Tag Archives: built

#432482 This Week’s Awesome Stories From ...

CYBERNETICS
A Brain-Boosting Prosthesis Moves From Rats to Humans
Robbie Gonzalez | WIRED
“Today, their proof-of-concept prosthetic lives outside a patient’s head and connects to the brain via wires. But in the future, Hampson hopes, surgeons could implant a similar apparatus entirely within a person’s skull, like a neural pacemaker. It could augment all manner of brain functions—not just in victims of dementia and brain injury, but healthy individuals, as well.”

ARTIFICIAL INTELLIGENCE
Here’s How the US Needs to Prepare for the Age of Artificial Intelligence
Will Knight | MIT Technology Review
“The Trump administration has abandoned this vision and has no intention of devising its own AI plan, say those working there. They say there is no need for an AI moonshot, and that minimizing government interference is the best way to make sure the technology flourishes… That looks like a huge mistake. If it essentially ignores such a technological transformation, the US might never make the most of an opportunity to reboot its economy and kick-start both wage growth and job creation. Failure to plan could also cause the birthplace of AI to lose ground to international rivals.”

BIOMIMICRY
Underwater GPS Inspired by Shrimp Eyes
Jeremy Hsu | IEEE Spectrum
“A few years ago, U.S. and Australian researchers developed a special camera inspired by the eyes of mantis shrimp that can see the polarization patterns of light waves, which resemble those in a rope being waved up and down. That means the bio-inspired camera can detect how light polarization patterns change once the light enters the water and gets deflected or scattered.”

POLITICS & TECHNOLOGY
‘The Business of War’: Google Employees Protest Work for the Pentagon
Scott Shane and Daisuke Wakabayashi | The New York Times
“Thousands of Google employees, including dozens of senior engineers, have signed a letter protesting the company’s involvement in a Pentagon program that uses artificial intelligence to interpret video imagery and could be used to improve the targeting of drone strikes.

The letter, which is circulating inside Google and has garnered more than 3,100 signatures, reflects a culture clash between Silicon Valley and the federal government that is likely to intensify as cutting-edge artificial intelligence is increasingly employed for military purposes. ‘We believe that Google should not be in the business of war,’ says the letter, addressed to Sundar Pichai, the company’s chief executive. It asks that Google pull out of Project Maven, a Pentagon pilot program, and announce a policy that it will not ‘ever build warfare technology.’ (Read the text of the letter.)”

CYBERNETICS
MIT’s New Headset Reads the ‘Words in Your Head’
Brian Heater | TechCrunch
“A team at MIT has been working on just such a device, though the hardware design, admittedly, doesn’t go too far toward removing that whole self-consciousness bit from the equation. AlterEgo is a headmounted—or, more properly, jaw-mounted—device that’s capable of reading neuromuscular signals through built-in electrodes. The hardware, as MIT puts it, is capable of reading ‘words in your head.’”



Image Credit: christitzeimaging.com / Shutterstock.com Continue reading

Posted in Human Robots

#432456 This Planned Solar Farm in Saudi Arabia ...

Right now it only exists on paper, in the form of a memorandum of understanding. But if constructed, the newly-announced solar photovoltaic project in Saudi Arabia would break an astonishing array of records. It’s larger than any solar project currently planned by a factor of 100. When completed, nominally in 2030, it would have a capacity of an astonishing 200 gigawatts (GW). The project is backed by Softbank Group and Saudi Arabia’s new crown prince, Mohammed Bin Salman, and was announced in New York on March 27.

The Tengger Desert Solar Park in China, affectionately known as the “Great Wall of Solar,” is the world’s largest operating solar farm, with a capacity of 1.5 GW. Larger farms are under construction, including the Westlands Solar Park, which plans to finish with 2.7 GW of capacity. But even those that are only in the planning phases are dwarfed by the Saudi project; two early-stage solar parks will have capacity of 7.2 GW, and the plan involves them generating electricity as early as next year.

It makes more sense to compare to slightly larger projects, like nations, or even planets. Saudi Arabia’s current electricity generation capacity is 77 GW. This project would almost triple it. The current total solar photovoltaic generation capacity installed worldwide is 303 GW. In other words, this single solar farm would account for a similar installed capacity as the entire world’s capacity in 2015, and over a thousand times more than we had in 2000.

That’s exponential growth for you, folks.

Of course, practically doubling the world’s solar capacity doesn’t come cheap; the nominal estimate for the budget is around $200 billion (compared to $20 billion for around half a gigawatt of fusion, though, it may not seem so bad.) But the project would help solve a number of pressing problems for Saudi Arabia.

For a start, solar power works well in the desert. The irradiance is high, you have plenty of empty space, and peak demand is driven by air conditioning in the cities and so corresponds with peak supply. Even if oil companies might seem blasé about the global supply of oil running out, individual countries are aware that their own reserves won’t last forever, and they don’t want to miss the energy transition. The country’s Vision 2030 project aims to diversify its heavily oil-dependent economy by that year. If they can construct solar farms on this scale, alongside the $80 billion the government plans to spend on a fleet of nuclear reactors, it seems logical to export that power to other countries in the region, especially given the amount of energy storage that would be required otherwise.

We’ve already discussed a large-scale project to build solar panels in the desert then export the electricity: the DESERTEC initiative in the Sahara. Although DESERTEC planned a range of different demonstration plants on scales of around 500 MW, its ultimate ambition was to “provide 20 percent of Europe’s electricity by 2050.” It seems that this project is similar in scale to what they were planning. Weaning ourselves off fossil fuels is going to be incredibly difficult. Only large-scale nuclear, wind, or solar can really supply the world’s energy needs if consumption is anything like what it is today; in all likelihood, we’ll need a combination of all three.

To make a sizeable contribution to that effort, the renewable projects have to be truly epic in scale. The planned 2 GW solar park at Bulli Creek in Australia would cover 5 square kilometers, so it’s not unreasonable to suggest that, across many farms, this project could cover around 500 square kilometers—around the size of Chicago.

It will come as no surprise that Softbank is involved in this project. The founder, Masayoshi Son, is well-known for large-scale “visionary” investments. This is suggested by the name of his $100 billion VC fund, the Softbank Vision Fund, and the focus of its investments. It has invested millions of dollars in tech companies like Uber, IoT, NVIDIA and ARM, and startups across fields like VR, agritech, and AI.

Of course, Softbank is also the company that bought infamous robot-makers Boston Dynamics from Google when their not-at-all-sinister “Project Replicant” was sidelined. Softbank is famous in Japan in part due to their mascot, Pepper, which is probably the most widespread humanoid robot on the planet. Suffice it to say that Softbank is keen to be a part of any technological development, and they’re not afraid of projects that are truly vast in scope.

Since the Fukushima disaster in 2011 led Japan to turn away from nuclear power, Son has also been focused on green electricity, floating the idea of an Asia Super Grid. Similar to DESERTEC, it aims to get around the main issues with renewable energy (the land use and the intermittency of supply) with a vast super-grid that would connect Mongolia, India, Japan, China, Russia, and South Korea with high-voltage DC power cables. “Since this is such a grandiose project, many people told me it is crazy,” Son said. “They said it is impossible both economically and politically.” The first stage of the project, a demonstration wind farm of 50 megawatts in Mongolia, began operating in October of last year.

Given that Saudi Arabia put up $45 billion of the Vision Fund, it’s also not surprising to see the location of the project; Softbank reportedly had plans to invest $25 billion of the Vision Fund in Saudi Arabia, and $1 billion will be spent on the first solar farms there. Prince Mohammed Bin Salman, 32, who recently consolidated power, is looking to be seen on the global stage as a modernizer. He was effusive about the project. “It’s a huge step in human history,” he said. “It’s bold, risky, and we hope we succeed doing that.”

It is the risk that will keep renewable energy enthusiasts concerned.

Every visionary plan contains the potential for immense disappointment. As yet, the Asian Super Grid and the Saudi power plan are more or less at the conceptual stage. The fact that a memorandum of understanding exists between the Saudi government and Softbank is no guarantee that it will ever be built. Some analysts in the industry are a little skeptical.

“It’s an unprecedented construction effort; it’s an unprecedented financing effort,” said Benjamin Attia, a global solar analyst for Green Tech Media Research. “But there are so many questions, so few details, and a lot of headwinds, like grid instability, the availability of commercial debt, construction, and logistics challenges.”

We have already seen with the DESERTEC initiative that these vast-scale renewable energy projects can fail, despite immense enthusiasm. They are not easy to accomplish. But in a world without fossil fuels, they will be required. This project could be a flagship example for how to run a country on renewable energy—or another example of grand designs and good intentions. We’ll have to wait to find out which.

Image Credit: Love Silhouette / Shutterstock.com Continue reading

Posted in Human Robots

#432352 Watch This Lifelike Robot Fish Swim ...

Earth’s oceans are having a rough go of it these days. On top of being the repository for millions of tons of plastic waste, global warming is affecting the oceans and upsetting marine ecosystems in potentially irreversible ways.

Coral bleaching, for example, occurs when warming water temperatures or other stress factors cause coral to cast off the algae that live on them. The coral goes from lush and colorful to white and bare, and sometimes dies off altogether. This has a ripple effect on the surrounding ecosystem.

Warmer water temperatures have also prompted many species of fish to move closer to the north or south poles, disrupting fisheries and altering undersea environments.

To keep these issues in check or, better yet, try to address and improve them, it’s crucial for scientists to monitor what’s going on in the water. A paper released last week by a team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) unveiled a new tool for studying marine life: a biomimetic soft robotic fish, dubbed SoFi, that can swim with, observe, and interact with real fish.

SoFi isn’t the first robotic fish to hit the water, but it is the most advanced robot of its kind. Here’s what sets it apart.

It swims in three dimensions
Up until now, most robotic fish could only swim forward at a given water depth, advancing at a steady speed. SoFi blows older models out of the water. It’s equipped with side fins called dive planes, which move to adjust its angle and allow it to turn, dive downward, or head closer to the surface. Its density and thus its buoyancy can also be adjusted by compressing or decompressing air in an inner compartment.

“To our knowledge, this is the first robotic fish that can swim untethered in three dimensions for extended periods of time,” said CSAIL PhD candidate Robert Katzschmann, lead author of the study. “We are excited about the possibility of being able to use a system like this to get closer to marine life than humans can get on their own.”

The team took SoFi to the Rainbow Reef in Fiji to test out its swimming skills, and the robo fish didn’t disappoint—it was able to swim at depths of over 50 feet for 40 continuous minutes. What keeps it swimming? A lithium polymer battery just like the one that powers our smartphones.

It’s remote-controlled… by Super Nintendo
SoFi has sensors to help it see what’s around it, but it doesn’t have a mind of its own yet. Rather, it’s controlled by a nearby scuba-diving human, who can send it commands related to speed, diving, and turning. The best part? The commands come from an actual repurposed (and waterproofed) Super Nintendo controller. What’s not to love?

Image Credit: MIT CSAIL
Previous robotic fish built by this team had to be tethered to a boat, so the fact that SoFi can swim independently is a pretty big deal. Communication between the fish and the diver was most successful when the two were less than 10 meters apart.

It looks real, sort of
SoFi’s side fins are a bit stiff, and its camera may not pass for natural—but otherwise, it looks a lot like a real fish. This is mostly thanks to the way its tail moves; a motor pumps water between two chambers in the tail, and as one chamber fills, the tail bends towards that side, then towards the other side as water is pumped into the other chamber. The result is a motion that closely mimics the way fish swim. Not only that, the hydraulic system can change the water flow to get different tail movements that let SoFi swim at varying speeds; its average speed is around half a body length (21.7 centimeters) per second.

Besides looking neat, it’s important SoFi look lifelike so it can blend in with marine life and not scare real fish away, so it can get close to them and observe them.

“A robot like this can help explore the reef more closely than current robots, both because it can get closer more safely for the reef and because it can be better accepted by the marine species.” said Cecilia Laschi, a biorobotics professor at the Sant’Anna School of Advanced Studies in Pisa, Italy.

Just keep swimming
It sounds like this fish is nothing short of a regular Nemo. But its creators aren’t quite finished yet.

They’d like SoFi to be able to swim faster, so they’ll work on improving the robo fish’s pump system and streamlining its body and tail design. They also plan to tweak SoFi’s camera to help it follow real fish.

“We view SoFi as a first step toward developing almost an underwater observatory of sorts,” said CSAIL director Daniela Rus. “It has the potential to be a new type of tool for ocean exploration and to open up new avenues for uncovering the mysteries of marine life.”

The CSAIL team plans to make a whole school of SoFis to help biologists learn more about how marine life is reacting to environmental changes.

Image Credit: MIT CSAIL Continue reading

Posted in Human Robots

#432303 What If the AI Revolution Is Neither ...

Why does everyone assume that the AI revolution will either lead to a fiery apocalypse or a glorious utopia, and not something in between? Of course, part of this is down to the fact that you get more attention by saying “The end is nigh!” or “Utopia is coming!”

But part of it is down to how humans think about change, especially unprecedented change. Millenarianism doesn’t have anything to do with being a “millennial,” being born in the 90s and remembering Buffy the Vampire Slayer. It is a way of thinking about the future that involves a deeply ingrained sense of destiny. A definition might be: “Millenarianism is the expectation that the world as it is will be destroyed and replaced with a perfect world, that a redeemer will come to cast down the evil and raise up the righteous.”

Millenarian beliefs, then, intimately link together the ideas of destruction and creation. They involve the idea of a huge, apocalyptic, seismic shift that will destroy the fabric of the old world and create something entirely new. Similar belief systems exist in many of the world’s major religions, and also the unspoken religion of some atheists and agnostics, which is a belief in technology.

Look at some futurist beliefs around the technological Singularity. In Ray Kurzweil’s vision, the Singularity is the establishment of paradise. Everyone is rendered immortal by biotechnology that can cure our ills; our brains can be uploaded to the cloud; inequality and suffering wash away under the wave of these technologies. The “destruction of the world” is replaced by a Silicon Valley buzzword favorite: disruption. And, as with many millenarian beliefs, your mileage varies on whether this destruction paves the way for a new utopia—or simply ends the world.

There are good reasons to be skeptical and interrogative towards this way of thinking. The most compelling reason is probably that millenarian beliefs seem to be a default mode of how humans think about change; just look at how many variants of this belief have cropped up all over the world.

These beliefs are present in aspects of Christian theology, although they only really became mainstream in their modern form in the 19th and 20th centuries. Ideas like the Tribulations—many years of hardship and suffering—before the Rapture, when the righteous will be raised up and the evil punished. After this destruction, the world will be made anew, or humans will ascend to paradise.

Despite being dogmatically atheist, Marxism has many of the same beliefs. It is all about a deterministic view of history that builds to a crescendo. In the same way as Rapture-believers look for signs that prophecies are beginning to be fulfilled, so Marxists look for evidence that we’re in the late stages of capitalism. They believe that, inevitably, society will degrade and degenerate to a breaking point—just as some millenarian Christians do.

In Marxism, this is when the exploitation of the working class by the rich becomes unsustainable, and the working class bands together and overthrows the oppressors. The “tribulation” is replaced by a “revolution.” Sometimes revolutionary figures, like Lenin, or Marx himself, are heralded as messiahs who accelerate the onset of the Millennium; and their rhetoric involves utterly smashing the old system such that a new world can be built. Of course, there is judgment, when the righteous workers take what’s theirs and the evil bourgeoisie are destroyed.

Even Norse mythology has an element of this, as James Hughes points out in his essay in Nick Bostrom’s book Global Catastrophic Risks. Ragnarok involves men and gods being defeated in a final, apocalyptic battle—but because that was a little bleak, they add in the idea that a new earth will arise where the survivors will live in harmony.

Judgement day is a cultural trope, too. Take the ancient Egyptians and their beliefs around the afterlife; the Lord of the underworld, Osiris, weighs the mortal’s heart against a feather. “Should the heart of the deceased prove to be heavy with wrongdoing, it would be eaten by a demon, and the hope of an afterlife vanished.”

Perhaps in the Singularity, something similar goes on. As our technology and hence our power improve, a final reckoning approaches: our hearts, as humans, will be weighed against a feather. If they prove too heavy with wrongdoing—with misguided stupidity, with arrogance and hubris, with evil—then we will fail the test, and we will destroy ourselves. But if we pass, and emerge from the Singularity and all of its threats and promises unscathed, then we will have paradise. And, like the other belief systems, there’s no room for non-believers; all of society is going to be radically altered, whether you want it to be or not, whether it benefits you or leaves you behind. A technological rapture.

It almost seems like every major development provokes this response. Nuclear weapons did, too. Either this would prove the final straw and we’d destroy ourselves, or the nuclear energy could be harnessed to build a better world. People talked at the dawn of the nuclear age about electricity that was “too cheap to meter.” The scientists who worked on the bomb often thought that with such destructive power in human hands, we’d be forced to cooperate and work together as a species.

When we see the same response over and over again to different circumstances, cropping up in different areas, whether it’s science, religion, or politics, we need to consider human biases. We like millenarian beliefs; and so when the idea of artificial intelligence outstripping human intelligence emerges, these beliefs spring up around it.

We don’t love facts. We don’t love information. We aren’t as rational as we’d like to think. We are creatures of narrative. Physicists observe the world and we weave our observations into narrative theories, stories about little billiard balls whizzing around and hitting each other, or space and time that bend and curve and expand. Historians try to make sense of an endless stream of events. We rely on stories: stories that make sense of the past, justify the present, and prepare us for the future.

And as stories go, the millenarian narrative is a brilliant and compelling one. It can lead you towards social change, as in the case of the Communists, or the Buddhist uprisings in China. It can justify your present-day suffering, if you’re in the tribulation. It gives you hope that your life is important and has meaning. It gives you a sense that things are evolving in a specific direction, according to rules—not just randomly sprawling outwards in a chaotic way. It promises that the righteous will be saved and the wrongdoers will be punished, even if there is suffering along the way. And, ultimately, a lot of the time, the millenarian narrative promises paradise.

We need to be wary of the millenarian narrative when we’re considering technological developments and the Singularity and existential risks in general. Maybe this time is different, but we’ve cried wolf many times before. There is a more likely, less appealing story. Something along the lines of: there are many possibilities, none of them are inevitable, and lots of the outcomes are less extreme than you might think—or they might take far longer than you think to arrive. On the surface, it’s not satisfying. It’s so much easier to think of things as either signaling the end of the world or the dawn of a utopia—or possibly both at once. It’s a narrative we can get behind, a good story, and maybe, a nice dream.

But dig a little below the surface, and you’ll find that the millenarian beliefs aren’t always the most promising ones, because they remove human agency from the equation. If you think that, say, the malicious use of algorithms, or the control of superintelligent AI, are serious and urgent problems that are worth solving, you can’t be wedded to a belief system that insists utopia or dystopia are inevitable. You have to believe in the shades of grey—and in your own ability to influence where we might end up. As we move into an uncertain technological future, we need to be aware of the power—and the limitations—of dreams.

Image Credit: Photobank gallery / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots

#432279 This Week’s Awesome Stories From ...

COMPUTING
Google Thinks It’s Close to ‘Quantum Supremacy.’ Here’s What That Really Means.
Martin Giles and Will Knight | MIT Technology Review
“Seventy-two may not be a large number, but in quantum computing terms, it’s massive. This week Google unveiled Bristlecone, a new quantum computing chip with 72 quantum bits, or qubits—the fundamental units of computation in a quantum machine…John Martinis, who heads Google’s effort, says his team still needs to do more testing, but he thinks it’s ‘pretty likely’ that this year, perhaps even in just a few months, the new chip can achieve ‘quantum supremacy.'”

INTERNET
How Project Loon Built the Navigation System That Kept Its Balloons Over Puerto Rico
Amy Nordrum | IEEE Spectrum
“Last year, Alphabet’s Project Loon made a big shift in the way it flies its high-altitude balloons. And that shift—from steering every balloon in a huge circle around the world to clustering balloons over specific areas—allowed the project to provide basic Internet service to more than 200,000 people in Puerto Rico after Hurricane Maria.”

DIGITAL MEDIA
The Grim Conclusions of the Largest-Ever Study of Fake News
Robinson Meyer | The Atlantic
“The massive new study analyzes every major contested news story in English across the span of Twitter’s existence—some 126,000 stories, tweeted by 3 million users, over more than 10 years—and finds that the truth simply cannot compete with hoax and rumor.”

AUGMENTED REALITY
Magic Leap Raises $461 Million in Fresh Funding From the Kingdom of Saudi Arabia
Lucas Matney | TechCrunch
“Magic Leap still hasn’t released a product, but they’re continuing to raise a lot of cash to get there. The Plantation, Florida-based augmented reality startup announced today that it has raised $461 million from the Kingdom of Saudi Arabia’s sovereign investment arm, The Public Investment Fund…Magic Leap has raised more than $2.3 billion in funding to date.”

TECHNOLOGY & SOCIETY
Social Inequality Will Not Be Solved by an App
Safiya Umoja Noble | Wired
“An app will not save us. We will not sort out social inequality lying in bed staring at smartphones. It will not stem from simply sending emails to people in power, one person at a time…We need more intense attention on how these types of artificial intelligence, under the auspices of individual freedom to make choices, forestall the ability to see what kinds of choices we are making and the collective impact of these choices in reversing decades of struggle for social, political, and economic equality. Digital technologies are implicated in these struggles.”

Image Credit: topseller / Shutterstock.com Continue reading

Posted in Human Robots