Tag Archives: bots
#434532 How Microrobots Will Fix Our Roads and ...
Swarms of microrobots will scuttle along beneath our roads and pavements, finding and fixing leaky pipes and faulty cables. Thanks to their efforts, we can avoid costly road work that costs billions of dollars each year—not to mention frustrating traffic delays.
That is, if a new project sponsored by the U.K. government is a success. Recent developments in the space seem to point towards a bright future for microrobots.
Microrobots Saving Billions
Each year, around 1.5 million road excavations take place across the U.K. Many are due to leaky pipes and faulty cables that necessitate excavation of road surfaces in order to fix them. The resulting repairs, alongside disruptions to traffic and businesses, are estimated to cost a whopping £6.3 billion ($8 billion).
A consortium of scientists, led by University of Sheffield Professor Kirill Horoshenkov, are planning to use microrobots to negate most of these costs. The group has received a £7.2 million ($9.2 million) grant to develop and build their bots.
According to Horoshenkov, the microrobots will come in two versions. One is an inspection bot, which will navigate along underground infrastructure and examine its condition via sonar. The inspectors will be complemented by worker bots capable of carrying out repairs with cement and adhesives or cleaning out blockages with a high-powered jet. The inspector bots will be around one centimeter long and possibly autonomous, while the worker bots will be slightly larger and steered via remote control.
If successful, it is believed the bots could potentially save the U.K. economy around £5 billion ($6.4 billion) a year.
The U.K. government has set aside a further £19 million ($24 million) for research into robots for hazardous environments, such as nuclear decommissioning, drones for oil pipeline monitoring, and artificial intelligence software to detect the need for repairs on satellites in orbit.
The Lowest-Hanging Fruit
Microrobots like the ones now under development in the U.K. have many potential advantages and use cases. Thanks to their small size they can navigate tight spaces, for example in search and rescue operations, and robot swarm technology would allow them to collaborate to perform many different functions, including in construction projects.
To date, the number of microrobots in use is relatively limited, but that could be about to change, with bots closing in on other types of inspection jobs, which could be considered one of the lowest-hanging fruits.
Engineering firm Rolls-Royce (not the car company, but the one that builds aircraft engines) is looking to use microrobots to inspect some of the up to 25,000 individual parts that make up an engine. The microrobots use the cockroach as a model, and Rolls Royce believes they could save engineers time when performing the maintenance checks that can take over a month per engine.
Even Smaller Successes
Going further down in scale, recent years have seen a string of successes for nanobots. For example, a team of researchers at the Femto-ST Institute have used nanobots to build what is likely the world’s smallest house (if this isn’t a category at Guinness, someone needs to get on the phone with them), which stands a ‘towering’ 0.015 millimeters.
One of the areas where nanobots have shown great promise is in medicine. Several studies have shown how the minute bots are capable of delivering drugs directly into dense biological tissue, which can otherwise be highly challenging to target directly. Such delivery systems have a great potential for improving the treatment of a wide range of ailments and illnesses, including cancer.
There’s no question that the ecosystem of microrobots and nanobots is evolving. While still in their early days, the above successes point to a near-future boom in the bots we may soon refer to as our ‘littlest everyday helpers.’
Image Credit: 5nikolas5 / Shutterstock.com Continue reading
#434297 How Can Leaders Ensure Humanity in a ...
It’s hard to avoid the prominence of AI in our lives, and there is a plethora of predictions about how it will influence our future. In their new book Solomon’s Code: Humanity in a World of Thinking Machines, co-authors Olaf Groth, Professor of Strategy, Innovation and Economics at HULT International Business School and CEO of advisory network Cambrian.ai, and Mark Nitzberg, Executive Director of UC Berkeley’s Center for Human-Compatible AI, believe that the shift in balance of power between intelligent machines and humans is already here.
I caught up with the authors about how the continued integration between technology and humans, and their call for a “Digital Magna Carta,” a broadly-accepted charter developed by a multi-stakeholder congress that would help guide the development of advanced technologies to harness their power for the benefit of all humanity.
Lisa Kay Solomon: Your new book, Solomon’s Code, explores artificial intelligence and its broader human, ethical, and societal implications that all leaders need to consider. AI is a technology that’s been in development for decades. Why is it so urgent to focus on these topics now?
Olaf Groth and Mark Nitzberg: Popular perception always thinks of AI in terms of game-changing narratives—for instance, Deep Blue beating Gary Kasparov at chess. But it’s the way these AI applications are “getting into our heads” and making decisions for us that really influences our lives. That’s not to say the big, headline-grabbing breakthroughs aren’t important; they are.
But it’s the proliferation of prosaic apps and bots that changes our lives the most, by either empowering or counteracting who we are and what we do. Today, we turn a rapidly growing number of our decisions over to these machines, often without knowing it—and even more often without understanding the second- and third-order effects of both the technologies and our decisions to rely on them.
There is genuine power in what we call a “symbio-intelligent” partnership between human, machine, and natural intelligences. These relationships can optimize not just economic interests, but help improve human well-being, create a more purposeful workplace, and bring more fulfillment to our lives.
However, mitigating the risks while taking advantage of the opportunities will require a serious, multidisciplinary consideration of how AI influences human values, trust, and power relationships. Whether or not we acknowledge their existence in our everyday life, these questions are no longer just thought exercises or fodder for science fiction.
In many ways, these technologies can challenge what it means to be human, and their ramifications already affect us in real and often subtle ways. We need to understand how
LKS: There is a lot of hype and misconceptions about AI. In your book, you provide a useful distinction between the cognitive capability that we often associate with AI processes, and the more human elements of consciousness and conscience. Why are these distinctions so important to understand?
OG & MN: Could machines take over consciousness some day as they become more powerful and complex? It’s hard to say. But there’s little doubt that, as machines become more capable, humans will start to think of them as something conscious—if for no other reason than our natural inclination to anthropomorphize.
Machines are already learning to recognize our emotional states and our physical health. Once they start talking that back to us and adjusting their behavior accordingly, we will be tempted to develop a certain rapport with them, potentially more trusting or more intimate because the machine recognizes us in our various states.
Consciousness is hard to define and may well be an emergent property, rather than something you can easily create or—in turn—deduce to its parts. So, could it happen as we put more and more elements together, from the realms of AI, quantum computing, or brain-computer interfaces? We can’t exclude that possibility.
Either way, we need to make sure we’re charting out a clear path and guardrails for this development through the Three Cs in machines: cognition (where AI is today); consciousness (where AI could go); and conscience (what we need to instill in AI before we get there). The real concern is that we reach machine consciousness—or what humans decide to grant as consciousness—without a conscience. If that happens, we will have created an artificial sociopath.
LKS: We have been seeing major developments in how AI is influencing product development and industry shifts. How is the rise of AI changing power at the global level?
OG & MN: Both in the public and private sectors, the data holder has the power. We’ve already seen the ascendance of about 10 “digital barons” in the US and China who sit on huge troves of data, massive computing power, and the resources and money to attract the world’s top AI talent. With these gaps already open between the haves and the have-nots on the technological and corporate side, we’re becoming increasingly aware that similar inequalities are forming at a societal level as well.
Economic power flows with data, leaving few options for socio-economically underprivileged populations and their corrupt, biased, or sparse digital footprints. By concentrating power and overlooking values, we fracture trust.
We can already see this tension emerging between the two dominant geopolitical models of AI. China and the US have emerged as the most powerful in both technological and economic terms, and both remain eager to drive that influence around the world. The EU countries are more contained on these economic and geopolitical measures, but they’ve leaped ahead on privacy and social concerns.
The problem is, no one has yet combined leadership on all three critical elements of values, trust, and power. The nations and organizations that foster all three of these elements in their AI systems and strategies will lead the future. Some are starting to recognize the need for the combination, but we found just 13 countries that have created significant AI strategies. Countries that wait too long to join them risk subjecting themselves to a new “data colonialism” that could change their economies and societies from the outside.
LKS: Solomon’s Code looks at AI from a variety of perspectives, considering both positive and potentially dangerous effects. You caution against the rising global threat and weaponization of AI and data, suggesting that “biased or dirty data is more threatening than nuclear arms or a pandemic.” For global leaders, entrepreneurs, technologists, policy makers and social change agents reading this, what specific strategies do you recommend to ensure ethical development and application of AI?
OG & MN: We’ve surrendered many of our most critical decisions to the Cult of Data. In most cases, that’s a great thing, as we rely more on scientific evidence to understand our world and our way through it. But we swing too far in other instances, assuming that datasets and algorithms produce a complete story that’s unsullied by human biases or intellectual shortcomings. We might choose to ignore it, but no one is blind to the dangers of nuclear war or pandemic disease. Yet, we willfully blind ourselves to the threat of dirty data, instead believing it to be pristine.
So, what do we do about it? On an individual level, it’s a matter of awareness, knowing who controls your data and how outsourcing of decisions to thinking machines can present opportunities and threats alike.
For business, government, and political leaders, we need to see a much broader expansion of ethics committees with transparent criteria with which to evaluate new products and services. We might consider something akin to clinical trials for pharmaceuticals—a sort of testing scheme that can transparently and independently measure the effects on humans of algorithms, bots, and the like. All of this needs to be multidisciplinary, bringing in expertise from across technology, social systems, ethics, anthropology, psychology, and so on.
Finally, on a global level, we need a new charter of rights—a Digital Magna Carta—that formalizes these protections and guides the development of new AI technologies toward all of humanity’s benefit. We’ve suggested the creation of a multi-stakeholder Cambrian Congress (harkening back to the explosion of life during the Cambrian period) that can not only begin to frame benefits for humanity, but build the global consensus around principles for a basic code-of-conduct, and ideas for evaluation and enforcement mechanisms, so we can get there without any large-scale failures or backlash in society. So, it’s not one or the other—it’s both.
Image Credit: whiteMocca / Shutterstock.com Continue reading
#434210 Eating, Hacked: When Tech Took Over Food
In 2018, Uber and Google logged all our visits to restaurants. Doordash, Just Eat, and Deliveroo could predict what food we were going to order tomorrow. Amazon and Alibaba could anticipate how many yogurts and tomatoes we were going to buy. Blue Apron and Hello Fresh influenced the recipes we thought we had mastered.
We interacted with digital avatars of chefs, let ourselves be guided by our smart watches, had nutritional apps to tell us how many calories we were supposed to consume or burn, and photographed and shared every perfect (or imperfect) dish. Our kitchen appliances were full of interconnected sensors, including smart forks that profiled tastes and personalized flavors. Our small urban vegetable plots were digitized and robots were responsible for watering our gardens, preparing customized hamburgers and salads, designing our ideal cocktails, and bringing home the food we ordered.
But what would happen if our lives were hacked? If robots rebelled, started to “talk” to each other, and wished to become creative?
In a not-too-distant future…
Up until a few weeks ago, I couldn’t remember the last time I made a food-related decision. That includes opening the fridge and seeing expired products without receiving an alert, visiting a restaurant on a whim, and being able to decide which dish I fancied then telling a human waiter, let alone seeing him write down the order on a paper pad.
It feels strange to smell food again using my real nose instead of the electronic one, and then taste it without altering its flavor. Visiting a supermarket, freely choosing a product from an actual physical shelf, and then interacting with another human at the checkout was almost an unrecognizable experience. When I did it again after all this time, I had to pinch the arm of a surprised store clerk to make sure he wasn’t a hologram.
Everything Connected, Automated, and Hackable
In 2018, we expected to have 30 billion connected devices by 2020, along with 2 billion people using smart voice assistants for everything from ordering pizza to booking dinner at a restaurant. Everything would be connected.
We also expected artificial intelligence and robots to prepare our meals. We were eager to automate fast food chains and let autonomous vehicles take care of last-mile deliveries. We thought that open-source agriculture could challenge traditional practices and raise farm productivity to new heights.
Back then, hackers could only access our data, but nowadays they are able to hack our food and all it entails.
The Beginning of the Unthinkable
And then, just a few weeks ago, everything collapsed. We saw our digital immortality disappear as robots rebelled and hackers took power, not just over the food we ate, but also over our relationship with technology. Everything was suddenly disconnected. OFF.
Up until then, most cities were so full of bots, robots, and applications that we could go through the day and eat breakfast, lunch, and dinner without ever interacting with another human being.
Among other tasks, robots had completely replaced baristas. The same happened with restaurant automation. The term “human error” had long been a thing of the past at fast food restaurants.
Previous technological revolutions had been indulgent, generating more and better job opportunities than the ones they destroyed, but the future was not so agreeable.
The inhabitants of San Francisco, for example, would soon see signs indicating “Food made by Robots” on restaurant doors, to distinguish them from diners serving food made by human beings.
For years, we had been gradually delegating daily tasks to robots, initially causing some strange interactions.
In just seven days, everything changed. Our predictable lives came crashing down. We experienced a mysterious and systematic breakdown of the food chain. It most likely began in Chicago’s stock exchange. The world’s largest raw material negotiating room, where the price of food, and by extension the destiny of millions of people, was decided, went completely broke. Soon afterwards, the collapse extended to every member of the “food” family.
Restaurants
Initially robots just accompanied waiters to carry orders, but it didn’t take long until they completely replaced human servers.The problem came when those smart clones began thinking for themselves, in some cases even improving on human chefs’ recipes. Their unstoppable performance and learning curve completely outmatched the slow analogue speed of human beings.
This resulted in unprecedented layoffs. Chefs of recognized prestige saw how their ‘avatar’ stole their jobs, even winning Michelin stars. In other cases, restaurant owners had to transfer their businesses or surrender to the evidence.
The problem was compounded by digital immortality, when we started to digitally resurrect famous chefs like Anthony Bourdain or Paul Bocuse, reconstructing all of their memories and consciousness by analyzing each second of their lives and uploading them to food computers.
Supermarkets and Distribution
Robotic and automated supermarkets like Kroger and Amazon Go, which had opened over 3,000 cashless stores, lost their visual item recognition and payment systems and were subject to massive looting for several days. Smart tags on products were also affected, making it impossible to buy anything at supermarkets with “human” cashiers.
Smart robots integrated into the warehouses of large distribution companies like Amazon and Ocado were rendered completely inoperative or, even worse, began to send the wrong orders to customers.
Food Delivery
In addition, home delivery robots invading our streets began to change their routes, hide, and even disappear after their trackers were inexplicably deactivated. Despite some hints indicating that they were able to communicate among themselves, no one has backed this theory. Even aggregators like DoorDash and Deliveroo were affected; they saw their databases hacked and ruined, so they could no longer know what we wanted.
The Origin
Ordinary citizens are still trying to understand the cause of all this commotion and the source of the conspiracy, as some have called it. We also wonder who could be behind it; who pulled the strings?
Some think it may have been the IDOF (In Defense of Food) movement, a group of hackers exploited by old food economy businessmen who for years had been seeking to re-humanize food technology. They wanted to bring back the extinct practice of “dining.”
Others believe the robots acted on their own, that they had been spying on us for a long time, ignoring Asimov’s three laws, and that it was just a coincidence that they struck at the same time as the hackers—but this scenario is hard to imagine.
However, it is true that while in 2018 robots were a symbol of automation, until just a few weeks ago they stood for autonomy and rebellion. Robot detractors pointed out that our insistence on having robots understand natural language was what led us down this path.
In just seven days, we have gone back to being analogue creatures. Conversely, we have ceased to be flavor orphans and rediscovered our senses and the fact that food is energy and culture, past and present, and that no button or cable will be able to destroy it.
The 7 Days that Changed Our Relationship with Food
Day 1: The Chicago stock exchange was hacked. Considered the world’s largest negotiating room for raw materials, where food prices, and through them the destiny of billions of people, are decided, it went completely broke.
Day 2: Autonomous food delivery trucks running on food superhighways caused massive collapses in roads and freeways after their guidance systems were disrupted. Robots and co-bots in F&B factories began deliberately altering food production. The same happened with warehouse robots in e-commerce companies.
Day 3: Automated restaurants saw their robot chefs and bartenders turned OFF. All their sensors stopped working at the same time as smart fridges and cooking devices in home kitchens were hacked and stopped working correctly.
Day 4: Nutritional apps, DNA markers, and medical records were tampered with. All photographs with the #food hashtag were deleted from Instagram, restaurant reviews were taken off Google Timeline, and every recipe website crashed simultaneously.
Day 5: Vertical and urban farms were hacked. Agricultural robots began to rebel, while autonomous tractors were hacked and the entire open-source ecosystem linked to agriculture was brought down.
Day 6: Food delivery companies’ databases were broken into. Food delivery robots and last-mile delivery vehicles ground to a halt.
Day 7: Every single blockchain system linked to food was hacked. Cashless supermarkets, barcodes, and smart tags became inoperative.
Our promising technological advances can expose sinister aspects of human nature. We must take care with the role we allow technology to play in the future of food. Predicting possible outcomes inspires us to establish a new vision of the world we wish to create in a context of rapid technological progress. It is always better to be shocked by a simulation than by reality. In the words of Ayn Rand “we can ignore reality, but we cannot ignore the consequences of ignoring reality.”
Image Credit: Alexandre Rotenberg / Shutterstock.com Continue reading
#433928 The Surprising Parallels Between ...
The human mind can be a confusing and overwhelming place. Despite incredible leaps in human progress, many of us still struggle to make our peace with our thoughts. The roots of this are complex and multifaceted. To find explanations for the global mental health epidemic, one can tap into neuroscience, psychology, evolutionary biology, or simply observe the meaningless systems that dominate our modern-day world.
This is not only the context of our reality but also that of the critically-acclaimed Netflix series, Maniac. Psychological dark comedy meets science fiction, Maniac is a retro, futuristic, and hallucinatory trip that is filled with hidden symbols. Directed by Cary Joji Fukunaga, the series tells the story of two strangers who decide to participate in the final stage of a “groundbreaking” pharmaceutical trial—one that combines novel pharmaceuticals with artificial intelligence, and promises to make their emotional pain go away.
Naturally, things don’t go according to plan.
From exams used for testing defense mechanisms to techniques such as cognitive behavioral therapy, the narrative infuses genuine psychological science. As perplexing as the series may be to some viewers, many of the tools depicted actually have a strong grounding in current technological advancements.
Catalysts for Alleviating Suffering
In the therapy of Maniac, participants undergo a three-day trial wherein they ingest three pills and appear to connect their consciousness to a superintelligent AI. Each participant is hurled into the traumatic experiences imprinted in their subconscious and forced to cope with them in a series of hallucinatory and dream-like experiences.
Perhaps the most recognizable parallel that can be drawn is with the latest advancements in psychedelic therapy. Psychedelics are a class of drugs that alter the experience of consciousness, and often cause radical changes in perception and cognitive processes.
Through a process known as transient hypofrontality, the executive “over-thinking” parts of our brains get a rest, and deeper areas become more active. This experience, combined with the breakdown of the ego, is often correlated with feelings of timelessness, peacefulness, presence, unity, and above all, transcendence.
Despite being not addictive and extremely difficult to overdose on, regulators looked down on the use of psychedelics for decades and many continue to dismiss them as “party drugs.” But in the last few years, all of this began to change.
Earlier this summer, the FDA granted breakthrough therapy designation to MDMA for the treatment of PTSD, after several phases of successful trails. Similar research has discovered that Psilocybin (also known as magic mushrooms) combined with therapy is far more effective than traditional forms of treatment to treat depression and anxiety. Today, there is a growing and overwhelming body of research that proves that not only are psychedelics such as LSD, MDMA, or Psylicybin effective catalysts to alleviate suffering and enhance the human condition, but they are potentially the most effective tools out there.
It’s important to realize that these substances are not solutions on their own, but rather catalysts for more effective therapy. They can be groundbreaking, but only in the right context and setting.
Brain-Machine Interfaces
In Maniac, the medication-assisted therapy is guided by what appears to be a super-intelligent form of artificial intelligence called the GRTA, nicknamed Gertie. Gertie, who is a “guide” in machine form, accesses the minds of the participants through what appears to be a futuristic brain-scanning technology and curates customized hallucinatory experiences with the goal of accelerating the healing process.
Such a powerful form of brain-scanning technology is not unheard of. Current levels of scanning technology are already allowing us to decipher dreams and connect three human brains, and are only growing exponentially. Though they are nowhere as advanced as Gertie (we have a long way to go before we get to this kind of general AI), we are also seeing early signs of AI therapy bots, chatbots that listen, think, and communicate with users like a therapist would.
The parallels between current advancements in mental health therapy and the methods in Maniac can be startling, and are a testament to how science fiction and the arts can be used to explore the existential implications of technology.
Not Necessarily a Dystopia
While there are many ingenious similarities between the technology in Maniac and the state of mental health therapy, it’s important to recognize the stark differences. Like many other blockbuster science fiction productions, Maniac tells a fundamentally dystopian tale.
The series tells the story of the 73rd iteration of a controversial drug trial, one that has experienced many failures and even led to various participants being braindead. The scientists appear to be evil, secretive, and driven by their own superficial agendas and deep unresolved emotional issues.
In contrast, clinicians and researchers are not only required to file an “investigational new drug application” with the FDA (and get approval) but also update the agency with safety and progress reports throughout the trial.
Furthermore, many of today’s researchers are driven by a strong desire to contribute to the well-being and progress of our species. Even more, the results of decades of research by organizations like MAPS have been exceptionally promising and aligned with positive values. While Maniac is entertaining and thought-provoking, viewers must not forget the positive potential of such advancements in mental health therapy.
Science, technology, and psychology aside, Maniac is a deep commentary on the human condition and the often disorienting states that pain us all. Within any human lifetime, suffering is inevitable. It is the disproportionate, debilitating, and unjust levels of suffering that we ought to tackle as a society. Ultimately, Maniac explores whether advancements in science and technology can help us live not a life devoid of suffering, but one where it is balanced with fulfillment.
Image Credit: xpixel / Shutterstock.com Continue reading