Tag Archives: both
#435474 Watch China’s New Hybrid AI Chip Power ...
When I lived in Beijing back in the 90s, a man walking his bike was nothing to look at. But today, I did a serious double-take at a video of a bike walking his man.
No kidding.
The bike itself looks overloaded but otherwise completely normal. Underneath its simplicity, however, is a hybrid computer chip that combines brain-inspired circuits with machine learning processes into a computing behemoth. Thanks to its smart chip, the bike self-balances as it gingerly rolls down a paved track before smoothly gaining speed into a jogging pace while navigating dexterously around obstacles. It can even respond to simple voice commands such as “speed up,” “left,” or “straight.”
Far from a circus trick, the bike is a real-world demo of the AI community’s latest attempt at fashioning specialized hardware to keep up with the challenges of machine learning algorithms. The Tianjic (天机*) chip isn’t just your standard neuromorphic chip. Rather, it has the architecture of a brain-like chip, but can also run deep learning algorithms—a match made in heaven that basically mashes together neuro-inspired hardware and software.
The study shows that China is readily nipping at the heels of Google, Facebook, NVIDIA, and other tech behemoths investing in developing new AI chip designs—hell, with billions in government investment it may have already had a head start. A sweeping AI plan from 2017 looks to catch up with the US on AI technology and application by 2020. By 2030, China’s aiming to be the global leader—and a champion for building general AI that matches humans in intellectual competence.
The country’s ambition is reflected in the team’s parting words.
“Our study is expected to stimulate AGI [artificial general intelligence] development by paving the way to more generalized hardware platforms,” said the authors, led by Dr. Luping Shi at Tsinghua University.
A Hardware Conundrum
Shi’s autonomous bike isn’t the first robotic two-wheeler. Back in 2015, the famed research nonprofit SRI International in Menlo Park, California teamed up with Yamaha to engineer MOTOBOT, a humanoid robot capable of driving a motorcycle. Powered by state-of-the-art robotic hardware and machine learning, MOTOBOT eventually raced MotoGPTM world champion Valentino Rossi in a nail-biting match-off.
However, the technological core of MOTOBOT and Shi’s bike vastly differ, and that difference reflects two pathways towards more powerful AI. One, exemplified by MOTOBOT, is software—developing brain-like algorithms with increasingly efficient architecture, efficacy, and speed. That sounds great, but deep neural nets demand so many computational resources that general-purpose chips can’t keep up.
As Shi told China Science Daily: “CPUs and other chips are driven by miniaturization technologies based on physics. Transistors might shrink to nanoscale-level in 10, 20 years. But what then?” As more transistors are squeezed onto these chips, efficient cooling becomes a limiting factor in computational speed. Tax them too much, and they melt.
For AI processes to continue, we need better hardware. An increasingly popular idea is to build neuromorphic chips, which resemble the brain from the ground up. IBM’s TrueNorth, for example, contains a massively parallel architecture nothing like the traditional Von Neumann structure of classic CPUs and GPUs. Similar to biological brains, TrueNorth’s memory is stored within “synapses” between physical “neurons” etched onto the chip, which dramatically cuts down on energy consumption.
But even these chips are limited. Because computation is tethered to hardware architecture, most chips resemble just one specific type of brain-inspired network called spiking neural networks (SNNs). Without doubt, neuromorphic chips are highly efficient setups with dynamics similar to biological networks. They also don’t play nicely with deep learning and other software-based AI.
Brain-AI Hybrid Core
Shi’s new Tianjic chip brought the two incompatibilities together onto a single piece of brainy hardware.
First was to bridge the deep learning and SNN divide. The two have very different computation philosophies and memory organizations, the team said. The biggest difference, however, is that artificial neural networks transform multidimensional data—image pixels, for example—into a single, continuous, multi-bit 0 and 1 stream. In contrast, neurons in SNNs activate using something called “binary spikes” that code for specific activation events in time.
Confused? Yeah, it’s hard to wrap my head around it too. That’s because SNNs act very similarly to our neural networks and nothing like computers. A particular neuron needs to generate an electrical signal (a “spike”) large enough to transfer down to the next one; little blips in signals don’t count. The way they transmit data also heavily depends on how they’re connected, or the network topology. The takeaway: SNNs work pretty differently than deep learning.
Shi’s team first recreated this firing quirk in the language of computers—0s and 1s—so that the coding mechanism would become compatible with deep learning algorithms. They then carefully aligned the step-by-step building blocks of the two models, which allowed them to tease out similarities into a common ground to further build on. “On the basis of this unified abstraction, we built a cross-paradigm neuron scheme,” they said.
In general, the design allowed both computational approaches to share the synapses, where neurons connect and store data, and the dendrites, the outgoing branches of the neurons. In contrast, the neuron body, where signals integrate, was left reconfigurable for each type of computation, as were the input branches. Each building block was combined into a single unified functional core (FCore), which acts like a deep learning/SNN converter depending on its specific setup. Translation: the chip can do both types of previously incompatible computation.
The Chip
Using nanoscale fabrication, the team arranged 156 FCores, containing roughly 40,000 neurons and 10 million synapses, onto a chip less than a fifth of an inch in length and width. Initial tests showcased the chip’s versatility, in that it can run both SNNs and deep learning algorithms such as the popular convolutional neural network (CNNs) often used in machine vision.
Compared to IBM TrueNorth, the density of Tianjic’s cores increased by 20 percent, speeding up performance ten times and increasing bandwidth at least 100-fold, the team said. When pitted against GPUs, the current hardware darling of machine learning, the chip increased processing throughput up to 100 times, while using just a sliver (1/10,000) of energy.
Although these stats are great, real-life performance is even better as a demo. Here’s where the authors gave their Tianjic brain a body. The team combined one chip with multiple specialized networks to process vision, balance, voice commands, and decision-making in real time. Object detection and target tracking, for example, relied on a deep neural net CNN, whereas voice commands and balance data were recognized using an SNN. The inputs were then integrated inside a neural state machine, which churned out decisions to downstream output modules—for example, controlling the handle bar to turn left.
Thanks to the chip’s brain-like architecture and bilingual ability, Tianjic “allowed all of the neural network models to operate in parallel and realized seamless communication across the models,” the team said. The result is an autonomous bike that rolls after its human, balances across speed bumps, avoids crashing into roadblocks, and answers to voice commands.
General AI?
“It’s a wonderful demonstration and quite impressive,” said the editorial team at Nature, which published the study on its cover last week.
However, they cautioned, when comparing Tianjic with state-of-the-art chips designed for a single problem toe-to-toe on that particular problem, Tianjic falls behind. But building these jack-of-all-trades hybrid chips is definitely worth the effort. Compared to today’s limited AI, what people really want is artificial general intelligence, which will require new architectures that aren’t designed to solve one particular problem.
Until people start to explore, innovate, and play around with different designs, it’s not clear how we can further progress in the pursuit of general AI. A self-driving bike might not be much to look at, but its hybrid brain is a pretty neat place to start.
*The name, in Chinese, means “heavenly machine,” “unknowable mystery of nature,” or “confidentiality.” Go figure.
Image Credit: Alexander Ryabintsev / Shutterstock.com Continue reading
#435196 Avatar Love? New ‘Black Mirror’ ...
This week, the widely-anticipated fifth season of the dystopian series Black Mirror was released on Netflix. The storylines this season are less focused on far-out scenarios and increasingly aligned with current issues. With only three episodes, this season raises more questions than it answers, often leaving audiences bewildered.
The episode Smithereens explores our society’s crippling addiction to social media platforms and the monopoly they hold over our data. In Rachel, Jack and Ashley Too, we see the disruptive impact of technologies on the music and entertainment industry, and the price of fame for artists in the digital world. Like most Black Mirror episodes, these explore the sometimes disturbing implications of tech advancements on humanity.
But once again, in the midst of all the doom and gloom, the creators of the series leave us with a glimmer of hope. Aligned with Pride month, the episode Striking Vipers explores the impact of virtual reality on love, relationships, and sexual fluidity.
*The review contains a few spoilers.*
Striking Vipers
The first episode of the season, Striking Vipers may be one of the most thought-provoking episodes in Black Mirror history. Reminiscent of previous episodes San Junipero and Hang the DJ, the writers explore the potential for technology to transform human intimacy.
The episode tells the story of two old friends, Danny and Karl, whose friendship is reignited in an unconventional way. Karl unexpectedly appears at Danny’s 38th birthday and reintroduces him to the VR version of a game they used to play years before. In the game Striking Vipers X, each of the players is represented by an avatar of their choice in an uncanny digital reality. Following old tradition, Karl chooses to become the female fighter, Roxanne, and Danny takes on the role of the male fighter, Lance. The state-of-the-art VR headsets appear to use an advanced form of brain-machine interface to allow each player to be fully immersed in the virtual world, emulating all physical sensations.
To their surprise (and confusion), Danny and Karl find themselves transitioning from fist-fighting to kissing. Over the course of many games, they continue to explore a sexual and romantic relationship in the virtual world, leaving them confused and distant in the real world. The virtual and physical realities begin to blur, and so do the identities of the players with their avatars. Danny, who is married (in a heterosexual relationship) and is a father, begins to carry guilt and confusion in the real world. They both wonder if there would be any spark between them in real life.
The brain-machine interface (BMI) depicted in the episode is still science fiction, but that hasn’t stopped innovators from pushing the technology forward. Experts today are designing more intricate BMI systems while programming better algorithms to interpret the neural signals they capture. Scientists have already succeeded in enabling paralyzed patients to type with their minds, and are even allowing people to communicate with one another purely through brainwaves.
The convergence of BMIs with virtual reality and artificial intelligence could make the experience of such immersive digital realities possible. Virtual reality, too, is decreasing exponentially in cost and increasing in quality.
The narrative provides meaningful commentary on another tech area—gaming. It highlights video games not necessarily as addictive distractions, but rather as a platform for connecting with others in a deeper way. This is already very relevant. Video games like Final Fantasy are often a tool for meaningful digital connections for their players.
The Implications of Virtual Reality on Love and Relationships
The narrative of Striking Vipers raises many novel questions about the implications of immersive technologies on relationships: could the virtual world allow us a safe space to explore suppressed desires? Can virtual avatars make it easier for us to show affection to those we care about? Can a sexual or romantic encounter in the digital world be considered infidelity?
Above all, the episode explores the therapeutic possibilities of such technologies. While many fears about virtual reality had been raised in previous seasons of Black Mirror, this episode was focused on its potential. This includes the potential of immersive technology to be a source of liberation, meaningful connections, and self-exploration, as well as a tool for realizing our true identities and desires.
Once again, this is aligned with emerging trends in VR. We are seeing the rise of social VR applications and platforms that allow you to hang out with your friends and family as avatars in the virtual space. The technology is allowing for animation movies, such as Coco VR, to become an increasingly social and interactive experience. Considering that meaningful social interaction can alleviate depression and anxiety, such applications could contribute to well-being.
Techno-philosopher and National Geographic host Jason Silva points out that immersive media technologies can be “engines of empathy.” VR allows us to enter virtual spaces that mimic someone else’s state of mind, allowing us to empathize with the way they view the world. Silva said, “Imagine the intimacy that becomes possible when people meet and they say, ‘Hey, do you want to come visit my world? Do you want to see what it’s like to be inside my head?’”
What is most fascinating about Striking Vipers is that it explores how we may redefine love with virtual reality; we are introduced to love between virtual avatars. While this kind of love may seem confusing to audiences, it may be one of the complex implications of virtual reality on human relationships.
In many ways, the title Black Mirror couldn’t be more appropriate, as each episode serves as a mirror to the most disturbing aspects of our psyches as they get amplified through technology. However, what we see in uplifting and thought-provoking plots like Striking Vipers, San Junipero, and Hang The DJ is that technology could also amplify the most positive aspects of our humanity. This includes our powerful capacity to love.
Image Credit: Arsgera / Shutterstock.com Continue reading
#435186 What’s Behind the International Rush ...
There’s no better way of ensuring you win a race than by setting the rules yourself. That may be behind the recent rush by countries, international organizations, and companies to put forward their visions for how the AI race should be governed.
China became the latest to release a set of “ethical standards” for the development of AI last month, which might raise eyebrows given the country’s well-documented AI-powered state surveillance program and suspect approaches to privacy and human rights.
But given the recent flurry of AI guidelines, it may well have been motivated by a desire not to be left out of the conversation. The previous week the OECD, backed by the US, released its own “guiding principles” for the industry, and in April the EU released “ethical guidelines.”
The language of most of these documents is fairly abstract and noticeably similar, with broad appeals to ideals like accountability, responsibility, and transparency. The OECD’s guidelines are the lightest on detail, while the EU’s offer some more concrete suggestions such as ensuring humans always know if they’re interacting with AI and making algorithms auditable. China’s standards have an interesting focus on promoting openness and collaboration as well as expressly acknowledging AIs potential to disrupt employment.
Overall, though, one might be surprised that there aren’t more disagreements between three blocs with very divergent attitudes to technology, regulation, and economics. Most likely these are just the opening salvos in what will prove to be a long-running debate, and the devil will ultimately be in the details.
The EU seems to have stolen a march on the other two blocs, being first to publish its guidelines and having already implemented the world’s most comprehensive regulation of data—the bedrock of modern AI—with last year’s GDPR. But its lack of industry heavyweights is going to make it hard to hold onto that lead.
One organization that seems to be trying to take on the role of impartial adjudicator is the World Economic Forum, which recently hosted an event designed to find common ground between various stakeholders from across the world. What will come of the effort remains to be seen, but China’s release of guidelines broadly similar to those of its Western counterparts is a promising sign.
Perhaps most telling, though, is the ubiquitous presence of industry leaders in both advisory and leadership positions. China’s guidelines are backed by “an AI industrial league” including Baidu, Alibaba, and Tencent, and the co-chairs of the WEF’s AI Council are Microsoft President Brad Smith and prominent Chinese AI investor Kai-Fu Lee.
Shortly after the EU released its proposals one of the authors, philosopher Thomas Metzinger, said the process had been compromised by the influence of the tech industry, leading to the removal of “red lines” opposing the development of autonomous lethal weapons or social credit score systems like China’s.
For a long time big tech argued for self-regulation, but whether they’ve had an epiphany or have simply sensed the shifting winds, they are now coming out in favor of government intervention.
Both Amazon and Facebook have called for regulation of facial recognition, and in February Google went even further, calling for the government to set down rules governing AI. Facebook chief Mark Zuckerberg has also since called for even broader regulation of the tech industry.
But considering the current concern around the anti-competitive clout of the largest technology companies, it’s worth remembering that tough rules are always easier to deal with for companies with well-developed compliance infrastructure and big legal teams. And these companies are also making sure the regulation is on their terms. Wired details Microsoft’s protracted effort to shape Washington state laws governing facial recognition technology and Google’s enormous lobbying effort.
“Industry has mobilized to shape the science, morality and laws of artificial intelligence,” Harvard law professor Yochai Benkler writes in Nature. He highlights how Amazon’s funding of a National Science Foundation (NSF) program for projects on fairness in artificial intelligence undermines the ability of academia to act as an impartial counterweight to industry.
Excluding industry from the process of setting the rules to govern AI in a fair and equitable way is clearly not practical, writes Benkler, because they are the ones with the expertise. But there also needs to be more concerted public investment in research and policymaking, and efforts to limit the influence of big companies when setting the rules that will govern AI.
Image Credit: create jobs 51 / Shutterstock.com Continue reading