Tag Archives: both

#433776 Why We Should Stop Conflating Human and ...

It’s common to hear phrases like ‘machine learning’ and ‘artificial intelligence’ and believe that somehow, someone has managed to replicate a human mind inside a computer. This, of course, is untrue—but part of the reason this idea is so pervasive is because the metaphor of human learning and intelligence has been quite useful in explaining machine learning and artificial intelligence.

Indeed, some AI researchers maintain a close link with the neuroscience community, and inspiration runs in both directions. But the metaphor can be a hindrance to people trying to explain machine learning to those less familiar with it. One of the biggest risks of conflating human and machine intelligence is that we start to hand over too much agency to machines. For those of us working with software, it’s essential that we remember the agency is human—it’s humans who build these systems, after all.

It’s worth unpacking the key differences between machine and human intelligence. While there are certainly similarities, it’s by looking at what makes them different that we can better grasp how artificial intelligence works, and how we can build and use it effectively.

Neural Networks
Central to the metaphor that links human and machine learning is the concept of a neural network. The biggest difference between a human brain and an artificial neural net is the sheer scale of the brain’s neural network. What’s crucial is that it’s not simply the number of neurons in the brain (which reach into the billions), but more precisely, the mind-boggling number of connections between them.

But the issue runs deeper than questions of scale. The human brain is qualitatively different from an artificial neural network for two other important reasons: the connections that power it are analogue, not digital, and the neurons themselves aren’t uniform (as they are in an artificial neural network).

This is why the brain is such a complex thing. Even the most complex artificial neural network, while often difficult to interpret and unpack, has an underlying architecture and principles guiding it (this is what we’re trying to do, so let’s construct the network like this…).

Intricate as they may be, neural networks in AIs are engineered with a specific outcome in mind. The human mind, however, doesn’t have the same degree of intentionality in its engineering. Yes, it should help us do all the things we need to do to stay alive, but it also allows us to think critically and creatively in a way that doesn’t need to be programmed.

The Beautiful Simplicity of AI
The fact that artificial intelligence systems are so much simpler than the human brain is, ironically, what enables AIs to deal with far greater computational complexity than we can.

Artificial neural networks can hold much more information and data than the human brain, largely due to the type of data that is stored and processed in a neural network. It is discrete and specific, like an entry on an excel spreadsheet.

In the human brain, data doesn’t have this same discrete quality. So while an artificial neural network can process very specific data at an incredible scale, it isn’t able to process information in the rich and multidimensional manner a human brain can. This is the key difference between an engineered system and the human mind.

Despite years of research, the human mind still remains somewhat opaque. This is because the analog synaptic connections between neurons are almost impenetrable to the digital connections within an artificial neural network.

Speed and Scale
Consider what this means in practice. The relative simplicity of an AI allows it to do a very complex task very well, and very quickly. A human brain simply can’t process data at scale and speed in the way AIs need to if they’re, say, translating speech to text, or processing a huge set of oncology reports.

Essential to the way AI works in both these contexts is that it breaks data and information down into tiny constituent parts. For example, it could break sounds down into phonetic text, which could then be translated into full sentences, or break images into pieces to understand the rules of how a huge set of them is composed.

Humans often do a similar thing, and this is the point at which machine learning is most like human learning; like algorithms, humans break data or information into smaller chunks in order to process it.

But there’s a reason for this similarity. This breakdown process is engineered into every neural network by a human engineer. What’s more, the way this process is designed will be down to the problem at hand. How an artificial intelligence system breaks down a data set is its own way of ‘understanding’ it.

Even while running a highly complex algorithm unsupervised, the parameters of how an AI learns—how it breaks data down in order to process it—are always set from the start.

Human Intelligence: Defining Problems
Human intelligence doesn’t have this set of limitations, which is what makes us so much more effective at problem-solving. It’s the human ability to ‘create’ problems that makes us so good at solving them. There’s an element of contextual understanding and decision-making in the way humans approach problems.

AIs might be able to unpack problems or find new ways into them, but they can’t define the problem they’re trying to solve.

Algorithmic insensitivity has come into focus in recent years, with an increasing number of scandals around bias in AI systems. Of course, this is caused by the biases of those making the algorithms, but underlines the point that algorithmic biases can only be identified by human intelligence.

Human and Artificial Intelligence Should Complement Each Other
We must remember that artificial intelligence and machine learning aren’t simply things that ‘exist’ that we can no longer control. They are built, engineered, and designed by us. This mindset puts us in control of the future, and makes algorithms even more elegant and remarkable.

Image Credit: Liu zishan/Shutterstock Continue reading

Posted in Human Robots

#433770 Will Tech Make Insurance Obsolete in the ...

We profit from it, we fear it, and we find it impossibly hard to quantify: risk.

While not the sexiest of industries, insurance can be a life-saving protector, pooling everyone’s premiums to safeguard against some of our greatest, most unexpected losses.

One of the most profitable in the world, the insurance industry exceeded $1.2 trillion in annual revenue since 2011 in the US alone.

But risk is becoming predictable. And insurance is getting disrupted fast.

By 2025, we’ll be living in a trillion-sensor economy. And as we enter a world where everything is measured all the time, we’ll start to transition from protecting against damages to preventing them in the first place.

But what happens to health insurance when Big Brother is always watching? Do rates go up when you sneak a cigarette? Do they go down when you eat your vegetables?

And what happens to auto insurance when most cars are autonomous? Or life insurance when the human lifespan doubles?

For that matter, what happens to insurance brokers when blockchain makes them irrelevant?

In this article, I’ll be discussing four key transformations:

Sensors and AI replacing your traditional broker
Blockchain
The ecosystem approach
IoT and insurance connectivity

Let’s dive in.

AI and the Trillion-Sensor Economy
As sensors continue to proliferate across every context—from smart infrastructure to millions of connected home devices to medicine—smart environments will allow us to ask any question, anytime, anywhere.

And as I often explain, once your AI has access to this treasure trove of ubiquitous sensor data in real time, it will be the quality of your questions that make or break your business.

But perhaps the most exciting insurance application of AI’s convergence with sensors is in healthcare. Tremendous advances in genetic screening are empowering us with predictive knowledge about our long-term health risks.

Leading the charge in genome sequencing, Illumina predicts that in a matter of years, decoding the full human genome will drop to $100, taking merely one hour to complete. Other companies are racing to get you sequences faster and cheaper.

Adopting an ecosystem approach, incumbent insurers and insurtech firms will soon be able to collaborate to provide risk-minimizing services in the health sector. Using sensor data and AI-driven personalized recommendations, insurance partnerships could keep consumers healthy, dramatically reducing the cost of healthcare.

Some fear that information asymmetry will allow consumers to learn of their health risks and leave insurers in the dark. However, both parties could benefit if insurers become part of the screening process.

A remarkable example of this is Gilad Meiri’s company, Neura AI. Aiming to predict health patterns, Neura has developed machine learning algorithms that analyze data from all of a user’s connected devices (sometimes from up to 54 apps!).

Neura predicts a user’s behavior and draws staggering insights about consumers’ health risks. Meiri soon began selling his personal risk assessment tool to insurers, who could then help insured customers mitigate long-term health risks.

But artificial intelligence will impact far more than just health insurance.

In October of 2016, a claim was submitted to Lemonade, the world’s first peer-to-peer insurance company. Rather than being processed by a human, every step in this claim resolution chain—from initial triage through fraud mitigation through final payment—was handled by an AI.

This transaction marks the first time an AI has processed an insurance claim. And it won’t be the last. A traditional human-processed claim takes 40 days to pay out. In Lemonade’s case, payment was transferred within three seconds.

However, Lemonade’s achievement only marks a starting point. Over the course of the next decade, nearly every facet of the insurance industry will undergo a similarly massive transformation.

New business models like peer-to-peer insurance are replacing traditional brokerage relationships, while AI and blockchain pairings significantly reduce the layers of bureaucracy required (with each layer getting a cut) for traditional insurance.

Consider Juniper, a startup that scrapes social media to build your risk assessment, subsequently asking you 12 questions via an iPhone app. Geared with advanced analytics, the platform can generate a million-dollar life insurance policy, approved in less than five minutes.

But what’s keeping all your data from unwanted hands?

Blockchain Building Trust
Current distrust in centralized financial services has led to staggering rates of underinsurance. Add to this fear of poor data and privacy protection, particularly in the wake of 2017’s widespread cybercriminal hacks.

Enabling secure storage and transfer of personal data, blockchain holds remarkable promise against the fraudulent activity that often plagues insurance firms.

The centralized model of insurance companies and other organizations is becoming redundant. Developing blockchain-based solutions for capital markets, Symbiont develops smart contracts to execute payments with little to no human involvement.

But distributed ledger technology (DLT) is enabling far more than just smart contracts.

Also targeting insurance is Tradle, leveraging blockchain for its proclaimed goal of “building a trust provisioning network.” Built around “know-your-customer” (KYC) data, Tradle aims to verify KYC data so that it can be securely forwarded to other firms without any further verification.

By requiring a certain number of parties to reuse pre-verified data, the platform makes your data much less vulnerable to hacking and allows you to keep it on a personal device. Only its verification—let’s say of a transaction or medical exam—is registered in the blockchain.

As insurance data grow increasingly decentralized, key insurance players will experience more and more pressure to adopt an ecosystem approach.

The Ecosystem Approach
Just as exponential technologies converge to provide new services, exponential businesses must combine the strengths of different sectors to expand traditional product lines.

By partnering with platform-based insurtech firms, forward-thinking insurers will no longer serve only as reactive policy-providers, but provide risk-mitigating services as well.

Especially as digital technologies demonetize security services—think autonomous vehicles—insurers must create new value chains and span more product categories.

For instance, France’s multinational AXA recently partnered with Alibaba and Ant Financial Services to sell a varied range of insurance products on Alibaba’s global e-commerce platform at the click of a button.

Building another ecosystem, Alibaba has also collaborated with Ping An Insurance and Tencent to create ZhongAn Online Property and Casualty Insurance—China’s first internet-only insurer, offering over 300 products. Now with a multibillion-dollar valuation, Zhong An has generated about half its business from selling shipping return insurance to Alibaba consumers.

But it doesn’t stop there. Insurers that participate in digital ecosystems can now sell risk-mitigating services that prevent damage before it occurs.

Imagine a corporate manufacturer whose sensors collect data on environmental factors affecting crop yield in an agricultural community. With the backing of investors and advanced risk analytics, such a manufacturer could sell crop insurance to farmers. By implementing an automated, AI-driven UI, they could automatically make payments when sensors detect weather damage to crops.

Now let’s apply this concept to your house, your car, your health insurance.

What’s stopping insurers from partnering with third-party IoT platforms to predict fires, collisions, chronic heart disease—and then empowering the consumer with preventive services?

This brings us to the powerful field of IoT.

Internet of Things and Insurance Connectivity
Leap ahead a few years. With a centralized hub like Echo, your smart home protects itself with a network of sensors. While gone, you’ve left on a gas burner and your internet-connected stove notifies you via a home app.

Better yet, home sensors monitoring heat and humidity levels run this data through an AI, which then remotely controls heating, humidity levels, and other connected devices based on historical data patterns and fire risk factors.

Several firms are already working toward this reality.

AXA plans to one day cooperate with a centralized home hub whereby remote monitoring will collect data for future analysis and detect abnormalities.

With remote monitoring and app-centralized control for users, MonAXA is aimed at customizing insurance bundles. These would reflect exact security features embedded in smart homes.

Wouldn’t you prefer not to have to rely on insurance after a burglary? With digital ecosystems, insurers may soon prevent break-ins from the start.

By gathering sensor data from third parties on neighborhood conditions, historical theft data, suspicious activity and other risk factors, an insurtech firm might automatically put your smart home on high alert, activating alarms and specialized locks in advance of an attack.

Insurance policy premiums are predicted to vastly reduce with lessened likelihood of insured losses. But insurers moving into preventive insurtech will likely turn a profit from other areas of their business. PricewaterhouseCoopers predicts that the connected home market will reach $149 billion USD by 2020.

Let’s look at car insurance.

Car insurance premiums are currently calculated according to the driver and traits of the car. But as more autonomous vehicles take to the roads, not only does liability shift to manufacturers and software engineers, but the risk of collision falls dramatically.

But let’s take this a step further.

In a future of autonomous cars, you will no longer own your car, instead subscribing to Transport as a Service (TaaS) and giving up the purchase of automotive insurance altogether.

This paradigm shift has already begun with Waymo, which automatically provides passengers with insurance every time they step into a Waymo vehicle.

And with the rise of smart traffic systems, sensor-embedded roads, and skyrocketing autonomous vehicle technology, the risks involved in transit only continue to plummet.

Final Thoughts
Insurtech firms are hitting the market fast. IoT, autonomous vehicles and genetic screening are rapidly making us invulnerable to risk. And AI-driven services are quickly pushing conventional insurers out of the market.

By 2024, roll-out of 5G on the ground, as well as OneWeb and Starlink in orbit are bringing 4.2 billion new consumers to the web—most of whom will need insurance. Yet, because of the changes afoot in the industry, none of them will buy policies from a human broker.

While today’s largest insurance companies continue to ignore this fact at their peril (and this segment of the market), thousands of entrepreneurs see it more clearly: as one of the largest opportunities ahead.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: 24Novembers / Shutterstock.com Continue reading

Posted in Human Robots

#433758 DeepMind’s New Research Plan to Make ...

Making sure artificial intelligence does what we want and behaves in predictable ways will be crucial as the technology becomes increasingly ubiquitous. It’s an area frequently neglected in the race to develop products, but DeepMind has now outlined its research agenda to tackle the problem.

AI safety, as the field is known, has been gaining prominence in recent years. That’s probably at least partly down to the overzealous warnings of a coming AI apocalypse from well-meaning, but underqualified pundits like Elon Musk and Stephen Hawking. But it’s also recognition of the fact that AI technology is quickly pervading all aspects of our lives, making decisions on everything from what movies we watch to whether we get a mortgage.

That’s why DeepMind hired a bevy of researchers who specialize in foreseeing the unforeseen consequences of the way we built AI back in 2016. And now the team has spelled out the three key domains they think require research if we’re going to build autonomous machines that do what we want.

In a new blog designed to provide updates on the team’s work, they introduce the ideas of specification, robustness, and assurance, which they say will act as the cornerstones of their future research. Specification involves making sure AI systems do what their operator intends; robustness means a system can cope with changes to its environment and attempts to throw it off course; and assurance involves our ability to understand what systems are doing and how to control them.

A classic thought experiment designed to illustrate how we could lose control of an AI system can help illustrate the problem of specification. Philosopher Nick Bostrom’s posited a hypothetical machine charged with making as many paperclips as possible. Because the creators fail to add what they might assume are obvious additional goals like not harming people, the AI wipes out humanity so we can’t switch it off before turning all matter in the universe into paperclips.

Obviously the example is extreme, but it shows how a poorly-specified goal can lead to unexpected and disastrous outcomes. Properly codifying the desires of the designer is no easy feat, though; often there are not neat ways to encompass both the explicit and implicit goals in ways that are understandable to the machine and don’t leave room for ambiguities, meaning we often rely on incomplete approximations.

The researchers note recent research by OpenAI in which an AI was trained to play a boat-racing game called CoastRunners. The game rewards players for hitting targets laid out along the race route. The AI worked out that it could get a higher score by repeatedly knocking over regenerating targets rather than actually completing the course. The blog post includes a link to a spreadsheet detailing scores of such examples.

Another key concern for AI designers is making their creation robust to the unpredictability of the real world. Despite their superhuman abilities on certain tasks, most cutting-edge AI systems are remarkably brittle. They tend to be trained on highly-curated datasets and so can fail when faced with unfamiliar input. This can happen by accident or by design—researchers have come up with numerous ways to trick image recognition algorithms into misclassifying things, including thinking a 3D printed tortoise was actually a gun.

Building systems that can deal with every possible encounter may not be feasible, so a big part of making AIs more robust may be getting them to avoid risks and ensuring they can recover from errors, or that they have failsafes to ensure errors don’t lead to catastrophic failure.

And finally, we need to have ways to make sure we can tell whether an AI is performing the way we expect it to. A key part of assurance is being able to effectively monitor systems and interpret what they’re doing—if we’re basing medical treatments or sentencing decisions on the output of an AI, we’d like to see the reasoning. That’s a major outstanding problem for popular deep learning approaches, which are largely indecipherable black boxes.

The other half of assurance is the ability to intervene if a machine isn’t behaving the way we’d like. But designing a reliable off switch is tough, because most learning systems have a strong incentive to prevent anyone from interfering with their goals.

The authors don’t pretend to have all the answers, but they hope the framework they’ve come up with can help guide others working on AI safety. While it may be some time before AI is truly in a position to do us harm, hopefully early efforts like these will mean it’s built on a solid foundation that ensures it is aligned with our goals.

Image Credit: cono0430 / Shutterstock.com Continue reading

Posted in Human Robots

#433728 AI Is Kicking Space Exploration into ...

Artificial intelligence in space exploration is gathering momentum. Over the coming years, new missions look likely to be turbo-charged by AI as we voyage to comets, moons, and planets and explore the possibilities of mining asteroids.

“AI is already a game-changer that has made scientific research and exploration much more efficient. We are not just talking about a doubling but about a multiple of ten,” Leopold Summerer, Head of the Advanced Concepts and Studies Office at ESA, said in an interview with Singularity Hub.

Examples Abound
The history of AI and space exploration is older than many probably think. It has already played a significant role in research into our planet, the solar system, and the universe. As computer systems and software have developed, so have AI’s potential use cases.

The Earth Observer 1 (EO-1) satellite is a good example. Since its launch in the early 2000s, its onboard AI systems helped optimize analysis of and response to natural occurrences, like floods and volcanic eruptions. In some cases, the AI was able to tell EO-1 to start capturing images before the ground crew were even aware that the occurrence had taken place.

Other satellite and astronomy examples abound. Sky Image Cataloging and Analysis Tool (SKICAT) has assisted with the classification of objects discovered during the second Palomar Sky Survey, classifying thousands more objects caught in low resolution than a human would be able to. Similar AI systems have helped astronomers to identify 56 new possible gravitational lenses that play a crucial role in connection with research into dark matter.

AI’s ability to trawl through vast amounts of data and find correlations will become increasingly important in relation to getting the most out of the available data. ESA’s ENVISAT produces around 400 terabytes of new data every year—but will be dwarfed by the Square Kilometre Array, which will produce around the same amount of data that is currently on the internet in a day.

AI Readying For Mars
AI is also being used for trajectory and payload optimization. Both are important preliminary steps to NASA’s next rover mission to Mars, the Mars 2020 Rover, which is, slightly ironically, set to land on the red planet in early 2021.

An AI known as AEGIS is already on the red planet onboard NASA’s current rovers. The system can handle autonomous targeting of cameras and choose what to investigate. However, the next generation of AIs will be able to control vehicles, autonomously assist with study selection, and dynamically schedule and perform scientific tasks.

Throughout his career, John Leif Jørgensen from DTU Space in Denmark has designed equipment and systems that have been on board about 100 satellites—and counting. He is part of the team behind the Mars 2020 Rover’s autonomous scientific instrument PIXL, which makes extensive use of AI. Its purpose is to investigate whether there have been lifeforms like stromatolites on Mars.

“PIXL’s microscope is situated on the rover’s arm and needs to be placed 14 millimetres from what we want it to study. That happens thanks to several cameras placed on the rover. It may sound simple, but the handover process and finding out exactly where to place the arm can be likened to identifying a building from the street from a picture taken from the roof. This is something that AI is eminently suited for,” he said in an interview with Singularity Hub.

AI also helps PIXL operate autonomously throughout the night and continuously adjust as the environment changes—the temperature changes between day and night can be more than 100 degrees Celsius, meaning that the ground beneath the rover, the cameras, the robotic arm, and the rock being studied all keep changing distance.

“AI is at the core of all of this work, and helps almost double productivity,” Jørgensen said.

First Mars, Then Moons
Mars is likely far from the final destination for AIs in space. Jupiter’s moons have long fascinated scientists. Especially Europa, which could house a subsurface ocean, buried beneath an approximately 10 km thick ice crust. It is one of the most likely candidates for finding life elsewhere in the solar system.

While that mission may be some time in the future, NASA is currently planning to launch the James Webb Space Telescope into an orbit of around 1.5 million kilometers from Earth in 2020. Part of the mission will involve AI-empowered autonomous systems overseeing the full deployment of the telescope’s 705-kilo mirror.

The distances between Earth and Europa, or Earth and the James Webb telescope, means a delay in communications. That, in turn, makes it imperative for the crafts to be able to make their own decisions. Examples from the Mars Rover project show that communication between a rover and Earth can take 20 minutes because of the vast distance. A Europa mission would see much longer communication times.

Both missions, to varying degrees, illustrate one of the most significant challenges currently facing the use of AI in space exploration. There tends to be a direct correlation between how well AI systems perform and how much data they have been fed. The more, the better, as it were. But we simply don’t have very much data to feed such a system about what it’s likely to encounter on a mission to a place like Europa.

Computing power presents a second challenge. A strenuous, time-consuming approval process and the risk of radiation mean that your computer at home would likely be more powerful than anything going into space in the near future. A 200 GHz processor, 256 megabytes of ram, and 2 gigabytes of memory sounds a lot more like a Nokia 3210 (the one you could use as an ice hockey puck without it noticing) than an iPhone X—but it’s actually the ‘brain’ that will be onboard the next rover.

Private Companies Taking Off
Private companies are helping to push those limitations. CB Insights charts 57 startups in the space-space, covering areas as diverse as natural resources, consumer tourism, R&D, satellites, spacecraft design and launch, and data analytics.

David Chew works as an engineer for the Japanese satellite company Axelspace. He explained how private companies are pushing the speed of exploration and lowering costs.

“Many private space companies are taking advantage of fall-back systems and finding ways of using parts and systems that traditional companies have thought of as non-space-grade. By implementing fall-backs, and using AI, it is possible to integrate and use parts that lower costs without adding risk of failure,” he said in an interview with Singularity Hub.

Terraforming Our Future Home
Further into the future, moonshots like terraforming Mars await. Without AI, these kinds of projects to adapt other planets to Earth-like conditions would be impossible.

Autonomous crafts are already terraforming here on Earth. BioCarbon Engineering uses drones to plant up to 100,000 trees in a single day. Drones first survey and map an area, then an algorithm decides the optimal locations for the trees before a second wave of drones carry out the actual planting.

As is often the case with exponential technologies, there is a great potential for synergies and convergence. For example with AI and robotics, or quantum computing and machine learning. Why not send an AI-driven robot to Mars and use it as a telepresence for scientists on Earth? It could be argued that we are already in the early stages of doing just that by using VR and AR systems that take data from the Mars rovers and create a virtual landscape scientists can walk around in and make decisions on what the rovers should explore next.

One of the biggest benefits of AI in space exploration may not have that much to do with its actual functions. Chew believes that within as little as ten years, we could see the first mining of asteroids in the Kuiper Belt with the help of AI.

“I think one of the things that AI does to space exploration is that it opens up a whole range of new possible industries and services that have a more immediate effect on the lives of people on Earth,” he said. “It becomes a relatable industry that has a real effect on people’s daily lives. In a way, space exploration becomes part of people’s mindset, and the border between our planet and the solar system becomes less important.”

Image Credit: Taily / Shutterstock.com Continue reading

Posted in Human Robots

#433717 Could an artificial intelligence be ...

Humans aren't the only people in society – at least according to the law. In the U.S., corporations have been given rights of free speech and religion. Some natural features also have person-like rights. But both of those required changes to the legal system. A new argument has laid a path for artificial intelligence systems to be recognized as people too – without any legislation, court rulings or other revisions to existing law. Continue reading

Posted in Human Robots