Tag Archives: brain

#436911 Scientists Linked Artificial and ...

Scientists have linked up two silicon-based artificial neurons with a biological one across multiple countries into a fully-functional network. Using standard internet protocols, they established a chain of communication whereby an artificial neuron controls a living, biological one, and passes on the info to another artificial one.

Whoa.

We’ve talked plenty about brain-computer interfaces and novel computer chips that resemble the brain. We’ve covered how those “neuromorphic” chips could link up into tremendously powerful computing entities, using engineered communication nodes called artificial synapses.

As Moore’s law is dying, we even said that neuromorphic computing is one path towards the future of extremely powerful, low energy consumption artificial neural network-based computing—in hardware—that could in theory better link up with the brain. Because the chips “speak” the brain’s language, in theory they could become neuroprosthesis hubs far more advanced and “natural” than anything currently possible.

This month, an international team put all of those ingredients together, turning theory into reality.

The three labs, scattered across Padova, Italy, Zurich, Switzerland, and Southampton, England, collaborated to create a fully self-controlled, hybrid artificial-biological neural network that communicated using biological principles, but over the internet.

The three-neuron network, linked through artificial synapses that emulate the real thing, was able to reproduce a classic neuroscience experiment that’s considered the basis of learning and memory in the brain. In other words, artificial neuron and synapse “chips” have progressed to the point where they can actually use a biological neuron intermediary to form a circuit that, at least partially, behaves like the real thing.

That’s not to say cyborg brains are coming soon. The simulation only recreated a small network that supports excitatory transmission in the hippocampus—a critical region that supports memory—and most brain functions require enormous cross-talk between numerous neurons and circuits. Nevertheless, the study is a jaw-dropping demonstration of how far we’ve come in recreating biological neurons and synapses in artificial hardware.

And perhaps one day, the currently “experimental” neuromorphic hardware will be integrated into broken biological neural circuits as bridges to restore movement, memory, personality, and even a sense of self.

The Artificial Brain Boom
One important thing: this study relies heavily on a decade of research into neuromorphic computing, or the implementation of brain functions inside computer chips.

The best-known example is perhaps IBM’s TrueNorth, which leveraged the brain’s computational principles to build a completely different computer than what we have today. Today’s computers run on a von Neumann architecture, in which memory and processing modules are physically separate. In contrast, the brain’s computing and memory are simultaneously achieved at synapses, small “hubs” on individual neurons that talk to adjacent ones.

Because memory and processing occur on the same site, biological neurons don’t have to shuttle data back and forth between processing and storage compartments, massively reducing processing time and energy use. What’s more, a neuron’s history will also influence how it behaves in the future, increasing flexibility and adaptability compared to computers. With the rise of deep learning, which loosely mimics neural processing as the prima donna of AI, the need to reduce power while boosting speed and flexible learning is becoming ever more tantamount in the AI community.

Neuromorphic computing was partially born out of this need. Most chips utilize special ingredients that change their resistance (or other physical characteristics) to mimic how a neuron might adapt to stimulation. Some chips emulate a whole neuron, that is, how it responds to a history of stimulation—does it get easier or harder to fire? Others imitate synapses themselves, that is, how easily they will pass on the information to another neuron.

Although single neuromorphic chips have proven to be far more efficient and powerful than current computer chips running machine learning algorithms in toy problems, so far few people have tried putting the artificial components together with biological ones in the ultimate test.

That’s what this study did.

A Hybrid Network
Still with me? Let’s talk network.

It’s gonna sound complicated, but remember: learning is the formation of neural networks, and neurons that fire together wire together. To rephrase: when learning, neurons will spontaneously organize into networks so that future instances will re-trigger the entire network. To “wire” together, downstream neurons will become more responsive to their upstream neural partners, so that even a whisper will cause them to activate. In contrast, some types of stimulation will cause the downstream neuron to “chill out” so that only an upstream “shout” will trigger downstream activation.

Both these properties—easier or harder to activate downstream neurons—are essentially how the brain forms connections. The “amping up,” in neuroscience jargon, is long-term potentiation (LTP), whereas the down-tuning is LTD (long-term depression). These two phenomena were first discovered in the rodent hippocampus more than half a century ago, and ever since have been considered as the biological basis of how the brain learns and remembers, and implicated in neurological problems such as addition (seriously, you can’t pass Neuro 101 without learning about LTP and LTD!).

So it’s perhaps especially salient that one of the first artificial-brain hybrid networks recapitulated this classic result.

To visualize: the three-neuron network began in Switzerland, with an artificial neuron with the badass name of “silicon spiking neuron.” That neuron is linked to an artificial synapse, a “memristor” located in the UK, which is then linked to a biological rat neuron cultured in Italy. The rat neuron has a “smart” microelectrode, controlled by the artificial synapse, to stimulate it. This is the artificial-to-biological pathway.

Meanwhile, the rat neuron in Italy also has electrodes that listen in on its electrical signaling. This signaling is passed back to another artificial synapse in the UK, which is then used to control a second artificial neuron back in Switzerland. This is the biological-to-artificial pathway back. As a testimony in how far we’ve come in digitizing neural signaling, all of the biological neural responses are digitized and sent over the internet to control its far-out artificial partner.

Here’s the crux: to demonstrate a functional neural network, just having the biological neuron passively “pass on” electrical stimulation isn’t enough. It has to show the capacity to learn, that is, to be able to mimic the amping up and down-tuning that are LTP and LTD, respectively.

You’ve probably guessed the results: certain stimulation patterns to the first artificial neuron in Switzerland changed how the artificial synapse in the UK operated. This, in turn, changed the stimulation to the biological neuron, so that it either amped up or toned down depending on the input.

Similarly, the response of the biological neuron altered the second artificial synapse, which then controlled the output of the second artificial neuron. Altogether, the biological and artificial components seamlessly linked up, over thousands of miles, into a functional neural circuit.

Cyborg Mind-Meld
So…I’m still picking my jaw up off the floor.

It’s utterly insane seeing a classic neuroscience learning experiment repeated with an integrated network with artificial components. That said, a three-neuron network is far from the thousands of synapses (if not more) needed to truly re-establish a broken neural circuit in the hippocampus, which DARPA has been aiming to do. And LTP/LTD has come under fire recently as the de facto brain mechanism for learning, though so far they remain cemented as neuroscience dogma.

However, this is one of the few studies where you see fields coming together. As Richard Feynman famously said, “What I cannot recreate, I cannot understand.” Even though neuromorphic chips were built on a high-level rather than molecular-level understanding of how neurons work, the study shows that artificial versions can still synapse with their biological counterparts. We’re not just on the right path towards understanding the brain, we’re recreating it, in hardware—if just a little.

While the study doesn’t have immediate use cases, practically it does boost both the neuromorphic computing and neuroprosthetic fields.

“We are very excited with this new development,” said study author Dr. Themis Prodromakis at the University of Southampton. “On one side it sets the basis for a novel scenario that was never encountered during natural evolution, where biological and artificial neurons are linked together and communicate across global networks; laying the foundations for the Internet of Neuro-electronics. On the other hand, it brings new prospects to neuroprosthetic technologies, paving the way towards research into replacing dysfunctional parts of the brain with AI chips.”

Image Credit: Gerd Altmann from Pixabay Continue reading

Posted in Human Robots

#436774 AI Is an Energy-Guzzler. We Need to ...

There is a saying that has emerged among the tech set in recent years: AI is the new electricity. The platitude refers to the disruptive power of artificial intelligence for driving advances in everything from transportation to predicting the weather.

Of course, the computers and data centers that support AI’s complex algorithms are very much dependent on electricity. While that may seem pretty obvious, it may be surprising to learn that AI can be extremely power-hungry, especially when it comes to training the models that enable machines to recognize your face in a photo or for Alexa to understand a voice command.

The scale of the problem is difficult to measure, but there have been some attempts to put hard numbers on the environmental cost.

For instance, one paper published on the open-access repository arXiv claimed that the carbon emissions for training a basic natural language processing (NLP) model—algorithms that process and understand language-based data—are equal to the CO2 produced by the average American lifestyle over two years. A more robust model required the equivalent of about 17 years’ worth of emissions.

The authors noted that about a decade ago, NLP models could do the job on a regular commercial laptop. Today, much more sophisticated AI models use specialized hardware like graphics processing units, or GPUs, a chip technology popularized by Nvidia for gaming that also proved capable of supporting computing tasks for AI.

OpenAI, a nonprofit research organization co-founded by tech prophet and profiteer Elon Musk, said that the computing power “used in the largest AI training runs has been increasing exponentially with a 3.4-month doubling time” since 2012. That’s about the time that GPUs started making their way into AI computing systems.

Getting Smarter About AI Chip Design
While GPUs from Nvidia remain the gold standard in AI hardware today, a number of startups have emerged to challenge the company’s industry dominance. Many are building chipsets designed to work more like the human brain, an area that’s been dubbed neuromorphic computing.

One of the leading companies in this arena is Graphcore, a UK startup that has raised more than $450 million and boasts a valuation of $1.95 billion. The company’s version of the GPU is an IPU, which stands for intelligence processing unit.

To build a computer brain more akin to a human one, the big brains at Graphcore are bypassing the precise but time-consuming number-crunching typical of a conventional microprocessor with one that’s content to get by on less precise arithmetic.

The results are essentially the same, but IPUs get the job done much quicker. Graphcore claimed it was able to train the popular BERT NLP model in just 56 hours, while tripling throughput and reducing latency by 20 percent.

An article in Bloomberg compared the approach to the “human brain shifting from calculating the exact GPS coordinates of a restaurant to just remembering its name and neighborhood.”

Graphcore’s hardware architecture also features more built-in memory processing, boosting efficiency because there’s less need to send as much data back and forth between chips. That’s similar to an approach adopted by a team of researchers in Italy that recently published a paper about a new computing circuit.

The novel circuit uses a device called a memristor that can execute a mathematical function known as a regression in just one operation. The approach attempts to mimic the human brain by processing data directly within the memory.

Daniele Ielmini at Politecnico di Milano, co-author of the Science Advances paper, told Singularity Hub that the main advantage of in-memory computing is the lack of any data movement, which is the main bottleneck of conventional digital computers, as well as the parallel processing of data that enables the intimate interactions among various currents and voltages within the memory array.

Ielmini explained that in-memory computing can have a “tremendous impact on energy efficiency of AI, as it can accelerate very advanced tasks by physical computation within the memory circuit.” He added that such “radical ideas” in hardware design will be needed in order to make a quantum leap in energy efficiency and time.

It’s Not Just a Hardware Problem
The emphasis on designing more efficient chip architecture might suggest that AI’s power hunger is essentially a hardware problem. That’s not the case, Ielmini noted.

“We believe that significant progress could be made by similar breakthroughs at the algorithm and dataset levels,” he said.

He’s not the only one.

One of the key research areas at Qualcomm’s AI research lab is energy efficiency. Max Welling, vice president of Qualcomm Technology R&D division, has written about the need for more power-efficient algorithms. He has gone so far as to suggest that AI algorithms will be measured by the amount of intelligence they provide per joule.

One emerging area being studied, Welling wrote, is the use of Bayesian deep learning for deep neural networks.

It’s all pretty heady stuff and easily the subject of a PhD thesis. The main thing to understand in this context is that Bayesian deep learning is another attempt to mimic how the brain processes information by introducing random values into the neural network. A benefit of Bayesian deep learning is that it compresses and quantifies data in order to reduce the complexity of a neural network. In turn, that reduces the number of “steps” required to recognize a dog as a dog—and the energy required to get the right result.

A team at Oak Ridge National Laboratory has previously demonstrated another way to improve AI energy efficiency by converting deep learning neural networks into what’s called a spiking neural network. The researchers spiked their deep spiking neural network (DSNN) by introducing a stochastic process that adds random values like Bayesian deep learning.

The DSNN actually imitates the way neurons interact with synapses, which send signals between brain cells. Individual “spikes” in the network indicate where to perform computations, lowering energy consumption because it disregards unnecessary computations.

The system is being used by cancer researchers to scan millions of clinical reports to unearth insights on causes and treatments of the disease.

Helping battle cancer is only one of many rewards we may reap from artificial intelligence in the future, as long as the benefits of those algorithms outweigh the costs of using them.

“Making AI more energy-efficient is an overarching objective that spans the fields of algorithms, systems, architecture, circuits, and devices,” Ielmini said.

Image Credit: analogicus from Pixabay Continue reading

Posted in Human Robots

#436526 Not Bot, Not Beast: Scientists Create ...

A remarkable combination of artificial intelligence (AI) and biology has produced the world’s first “living robots.”

This week, a research team of roboticists and scientists published their recipe for making a new lifeform called xenobots from stem cells. The term “xeno” comes from the frog cells (Xenopus laevis) used to make them.

One of the researchers described the creation as “neither a traditional robot nor a known species of animal,” but a “new class of artifact: a living, programmable organism.”

Xenobots are less than 1 millimeter long and made of 500-1,000 living cells. They have various simple shapes, including some with squat “legs.” They can propel themselves in linear or circular directions, join together to act collectively, and move small objects. Using their own cellular energy, they can live up to 10 days.

While these “reconfigurable biomachines” could vastly improve human, animal, and environmental health, they raise legal and ethical concerns.

Strange New ‘Creature’
To make xenobots, the research team used a supercomputer to test thousands of random designs of simple living things that could perform certain tasks.

The computer was programmed with an AI “evolutionary algorithm” to predict which organisms would likely display useful tasks, such as moving towards a target.

After the selection of the most promising designs, the scientists attempted to replicate the virtual models with frog skin or heart cells, which were manually joined using microsurgery tools. The heart cells in these bespoke assemblies contract and relax, giving the organisms motion.

The creation of xenobots is groundbreaking. Despite being described as “programmable living robots,” they are actually completely organic and made of living tissue. The term “robot” has been used because xenobots can be configured into different forms and shapes, and “programmed” to target certain objects, which they then unwittingly seek. They can also repair themselves after being damaged.

Possible Applications
Xenobots may have great value. Some speculate they could be used to clean our polluted oceans by collecting microplastics. Similarly, they may be used to enter confined or dangerous areas to scavenge toxins or radioactive materials. Xenobots designed with carefully shaped “pouches” might be able to carry drugs into human bodies.

Future versions may be built from a patient’s own cells to repair tissue or target cancers. Being biodegradable, xenobots would have an edge on technologies made of plastic or metal.

Further development of biological “robots” could accelerate our understanding of living and robotic systems. Life is incredibly complex, so manipulating living things could reveal some of life’s mysteries—and improve our use of AI.

Legal and Ethical Questions
Conversely, xenobots raise legal and ethical concerns. In the same way they could help target cancers, they could also be used to hijack life functions for malevolent purposes.

Some argue artificially making living things is unnatural, hubristic, or involves “playing God.” A more compelling concern is that of unintended or malicious use, as we have seen with technologies in fields including nuclear physics, chemistry, biology and AI. For instance, xenobots might be used for hostile biological purposes prohibited under international law.

More advanced future xenobots, especially ones that live longer and reproduce, could potentially “malfunction” and go rogue, and out-compete other species.

For complex tasks, xenobots may need sensory and nervous systems, possibly resulting in their sentience. A sentient programmed organism would raise additional ethical questions. Last year, the revival of a disembodied pig brain elicited concerns about different species’ suffering.

Managing Risks
The xenobot’s creators have rightly acknowledged the need for discussion around the ethics of their creation. The 2018 scandal over using CRISPR (which allows the introduction of genes into an organism) may provide an instructive lesson here. While the experiment’s goal was to reduce the susceptibility of twin baby girls to HIV-AIDS, associated risks caused ethical dismay. The scientist in question is in prison.

When CRISPR became widely available, some experts called for a moratorium on heritable genome editing. Others argued the benefits outweighed the risks.

While each new technology should be considered impartially and based on its merits, giving life to xenobots raises certain significant questions:

Should xenobots have biological kill-switches in case they go rogue?
Who should decide who can access and control them?
What if “homemade” xenobots become possible? Should there be a moratorium until regulatory frameworks are established? How much regulation is required?

Lessons learned in the past from advances in other areas of science could help manage future risks, while reaping the possible benefits.

Long Road Here, Long Road Ahead
The creation of xenobots had various biological and robotic precedents. Genetic engineering has created genetically modified mice that become fluorescent in UV light.

Designer microbes can produce drugs and food ingredients that may eventually replace animal agriculture. In 2012, scientists created an artificial jellyfish called a “medusoid” from rat cells.

Robotics is also flourishing. Nanobots can monitor people’s blood sugar levels and may eventually be able to clear clogged arteries. Robots can incorporate living matter, which we witnessed when engineers and biologists created a sting-ray robot powered by light-activated cells.

In the coming years, we are sure to see more creations like xenobots that evoke both wonder and due concern. And when we do, it is important we remain both open-minded and critical.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Photo by Joel Filipe on Unsplash Continue reading

Posted in Human Robots

#436504 20 Technology Metatrends That Will ...

In the decade ahead, waves of exponential technological advancements are stacking atop one another, eclipsing decades of breakthroughs in scale and impact.

Emerging from these waves are 20 “metatrends” likely to revolutionize entire industries (old and new), redefine tomorrow’s generation of businesses and contemporary challenges, and transform our livelihoods from the bottom up.

Among these metatrends are augmented human longevity, the surging smart economy, AI-human collaboration, urbanized cellular agriculture, and high-bandwidth brain-computer interfaces, just to name a few.

It is here that master entrepreneurs and their teams must see beyond the immediate implications of a given technology, capturing second-order, Google-sized business opportunities on the horizon.

Welcome to a new decade of runaway technological booms, historic watershed moments, and extraordinary abundance.

Let’s dive in.

20 Metatrends for the 2020s
(1) Continued increase in global abundance: The number of individuals in extreme poverty continues to drop, as the middle-income population continues to rise. This metatrend is driven by the convergence of high-bandwidth and low-cost communication, ubiquitous AI on the cloud, and growing access to AI-aided education and AI-driven healthcare. Everyday goods and services (finance, insurance, education, and entertainment) are being digitized and becoming fully demonetized, available to the rising billion on mobile devices.

(2) Global gigabit connectivity will connect everyone and everything, everywhere, at ultra-low cost: The deployment of both licensed and unlicensed 5G, plus the launch of a multitude of global satellite networks (OneWeb, Starlink, etc.), allow for ubiquitous, low-cost communications for everyone, everywhere, not to mention the connection of trillions of devices. And today’s skyrocketing connectivity is bringing online an additional three billion individuals, driving tens of trillions of dollars into the global economy. This metatrend is driven by the convergence of low-cost space launches, hardware advancements, 5G networks, artificial intelligence, materials science, and surging computing power.

(3) The average human healthspan will increase by 10+ years: A dozen game-changing biotech and pharmaceutical solutions (currently in Phase 1, 2, or 3 clinical trials) will reach consumers this decade, adding an additional decade to the human healthspan. Technologies include stem cell supply restoration, wnt pathway manipulation, senolytic medicines, a new generation of endo-vaccines, GDF-11, and supplementation of NMD/NAD+, among several others. And as machine learning continues to mature, AI is set to unleash countless new drug candidates, ready for clinical trials. This metatrend is driven by the convergence of genome sequencing, CRISPR technologies, AI, quantum computing, and cellular medicine.

(4) An age of capital abundance will see increasing access to capital everywhere: From 2016 – 2018 (and likely in 2019), humanity hit all-time highs in the global flow of seed capital, venture capital, and sovereign wealth fund investments. While this trend will witness some ups and downs in the wake of future recessions, it is expected to continue its overall upward trajectory. Capital abundance leads to the funding and testing of ‘crazy’ entrepreneurial ideas, which in turn accelerate innovation. Already, $300 billion in crowdfunding is anticipated by 2025, democratizing capital access for entrepreneurs worldwide. This metatrend is driven by the convergence of global connectivity, dematerialization, demonetization, and democratization.

(5) Augmented reality and the spatial web will achieve ubiquitous deployment: The combination of augmented reality (yielding Web 3.0, or the spatial web) and 5G networks (offering 100Mb/s – 10Gb/s connection speeds) will transform how we live our everyday lives, impacting every industry from retail and advertising to education and entertainment. Consumers will play, learn, and shop throughout the day in a newly intelligent, virtually overlaid world. This metatrend will be driven by the convergence of hardware advancements, 5G networks, artificial intelligence, materials science, and surging computing power.

(6) Everything is smart, embedded with intelligence: The price of specialized machine learning chips is dropping rapidly with a rise in global demand. Combined with the explosion of low-cost microscopic sensors and the deployment of high-bandwidth networks, we’re heading into a decade wherein every device becomes intelligent. Your child’s toy remembers her face and name. Your kids’ drone safely and diligently follows and videos all the children at the birthday party. Appliances respond to voice commands and anticipate your needs.

(7) AI will achieve human-level intelligence: As predicted by technologist and futurist Ray Kurzweil, artificial intelligence will reach human-level performance this decade (by 2030). Through the 2020s, AI algorithms and machine learning tools will be increasingly made open source, available on the cloud, allowing any individual with an internet connection to supplement their cognitive ability, augment their problem-solving capacity, and build new ventures at a fraction of the current cost. This metatrend will be driven by the convergence of global high-bandwidth connectivity, neural networks, and cloud computing. Every industry, spanning industrial design, healthcare, education, and entertainment, will be impacted.

(8) AI-human collaboration will skyrocket across all professions: The rise of “AI as a Service” (AIaaS) platforms will enable humans to partner with AI in every aspect of their work, at every level, in every industry. AIs will become entrenched in everyday business operations, serving as cognitive collaborators to employees—supporting creative tasks, generating new ideas, and tackling previously unattainable innovations. In some fields, partnership with AI will even become a requirement. For example: in the future, making certain diagnoses without the consultation of AI may be deemed malpractice.

(9) Most individuals adapt a JARVIS-like “software shell” to improve their quality of life: As services like Alexa, Google Home, and Apple Homepod expand in functionality, such services will eventually travel beyond the home and become your cognitive prosthetic 24/7. Imagine a secure JARVIS-like software shell that you give permission to listen to all your conversations, read your email, monitor your blood chemistry, etc. With access to such data, these AI-enabled software shells will learn your preferences, anticipate your needs and behavior, shop for you, monitor your health, and help you problem-solve in support of your mid- and long-term goals.

(10) Globally abundant, cheap renewable energy: Continued advancements in solar, wind, geothermal, hydroelectric, nuclear, and localized grids will drive humanity towards cheap, abundant, and ubiquitous renewable energy. The price per kilowatt-hour will drop below one cent per kilowatt-hour for renewables, just as storage drops below a mere three cents per kilowatt-hour, resulting in the majority displacement of fossil fuels globally. And as the world’s poorest countries are also the world’s sunniest, the democratization of both new and traditional storage technologies will grant energy abundance to those already bathed in sunlight.

(11) The insurance industry transforms from “recovery after risk” to “prevention of risk”: Today, fire insurance pays you after your house burns down; life insurance pays your next-of-kin after you die; and health insurance (which is really sick insurance) pays only after you get sick. This next decade, a new generation of insurance providers will leverage the convergence of machine learning, ubiquitous sensors, low-cost genome sequencing, and robotics to detect risk, prevent disaster, and guarantee safety before any costs are incurred.

(12) Autonomous vehicles and flying cars will redefine human travel (soon to be far faster and cheaper): Fully autonomous vehicles, car-as-a-service fleets, and aerial ride-sharing (flying cars) will be fully operational in most major metropolitan cities in the coming decade. The cost of transportation will plummet 3-4X, transforming real estate, finance, insurance, the materials economy, and urban planning. Where you live and work, and how you spend your time, will all be fundamentally reshaped by this future of human travel. Your kids and elderly parents will never drive. This metatrend will be driven by the convergence of machine learning, sensors, materials science, battery storage improvements, and ubiquitous gigabit connections.

(13) On-demand production and on-demand delivery will birth an “instant economy of things”: Urban dwellers will learn to expect “instant fulfillment” of their retail orders as drone and robotic last-mile delivery services carry products from local supply depots directly to your doorstep. Further riding the deployment of regional on-demand digital manufacturing (3D printing farms), individualized products can be obtained within hours, anywhere, anytime. This metatrend is driven by the convergence of networks, 3D printing, robotics, and artificial intelligence.

(14) Ability to sense and know anything, anytime, anywhere: We’re rapidly approaching the era wherein 100 billion sensors (the Internet of Everything) is monitoring and sensing (imaging, listening, measuring) every facet of our environments, all the time. Global imaging satellites, drones, autonomous car LIDARs, and forward-looking augmented reality (AR) headset cameras are all part of a global sensor matrix, together allowing us to know anything, anytime, anywhere. This metatrend is driven by the convergence of terrestrial, atmospheric and space-based sensors, vast data networks, and machine learning. In this future, it’s not “what you know,” but rather “the quality of the questions you ask” that will be most important.

(15) Disruption of advertising: As AI becomes increasingly embedded in everyday life, your custom AI will soon understand what you want better than you do. In turn, we will begin to both trust and rely upon our AIs to make most of our buying decisions, turning over shopping to AI-enabled personal assistants. Your AI might make purchases based upon your past desires, current shortages, conversations you’ve allowed your AI to listen to, or by tracking where your pupils focus on a virtual interface (i.e. what catches your attention). As a result, the advertising industry—which normally competes for your attention (whether at the Superbowl or through search engines)—will have a hard time influencing your AI. This metatrend is driven by the convergence of machine learning, sensors, augmented reality, and 5G/networks.

(16) Cellular agriculture moves from the lab into inner cities, providing high-quality protein that is cheaper and healthier: This next decade will witness the birth of the most ethical, nutritious, and environmentally sustainable protein production system devised by humankind. Stem cell-based ‘cellular agriculture’ will allow the production of beef, chicken, and fish anywhere, on-demand, with far higher nutritional content, and a vastly lower environmental footprint than traditional livestock options. This metatrend is enabled by the convergence of biotechnology, materials science, machine learning, and AgTech.

(17) High-bandwidth brain-computer interfaces (BCIs) will come online for public use: Technologist and futurist Ray Kurzweil has predicted that in the mid-2030s, we will begin connecting the human neocortex to the cloud. This next decade will see tremendous progress in that direction, first serving those with spinal cord injuries, whereby patients will regain both sensory capacity and motor control. Yet beyond assisting those with motor function loss, several BCI pioneers are now attempting to supplement their baseline cognitive abilities, a pursuit with the potential to increase their sensorium, memory, and even intelligence. This metatrend is fueled by the convergence of materials science, machine learning, and robotics.

(18) High-resolution VR will transform both retail and real estate shopping: High-resolution, lightweight virtual reality headsets will allow individuals at home to shop for everything from clothing to real estate from the convenience of their living room. Need a new outfit? Your AI knows your detailed body measurements and can whip up a fashion show featuring your avatar wearing the latest 20 designs on a runway. Want to see how your furniture might look inside a house you’re viewing online? No problem! Your AI can populate the property with your virtualized inventory and give you a guided tour. This metatrend is enabled by the convergence of: VR, machine learning, and high-bandwidth networks.

(19) Increased focus on sustainability and the environment: An increase in global environmental awareness and concern over global warming will drive companies to invest in sustainability, both from a necessity standpoint and for marketing purposes. Breakthroughs in materials science, enabled by AI, will allow companies to drive tremendous reductions in waste and environmental contamination. One company’s waste will become another company’s profit center. This metatrend is enabled by the convergence of materials science, artificial intelligence, and broadband networks.

(20) CRISPR and gene therapies will minimize disease: A vast range of infectious diseases, ranging from AIDS to Ebola, are now curable. In addition, gene-editing technologies continue to advance in precision and ease of use, allowing families to treat and ultimately cure hundreds of inheritable genetic diseases. This metatrend is driven by the convergence of various biotechnologies (CRISPR, gene therapy), genome sequencing, and artificial intelligence.

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2020 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University — your participation opens you to a global community.)

This article originally appeared on diamandis.com. Read the original article here.

Image Credit: Image by Free-Photos from Pixabay Continue reading

Posted in Human Robots

#436488 Tech’s Biggest Leaps From the Last 10 ...

As we enter our third decade in the 21st century, it seems appropriate to reflect on the ways technology developed and note the breakthroughs that were achieved in the last 10 years.

The 2010s saw IBM’s Watson win a game of Jeopardy, ushering in mainstream awareness of machine learning, along with DeepMind’s AlphaGO becoming the world’s Go champion. It was the decade that industrial tools like drones, 3D printers, genetic sequencing, and virtual reality (VR) all became consumer products. And it was a decade in which some alarming trends related to surveillance, targeted misinformation, and deepfakes came online.

For better or worse, the past decade was a breathtaking era in human history in which the idea of exponential growth in information technologies powered by computation became a mainstream concept.

As I did last year for 2018 only, I’ve asked a collection of experts across the Singularity University faculty to help frame the biggest breakthroughs and moments that gave shape to the past 10 years. I asked them what, in their opinion, was the most important breakthrough in their respective fields over the past decade.

My own answer to this question, focused in the space of augmented and virtual reality, would be the stunning announcement in March of 2014 that Facebook acquired Oculus VR for $2 billion. Although VR technology had been around for a while, it was at this precise moment that VR arrived as a consumer technology platform. Facebook, largely fueled by the singular interest of CEO Mark Zuckerberg, has funded the development of this industry, keeping alive the hope that consumer VR can become a sustainable business. In the meantime, VR has continued to grow in sophistication and usefulness, though it has yet to truly take off as a mainstream concept. That will hopefully be a development for the 2020s.

Below is a decade in review across the technology areas that are giving shape to our modern world, as described by the SU community of experts.

Digital Biology
Dr. Tiffany Vora | Faculty Director and Vice Chair, Digital Biology and Medicine, Singularity University

In my mind, this decade of astounding breakthroughs in the life sciences and medicine rests on the achievement of the $1,000 human genome in 2016. More-than-exponentially falling costs of DNA sequencing have driven advances in medicine, agriculture, ecology, genome editing, synthetic biology, the battle against climate change, and our fundamental understanding of life and its breathtaking connections. The “digital” revolution in DNA constituted an important model for harnessing other types of biological information, from personalized bio data to massive datasets spanning populations and species.

Crucially, by aggressively driving down the cost of such analyses, researchers and entrepreneurs democratized access to the source code of life—with attendant financial, cultural, and ethical consequences. Exciting, but take heed: Veritas Genetics spearheaded a $600 genome in 2019, only to have to shutter USA operations due to a money trail tangled with the trade war with China. Stay tuned through the early 2020s to see the pricing of DNA sequencing fall even further … and to experience the many ways that cheaper, faster harvesting of biological data will enrich your daily life.

Cryptocurrency
Alex Gladstein | Chief Strategy Officer, Human Rights Foundation

The past decade has seen Bitcoin go from just an idea on an obscure online message board to a global financial network carrying more than 100 billion dollars in value. And we’re just getting started. One recent defining moment in the cryptocurrency space has been a stunning trend underway in Venezuela, where today, the daily dollar-denominated value of Bitcoin traded now far exceeds the daily dollar-denominated value traded on the Caracas Stock Exchange. It’s just one country, but it’s a significant country, and a paradigm shift.

Governments and corporations are following Bitcoin’s success too, and are looking to launch their own digital currencies. China will launch its “DC/EP” project in the coming months, and Facebook is trying to kickstart its Libra project. There are technical and regulatory uncertainties for both, but one thing is for certain: the era of digital currency has arrived.

Business Strategy and Entrepreneurship
Pascal Finnette | Chair, Entrepreneurship and Open Innovation, Singularity University

For me, without a doubt, the most interesting and quite possibly ground-shifting development in the fields of entrepreneurship and corporate innovation in the last ten years is the rapid maturing of customer-driven product development frameworks such as Lean Startup, and its subsequent adoption by corporates for their own innovation purposes.

Tools and frameworks like the Business Model Canvas, agile (software) development and the aforementioned Lean Startup methodology fundamentally shifted the way we think and go about building products, services, and companies, with many of these tools bursting onto the startup scene in the late 2000s and early 2010s.

As these tools matured they found mass adoption not only in startups around the world, but incumbent companies who eagerly adopted them to increase their own innovation velocity and success.

Energy
Ramez Naam | Co-Chair, Energy and Environment, Singularity University

The 2010s were the decade that saw clean electricity, energy storage, and electric vehicles break through price and performance barriers around the world. Solar, wind, batteries, and EVs started this decade as technologies that had to be subsidized. That was the first phase of their existence. Now they’re entering their third, most disruptive phase, where shifting to clean energy and mobility is cheaper than continuing to use existing coal, gas, or oil infrastructure.

Consider that at the start of 2010, there was no place on earth where building new solar or wind was cheaper than building new coal or gas power generation. By 2015, in some of the sunniest and windiest places on earth, solar and wind had entered their second phase, where they were cost-competitive for new power. And then, in 2018 and 2019, we started to see the edge of the third phase, as building new solar and wind, in some parts of the world, was cheaper than operating existing coal or gas power plants.

Food Technology
Liz Specht, Ph. D | Associate Director of Science & Technology, The Good Food Institute

The arrival of mainstream plant-based meat is easily the food tech advance of the decade. Meat analogs have, of course, been around forever. But only in the last decade have companies like Beyond Meat and Impossible Foods decided to cut animals out of the process and build no-compromise meat directly from plants.

Plant-based meat is already transforming the fast-food industry. For example, the introduction of the Impossible Whopper led Burger King to their most profitable quarter in many years. But the global food industry as a whole is shifting as well. Tyson, JBS, Nestle, Cargill, and many others are all embracing plant-based meat.

Augmented and Virtual Reality
Jody Medich | CEO, Superhuman-x

The breakthrough moment for augmented and virtual reality came in 2013 when Palmer Lucky took apart an Android smartphone and added optic lenses to make the first version of the Oculus Rift. Prior to that moment, we struggled with miniaturizing the components needed to develop low-latency head-worn devices. But thanks to the smartphone race started in 2006 with the iPhone, we finally had a suite of sensors, chips, displays, and computing power small enough to put on the head.

What will the next 10 years bring? Look for AR/VR to explode in a big way. We are right on the cusp of that tipping point when the tech is finally “good enough” for our linear expectations. Given all it can do today, we can’t even picture what’s possible. Just as today we can’t function without our phones, by 2029 we’ll feel lost without some AR/VR product. It will be the way we interact with computing, smart objects, and AI. Tim Cook, Apple CEO, predicts it will replace all of today’s computing devices. I can’t wait.

Philosophy of Technology
Alix Rübsaam | Faculty Fellow, Singularity University, Philosophy of Technology/Ethics of AI

The last decade has seen a significant shift in our general attitude towards the algorithms that we now know dictate much of our surroundings. Looking back at the beginning of the decade, it seems we were blissfully unaware of how the data we freely and willingly surrendered would feed the algorithms that would come to shape every aspect of our daily lives: the news we consume, the products we purchase, the opinions we hold, etc.

If I were to isolate a single publication that contributed greatly to the shift in public discourse on algorithms, it would have to be Cathy O’Neil’s Weapons of Math Destruction from 2016. It remains a comprehensive, readable, and highly informative insight into how algorithms dictate our finances, our jobs, where we go to school, or if we can get health insurance. Its publication represents a pivotal moment when the general public started to question whether we should be OK with outsourcing decision making to these opaque systems.

The ubiquity of ethical guidelines for AI and algorithms published just in the last year (perhaps most comprehensively by the AI Now Institute) fully demonstrates the shift in public opinion of this decade.

Data Science
Ola Kowalewski | Faculty Fellow, Singularity University, Data Innovation

In the last decade we entered the era of internet and smartphone ubiquity. The number of internet users doubled, with nearly 60 percent of the global population connected online and now over 35 percent of the globe owns a smartphone. With billions of people in a state of constant connectedness and therefore in a state of constant surveillance, the companies that have built the tech infrastructure and information pipelines have dominated the global economy. This shift from tech companies being the underdogs to arguably the world’s major powers sets the landscape we enter for the next decade.

Global Grand Challenges
Darlene Damm | Vice Chair, Faculty, Global Grand Challenges, Singularity University

The biggest breakthrough over the last decade in social impact and technology is that the social impact sector switched from seeing technology as something problematic to avoid, to one of the most effective ways to create social change. We now see people using exponential technologies to solve all sorts of social challenges in areas ranging from disaster response to hunger to shelter.

The world’s leading social organizations, such as UNICEF and the World Food Programme, have launched their own venture funds and accelerators, and the United Nations recently declared that digitization is revolutionizing global development.

Digital Biology
Raymond McCauley | Chair, Digital Biology, Singularity University, Co-Founder & Chief Architect, BioCurious; Principal, Exponential Biosciences

CRISPR is bringing about a revolution in genetic engineering. It’s obvious, and it’s huge. What may not be so obvious is the widespread adoption of genetic testing. And this may have an even longer-lasting effect. It’s used to test new babies, to solve medical mysteries, and to catch serial killers. Thanks to holiday ads from 23andMe and Ancestry.com, it’s everywhere. Testing your DNA is now a common over-the-counter product. People are using it to set their diet, to pick drugs, and even for dating (or at least picking healthy mates).

And we’re just in the early stages. Further down the line, doing large-scale studies on more people, with more data, will lead to the use of polygenic risk scores to help us rank our genetic potential for everything from getting cancer to being a genius. Can you imagine what it would be like for parents to pick new babies, GATTACA-style, to get the smartest kids? You don’t have to; it’s already happening.

Artificial Intelligence
Neil Jacobstein | Chair, Artificial Intelligence and Robotics, Singularity University

The convergence of exponentially improved computing power, the deep learning algorithm, and access to massive data resulted in a series of AI breakthroughs over the past decade. These included: vastly improved accuracy in identifying images, making self driving cars practical, beating several world champions in Go, and identifying gender, smoking status, and age from retinal fundus photographs.

Combined, these breakthroughs convinced researchers and investors that after 50+ years of research and development, AI was ready for prime-time applications. Now, virtually every field of human endeavor is being revolutionized by machine learning. We still have a long way to go to achieve human-level intelligence and beyond, but the pace of worldwide improvement is blistering.

Hod Lipson | Professor of Engineering and Data Science, Columbia University

The biggest moment in AI in the past decade (and in its entire history, in my humble opinion) was midnight, Pacific time, September 30, 2012: the moment when machines finally opened their eyes. It was the moment when deep learning took off, breaking stagnant decades of machine blindness, when AI couldn’t reliably tell apart even a cat from a dog. That seemingly trivial accomplishment—a task any one-year-old child can do—has had a ripple effect on AI applications from driverless cars to health diagnostics. And this is just the beginning of what is sure to be a Cambrian explosion of AI.

Neuroscience
Divya Chander | Chair, Neuroscience, Singularity University

If the 2000s were the decade of brain mapping, then the 2010s were the decade of brain writing. Optogenetics, a technique for precisely mapping and controlling neurons and neural circuits using genetically-directed light, saw incredible growth in the 2010s.

Also in the last 10 years, neuromodulation, or the ability to rewire the brain using both invasive and non-invasive interfaces and energy, has exploded in use and form. For instance, the Braingate consortium showed us how electrode arrays implanted into the motor cortex could be used by paralyzed people to use their thoughts to direct a robotic arm. These technologies, alone or in combination with robotics, exoskeletons, and flexible, implantable, electronics also make possible a future of human augmentation.

Image Credit: Image by Jorge Guillen from Pixabay Continue reading

Posted in Human Robots