”

However, Dr. Lee firmly believes AI will continue to progress and will take many jobs away from workers. So, what is the difference between legitimate AI, with all of its pros and cons, and a made-up story?

If you parse through just a few stories that are allegedly about AI, you’ll quickly discover significant variation in how people define it, with a blurred line between emulated intelligence and machine learning applications.

I spoke to experts in the field of AI to try to find consensus, but the very question opens up more questions. For instance, when is it important to be accurate to a term’s original definition, and when does that commitment to accuracy amount to the splitting of hairs? It isn’t obvious, and hype is oftentimes the enemy of nuance. Additionally, there is now a vested interest in that hype—$12 billion, to be precise.

This conversation is also relevant because world-renowned thought leaders have been publicly debating the dangers posed by AI. Facebook CEO Mark Zuckerberg suggested that naysayers who attempt to “drum up these doomsday scenarios” are being negative and irresponsible. On Twitter, business magnate and OpenAI co-founder Elon Musk countered that Zuckerberg’s understanding of the subject is limited. In February, Elon Musk engaged again in a similar exchange with Harvard professor Steven Pinker. Musk tweeted that Pinker doesn’t understand the difference between functional/narrow AI and general AI.

Given the fears surrounding this technology, it’s important for the public to clearly understand the distinctions between different levels of AI so that they can realistically assess the potential threats and benefits.

As Smart As a Human?
Erik Cambria, an expert in the field of natural language processing, told me, “Nobody is doing AI today and everybody is saying that they do AI because it’s a cool and sexy buzzword. It was the same with ‘big data’ a few years ago.”

Cambria mentioned that AI, as a term, originally referenced the emulation of human intelligence. “And there is nothing today that is even barely as intelligent as the most stupid human being on Earth. So, in a strict sense, no one is doing AI yet, for the simple fact that we don’t know how the human brain works,” he said.

He added that the term “AI” is often used in reference to powerful tools for data classification. These tools are impressive, but they’re on a totally different spectrum than human cognition. Additionally, Cambria has noticed people claiming that neural networks are part of the new wave of AI. This is bizarre to him because that technology already existed fifty years ago.

However, technologists no longer need to perform the feature extraction by themselves. They also have access to greater computing power. All of these advancements are welcomed, but it is perhaps dishonest to suggest that machines have emulated the intricacies of our cognitive processes.

“Companies are just looking at tricks to create a behavior that looks like intelligence but that is not real intelligence, it’s just a mirror of intelligence. These are expert systems that are maybe very good in a specific domain, but very stupid in other domains,” he said.

This mimicry of intelligence has inspired the public imagination. Domain-specific systems have delivered value in a wide range of industries. But those benefits have not lifted the cloud of confusion.

Assisted, Augmented, or Autonomous
When it comes to matters of scientific integrity, the issue of accurate definitions isn’t a peripheral matter. In a 1974 commencement address at the California Institute of Technology, Richard Feynman famously said, “The first principle is that you must not fool yourself—and you are the easiest person to fool.” In that same speech, Feynman also said, “You should not fool the layman when you’re talking as a scientist.” He opined that scientists should bend over backwards to show how they could be wrong. “If you’re representing yourself as a scientist, then you should explain to the layman what you’re doing—and if they don’t want to support you under those circumstances, then that’s their decision.”

In the case of AI, this might mean that professional scientists have an obligation to clearly state that they are developing extremely powerful, controversial, profitable, and even dangerous tools, which do not constitute intelligence in any familiar or comprehensive sense.

The term “AI” may have become overhyped and confused, but there are already some efforts underway to provide clarity. A recent PwC report drew a distinction between “assisted intelligence,” “augmented intelligence,” and “autonomous intelligence.” Assisted intelligence is demonstrated by the GPS navigation programs prevalent in cars today. Augmented intelligence “enables people and organizations to do things they couldn’t otherwise do.” And autonomous intelligence “establishes machines that act on their own,” such as autonomous vehicles.

Roman Yampolskiy is an AI safety researcher who wrote the book “Artificial Superintelligence: A Futuristic Approach.” I asked him whether the broad and differing meanings might present difficulties for legislators attempting to regulate AI.

Yampolskiy explained, “Intelligence (artificial or natural) comes on a continuum and so do potential problems with such technology. We typically refer to AI which one day will have the full spectrum of human capabilities as artificial general intelligence (AGI) to avoid some confusion. Beyond that point it becomes superintelligence. What we have today and what is frequently used in business is narrow AI. Regulating anything is hard, technology is no exception. The problem is not with terminology but with complexity of such systems even at the current level.”

When asked if people should fear AI systems, Dr. Yampolskiy commented, “Since capability comes on a continuum, so do problems associated with each level of capability.” He mentioned that accidents are already reported with AI-enabled products, and as the technology advances further, the impact could spread beyond privacy concerns or technological unemployment. These concerns about the real-world effects of AI will likely take precedence over dictionary-minded quibbles. However, the issue is also about honesty versus deception.

Is This Buzzword All Buzzed Out?
Finally, I directed my questions towards a company that is actively marketing an “AI Virtual Assistant.” Carl Landers, the CMO at Conversica, acknowledged that there are a multitude of explanations for what AI is and isn’t.

He said, “My definition of AI is technology innovation that helps solve a business problem. I’m really not interested in talking about the theoretical ‘can we get machines to think like humans?’ It’s a nice conversation, but I’m trying to solve a practical business problem.”

I asked him if AI is a buzzword that inspires publicity and attracts clients. According to Landers, this was certainly true three years ago, but those effects have already started to wane. Many companies now claim to have AI in their products, so it’s less of a differentiator. However, there is still a specific intention behind the word. Landers hopes to convey that previously impossible things are now possible. “There’s something new here that you haven’t seen before, that you haven’t heard of before,” he said.

According to Brian Decker, founder of Encom Lab, machine learning algorithms only work to satisfy their preexisting programming, not out of an interior drive for better understanding. Therefore, he views AI as an entirely semantic argument.

Decker stated, “A marketing exec will claim a photodiode controlled porch light has AI because it ‘knows when it is dark outside,’ while a good hardware engineer will point out that not one bit in a register in the entire history of computing has ever changed unless directed to do so according to the logic of preexisting programming.”

Although it’s important for everyone to be on the same page regarding specifics and underlying meaning, AI-powered products are already powering past these debates by creating immediate value for humans. And ultimately, humans care more about value than they do about semantic distinctions. In an interview with Quartz, Kai-Fu Lee revealed that algorithmic trading systems have already given him an 8X return over his private banking investments. “I don’t trade with humans anymore,” he said.

Image Credit: vrender / Shutterstock.com Continue reading

Posted in Human Robots

#432293 An Innovator’s City Guide to Shanghai

Shanghai is a city full of life. With its population of 24 million, Shanghai embraces vibrant growth, fosters rising diversity, and attracts visionaries, innovators, and adventurers. Fintech, artificial intelligence, and e-commerce are booming. Now is a great time to explore this multicultural, inspirational city as it experiences quick growth and ever greater influence.

Meet Your Guide

Qingsong (Dora) Ke
Singularity University Chapter: Shanghai Chapter
Profession: Associate Director for Asia Pacific, IE Business School and IE University; Mentor, Techstars Startup Weekend; Mentor, Startupbootcamp; China President, Her Century

Your City Guide to Shanghai, China
Top three industries in the city: Automotive, Retail, and Finance

1. Coworking Space: Mixpace

With 10 convenient locations in the Shanghai downtown area, Mixpace offers affordable prices and various office and event spaces to both foreign and local entrepreneurs and startups.

2. Makerspace: XinCheJian

The first hackerspace and a non-profit in China, Xinchejian was founded to support projects in physical computing, open source hardware, and the Internet of Things. It hosts regular events and talks to facilitate development of hackerspaces in China.

3. Local meetups/ networks: FinTech Connector

FinTech Connector is a community connecting local fintech entrepreneurs and start-ups with global professionals, thought leaders, and investors for the purpose of disrupting financial services with cutting-edge technology.

4. Best coffee shop with free WiFi: Seesaw

Clean and modern décor, convenient locations, a quiet environment, and high-quality coffee make Seesaw one of the most popular coffee shops in Shanghai.

5. The startup neighborhood: Knowledge & Innovation Community (KIC)

Located near 10 prestigious universities and over 100 scientific research institutions, KIC attempts to integrate Silicon Valley’s innovative spirit with the artistic culture of the Left Bank in Paris.

6. Well-known investor or venture capitalist: Nanpeng (Neil) Shen

Global executive partner at Sequoia Capital, founding and managing partner at Sequoia China, and founder of Ctrip.com and Home Inn, Neil Shen was named Best Venture Capitalist by Forbes China in 2010–2013 and ranked as the best Chinese investor among Global Best Investors by Forbes in 2012–2016.

7. Best way to get around: Metro

Shanghai’s 17 well-connected metro lines covering every corner of the city at affordable prices are the best way to get around.

8. Local must-have dish and where to get it: Mini Soupy Bun (steamed dumplings, xiaolongbao) at Din Tai Fung in Shanghai.

Named one of the top ten restaurants in the world by the New York Times, Din Tai Fung makes the best xiaolongbao, a delicious soup with stuffed dumplings.

9. City’s best-kept secret: Barber Shop

This underground bar gets its name from the barber shop it’s hidden behind. Visitors must discover how to unlock the door leading to Barber Shop’s sophisticated cocktails and engaging music. (No website for this underground location, but the address is 615 Yongjia Road).

10. Touristy must-do: Enjoy the nightlife and the skyline at the Bund

On the east side of the Bund are the most modern skyscrapers, including Shanghai Tower, Shanghai World Financial Centre, and Jin Mao Tower. The west side of the Bund features 26 buildings of diverse architectural styles, including Gothic, Baroque, Romanesque, and others; this area is known for its exotic buildings.

11. Local volunteering opportunity: Shanghai Volunteer

Shanghai Volunteer is a platform to connect volunteers with possible opportunities in various fields, including education, elderly care, city culture, and environment.

12. Local University with great resources: Shanghai Jiao Tong University

Established in 1896, Shanghai Jiao Tong University is the second-oldest university in China and one of the country’s most prestigious. It boasts notable alumni in government and politics, science, engineering, business, and sports, and it regularly collaborates with government and the private sector.

This article is for informational purposes only. All opinions in this post are the author’s alone and not those of Singularity University. Neither this article nor any of the listed information therein is an official endorsement by Singularity University.

Image Credits: Qinsong (Dora) Ke

Banner Image Credit: ESB Professional / Shutterstock.com Continue reading

Posted in Human Robots