Tag Archives: Boston Dynamics

#435806 Boston Dynamics’ Spot Robot Dog ...

Boston Dynamics is announcing this morning that Spot, its versatile quadruped robot, is now for sale. The machine’s animal-like behavior regularly electrifies crowds at tech conferences, and like other Boston Dynamics’ robots, Spot is a YouTube sensation whose videos amass millions of views.

Now anyone interested in buying a Spot—or a pack of them—can go to the company’s website and submit an order form. But don’t pull out your credit card just yet. Spot may cost as much as a luxury car, and it is not really available to consumers. The initial sale, described as an “early adopter program,” is targeting businesses. Boston Dynamics wants to find customers in select industries and help them deploy Spots in real-world scenarios.

“What we’re doing is the productization of Spot,” Boston Dynamics CEO Marc Raibert tells IEEE Spectrum. “It’s really a milestone for us going from robots that work in the lab to these that are hardened for work out in the field.”

Boston Dynamics has always been a secretive company, but last month, in preparation for launching Spot (formerly SpotMini), it allowed our photographers into its headquarters in Waltham, Mass., for a special shoot. In that session, we captured Spot and also Atlas—the company’s highly dynamic humanoid—in action, walking, climbing, and jumping.

You can see Spot’s photo interactives on our Robots Guide. (The Atlas interactives will appear in coming weeks.)

Gif: Bob O’Connor/Robots.ieee.org

And if you’re in the market for a robot dog, here’s everything we know about Boston Dynamics’ plans for Spot.

Who can buy a Spot?
If you’re interested in one, you should go to Boston Dynamics’ website and take a look at the information the company requires from potential buyers. Again, the focus is on businesses. Boston Dynamics says it wants to get Spots out to initial customers that “either have a compelling use case or a development team that we believe can do something really interesting with the robot,” says VP of business development Michael Perry. “Just because of the scarcity of the robots that we have, we’re going to have to be selective about which partners we start working together with.”

What can Spot do?
As you’ve probably seen on the YouTube videos, Spot can walk, trot, avoid obstacles, climb stairs, and much more. The robot’s hardware is almost completely custom, with powerful compute boards for control, and five sensor modules located on every side of Spot’s body, allowing it to survey the space around itself from any direction. The legs are powered by 12 custom motors with a reduction, with a top speed of 1.6 meters per second. The robot can operate for 90 minutes on a charge. In addition to the basic configuration, you can integrate up to 14 kilograms of extra hardware to a payload interface. Among the payload packages Boston Dynamics plans to offer are a 6 degrees-of-freedom arm, a version of which can be seen in some of the YouTube videos, and a ring of cameras called SpotCam that could be used to create Street View–type images inside buildings.

Image: Boston Dynamics

How do you control Spot?
Learning to drive the robot using its gaming-style controller “takes 15 seconds,” says CEO Marc Raibert. He explains that while teleoperating Spot, you may not realize that the robot is doing a lot of the work. “You don’t really see what that is like until you’re operating the joystick and you go over a box and you don’t have to do anything,” he says. “You’re practically just thinking about what you want to do and the robot takes care of everything.” The control methods have evolved significantly since the company’s first quadruped robots, machines like BigDog and LS3. “The control in those days was much more monolithic, and now we have what we call a sequential composition controller,” Raibert says, “which lets the system have control of the dynamics in a much broader variety of situations.” That means that every time one of Spot’s feet touches or doesn’t touch the ground, this different state of the body affects the basic physical behavior of the robot, and the controller adjusts accordingly. “Our controller is designed to understand what that state is and have different controls depending upon the case,” he says.

How much does Spot cost?
Boston Dynamics would not give us specific details about pricing, saying only that potential customers should contact them for a quote and that there is going to be a leasing option. It’s understandable: As with any expensive and complex product, prices can vary on a case by case basis and depend on factors such as configuration, availability, level of support, and so forth. When we pressed the company for at least an approximate base price, Perry answered: “Our general guidance is that the total cost of the early adopter program lease will be less than the price of a car—but how nice a car will depend on the number of Spots leased and how long the customer will be leasing the robot.”

Can Spot do mapping and SLAM out of the box?
The robot’s perception system includes cameras and 3D sensors (there is no lidar), used to avoid obstacles and sense the terrain so it can climb stairs and walk over rubble. It’s also used to create 3D maps. According to Boston Dynamics, the first software release will offer just teleoperation. But a second release, to be available in the next few weeks, will enable more autonomous behaviors. For example, it will be able to do mapping and autonomous navigation—similar to what the company demonstrated in a video last year, showing how you can drive the robot through an environment, create a 3D point cloud of the environment, and then set waypoints within that map for Spot to go out and execute that mission. For customers that have their own autonomy stack and are interested in using those on Spot, Boston Dynamics made it “as plug and play as possible in terms of how third-party software integrates into Spot’s system,” Perry says. This is done mainly via an API.

How does Spot’s API works?
Boston Dynamics built an API so that customers can create application-level products with Spot without having to deal with low-level control processes. “Rather than going and building joint-level kinematic access to the robot,” Perry explains, “we created a high-level API and SDK that allows people who are used to Web app development or development of missions for drones to use that same scope, and they’ll be able to build applications for Spot.”

What applications should we see first?
Boston Dynamics envisions Spot as a platform: a versatile mobile robot that companies can use to build applications based on their needs. What types of applications? The company says the best way to find out is to put Spot in the hands of as many users as possible and let them develop the applications. Some possibilities include performing remote data collection and light manipulation in construction sites; monitoring sensors and infrastructure at oil and gas sites; and carrying out dangerous missions such as bomb disposal and hazmat inspections. There are also other promising areas such as security, package delivery, and even entertainment. “We have some initial guesses about which markets could benefit most from this technology, and we’ve been engaging with customers doing proof-of-concept trials,” Perry says. “But at the end of the day, that value story is really going to be determined by people going out and exploring and pushing the limits of the robot.”

Photo: Bob O'Connor

How many Spots have been produced?
Last June, Boston Dynamics said it was planning to build about a hundred Spots by the end of the year, eventually ramping up production to a thousand units per year by the middle of this year. The company admits that it is not quite there yet. It has built close to a hundred beta units, which it has used to test and refine the final design. This version is now being mass manufactured, but the company is still “in the early tens of robots,” Perry says.

How did Boston Dynamics test Spot?

The company has tested the robots during proof-of-concept trials with customers, and at least one is already using Spot to survey construction sites. The company has also done reliability tests at its facility in Waltham, Mass. “We drive around, not quite day and night, but hundreds of miles a week, so that we can collect reliability data and find bugs,” Raibert says.

What about competitors?
In recent years, there’s been a proliferation of quadruped robots that will compete in the same space as Spot. The most prominent of these is ANYmal, from ANYbotics, a Swiss company that spun out of ETH Zurich. Other quadrupeds include Vision from Ghost Robotics, used by one of the teams in the DARPA Subterranean Challenge; and Laikago and Aliengo from Unitree Robotics, a Chinese startup. Raibert views the competition as a positive thing. “We’re excited to see all these companies out there helping validate the space,” he says. “I think we’re more in competition with finding the right need [that robots can satisfy] than we are with the other people building the robots at this point.”

Why is Boston Dynamics selling Spot now?
Boston Dynamics has long been an R&D-centric firm, with most of its early funding coming from military programs, but it says commercializing robots has always been a goal. Productizing its machines probably accelerated when the company was acquired by Google’s parent company, Alphabet, which had an ambitious (and now apparently very dead) robotics program. The commercial focus likely continued after Alphabet sold Boston Dynamics to SoftBank, whose famed CEO, Masayoshi Son, is known for his love of robots—and profits.

Which should I buy, Spot or Aibo?
Don’t laugh. We’ve gotten emails from individuals interested in purchasing a Spot for personal use after seeing our stories on the robot. Alas, Spot is not a bigger, fancier Aibo pet robot. It’s an expensive, industrial-grade machine that requires development and maintenance. If you’re maybe Jeff Bezos you could probably convince Boston Dynamics to sell you one, but otherwise the company will prioritize businesses.

What’s next for Boston Dynamics?
On the commercial side of things, other than Spot, Boston Dynamics is interested in the logistics space. Earlier this year it announced the acquisition of Kinema Systems, a startup that had developed vision sensors and deep-learning software to enable industrial robot arms to locate and move boxes. There’s also Handle, the mobile robot on whegs (wheels + legs), that can pick up and move packages. Boston Dynamics is hiring both in Waltham, Mass., and Mountain View, Calif., where Kinema was located.

Okay, can I watch a cool video now?
During our visit to Boston Dynamics’ headquarters last month, we saw Atlas and Spot performing some cool new tricks that we unfortunately are not allowed to tell you about. We hope that, although the company is putting a lot of energy and resources into its commercial programs, Boston Dynamics will still find plenty of time to improve its robots, build new ones, and of course, keep making videos. [Update: The company has just released a new Spot video, which we’ve embedded at the top of the post.][Update 2: We should have known. Boston Dynamics sure knows how to create buzz for itself: It has just released a second video, this time of Atlas doing some of those tricks we saw during our visit and couldn’t tell you about. Enjoy!]

[ Boston Dynamics ] Continue reading

Posted in Human Robots

#435748 Video Friday: This Robot Is Like a ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RSS 2019 – June 22-26, 2019 – Freiburg, Germany
Hamlyn Symposium on Medical Robotics – June 23-26, 2019 – London, U.K.
ETH Robotics Summer School – June 27-1, 2019 – Zurich, Switzerland
MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, U.K.
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

It’s been a while since we last spoke to Joe Jones, the inventor of Roomba, about his solar-powered, weed-killing robot, called Tertill, which he was launching as a Kickstarter project. Tertill is now available for purchase (US $300) and is shipping right now.

[ Tertill ]

Usually, we don’t post videos that involve drone use that looks to be either illegal or unsafe. These flights over the protests in Hong Kong are almost certainly both. However, it’s also a unique perspective on the scale of these protests.

[ Team BlackSheep ]

ICYMI: iRobot announced this week that it has acquired Root Robotics.

[ iRobot ]

This Boston Dynamics parody video went viral this week.

The CGI is good but the gratuitous violence—even if it’s against a fake robot—is a bit too much?

This is still our favorite Boston Dynamics parody video:

[ Corridor ]

Biomedical Engineering Department Head Bin He and his team have developed the first-ever successful non-invasive mind-controlled robotic arm to continuously track a computer cursor.

[ CMU ]

Organic chemists, prepare to meet your replacement:

Automated chemical synthesis carries great promises of safety, efficiency and reproducibility for both research and industry laboratories. Current approaches are based on specifically-designed automation systems, which present two major drawbacks: (i) existing apparatus must be modified to be integrated into the automation systems; (ii) such systems are not flexible and would require substantial re-design to handle new reactions or procedures. In this paper, we propose a system based on a robot arm which, by mimicking the motions of human chemists, is able to perform complex chemical reactions without any modifications to the existing setup used by humans. The system is capable of precise liquid handling, mixing, filtering, and is flexible: new skills and procedures could be added with minimum effort. We show that the robot is able to perform a Michael reaction, reaching a yield of 34%, which is comparable to that obtained by a junior chemist (undergraduate student in Chemistry).

[ arXiv ] via [ NTU ]

So yeah, ICRA 2019 was huge and awesome. Here are some brief highlights.

[ Montreal Gazette ]

For about US $5, this drone will deliver raw meat and beer to you if you live on an uninhabited island in Tokyo Bay.

[ Nikkei ]

The Smart Microsystems Lab at Michigan State University has a new version of their Autonomous Surface Craft. It’s autonomous, open source, and awfully hard to sink.

[ SML ]

As drone shows go, this one is pretty good.

[ CCTV ]

Here’s a remote controlled robot shooting stuff with a very large gun.

[ HDT ]

Over a period of three quarters (September 2018 thru May 2019), we’ve had the opportunity to work with five graduating University of Denver students as they brought their idea for a Misty II arm extension to life.

[ Misty Robotics ]

If you wonder how it looks to inspect burners and superheaters of a boiler with an Elios 2, here you are! This inspection was performed by Svenska Elektrod in a peat-fired boiler for Vattenfall in Sweden. Enjoy!

[ Flyability ]

The newest Soft Robotics technology, mGrip mini fingers, made for tight spaces, small packaging, and delicate items, giving limitless opportunities for your applications.

[ Soft Robotics ]

What if legged robots were able to generate dynamic motions in real-time while interacting with a complex environment? Such technology would represent a significant step forward the deployment of legged systems in real world scenarios. This means being able to replace humans in the execution of dangerous tasks and to collaborate with them in industrial applications.

This workshop aims to bring together researchers from all the relevant communities in legged locomotion such as: numerical optimization, machine learning (ML), model predictive control (MPC) and computational geometry in order to chart the most promising methods to address the above-mentioned scientific challenges.

[ Num Opt Wkshp ]

Army researchers teamed with the U.S. Marine Corps to fly and test 3-D printed quadcopter prototypes a the Marine Corps Air Ground Combat Center in 29 Palms, California recently.

[ CCDC ARL ]

Lex Fridman’s Artificial Intelligence podcast featuring Rosalind Picard.

[ AI Podcast ]

In this week’s episode of Robots in Depth, per speaks with Christian Guttmann, executive director of the Nordic AI Artificial Intelligence Institute.

Christian Guttmann talks about AI and wanting to understand intelligence enough to recreate it. Christian has be focusing on AI in healthcare and has recently started to communicate the opportunities and challenges in artificial intelligence to the general public. This is something that the host Per Sjöborg is also very passionate about. We also get to hear about the Nordic AI institute and the work it does to inform all parts of society about AI.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435621 ANYbotics Introduces Sleek New ANYmal C ...

Quadrupedal robots are making significant advances lately, and just in the past few months we’ve seen Boston Dynamics’ Spot hauling a truck, IIT’s HyQReal pulling a plane, MIT’s MiniCheetah doing backflips, Unitree Robotics’ Laikago towing a van, and Ghost Robotics’ Vision 60 exploring a mine. Robot makers are betting that their four-legged machines will prove useful in a variety of applications in construction, security, delivery, and even at home.

ANYbotics has been working on such applications for years, testing out their ANYmal robot in places where humans typically don’t want to go (like offshore platforms) as well as places where humans really don’t want to go (like sewers), and they have a better idea than most companies what can make quadruped robots successful.

This week, ANYbotics is announcing a completely new quadruped platform, ANYmal C, a major upgrade from the really quite research-y ANYmal B. The new quadruped has been optimized for ruggedness and reliability in industrial environments, with a streamlined body painted a color that lets you know it means business.

ANYmal C’s physical specs are pretty impressive for a production quadruped. It can move at 1 meter per second, manage 20-degree slopes and 45-degree stairs, cross 25-centimeter gaps, and squeeze through passages just 60 centimeters wide. It’s packed with cameras and 3D sensors, including a lidar for 3D mapping and simultaneous localization and mapping (SLAM). All these sensors (along with the vast volume of gait research that’s been done with ANYmal) make this one of the most reliably autonomous quadrupeds out there, with real-time motion planning and obstacle avoidance.

Image: ANYbotics

ANYmal can autonomously attach itself to a cone-shaped docking station to recharge.

ANYmal C is also one of the ruggedest legged robots in existence. The 50-kilogram robot is IP67 rated, meaning that it’s completely impervious to dust and can withstand being submerged in a meter of water for an hour. If it’s submerged for longer than that, you’re absolutely doing something wrong. The robot will run for over 2 hours on battery power, and if that’s not enough endurance, don’t worry, because ANYmal can autonomously impale itself on a weird cone-shaped docking station to recharge.

Photo: ANYbotics

ANYmal C’s sensor payload includes cameras and a lidar for 3D mapping and SLAM.

As far as what ANYmal C is designed to actually do, it’s mostly remote inspection tasks where you need to move around through a relatively complex environment, but where for whatever reason you’d be better off not sending a human. ANYmal C has a sensor payload that gives it lots of visual options, like thermal imaging, and with the ability to handle a 10-kilogram payload, the robot can be adapted to many different environments.

Over the next few months, we’re hoping to see more examples of ANYmal C being deployed to do useful stuff in real-world environments, but for now, we do have a bit more detail from ANYbotics CTO Christian Gehring.

IEEE Spectrum: Can you tell us about the development process for ANYmal C?

Christian Gehring: We tested the previous generation of ANYmal (B) in a broad range of environments over the last few years and gained a lot of insights. Based on our learnings, it became clear that we would have to re-design the robot to meet the requirements of industrial customers in terms of safety, quality, reliability, and lifetime. There were different prototype stages both for the new drives and for single robot assemblies. Apart from electrical tests, we thoroughly tested the thermal control and ingress protection of various subsystems like the depth cameras and actuators.

What can ANYmal C do that the previous version of ANYmal can’t?

ANYmal C was redesigned with a focus on performance increase regarding actuation (new drives), computational power (new hexacore Intel i7 PCs), locomotion and navigation skills, and autonomy (new depth cameras). The new robot additionally features a docking system for autonomous recharging and an inspection payload as an option. The design of ANYmal C is far more integrated than its predecessor, which increases both performance and reliability.

How much of ANYmal C’s development and design was driven by your experience with commercial or industry customers?

Tests (such as the offshore installation with TenneT) and discussions with industry customers were important to get the necessary design input in terms of performance, safety, quality, reliability, and lifetime. Most customers ask for very similar inspection tasks that can be performed with our standard inspection payload and the required software packages. Some are looking for a robot that can also solve some simple manipulation tasks like pushing a button. Overall, most use cases customers have in mind are realistic and achievable, but some are really tough for the robot, like climbing 50° stairs in hot environments of 50°C.

Can you describe how much autonomy you expect ANYmal C to have in industrial or commercial operations?

ANYmal C is primarily developed to perform autonomous routine inspections in industrial environments. This autonomy especially adds value for operations that are difficult to access, as human operation is extremely costly. The robot can naturally also be operated via a remote control and we are working on long-distance remote operation as well.

Do you expect that researchers will be interested in ANYmal C? What research applications could it be useful for?

ANYmal C has been designed to also address the needs of the research community. The robot comes with two powerful hexacore Intel i7 computers and can additionally be equipped with an NVIDIA Jetson Xavier graphics card for learning-based applications. Payload interfaces enable users to easily install and test new sensors. By joining our established ANYmal Research community, researchers get access to simulation tools and software APIs, which boosts their research in various areas like control, machine learning, and navigation.

[ ANYmal C ] Continue reading

Posted in Human Robots

#435370 The Rise of the Robots. Soon!

Are we the masters of our own eventual demise at the…hand of our robot creations? From where I’m standing, it sure looks like it!

Posted in Human Robots

#435172 DARPA’s New Project Is Investing ...

When Elon Musk and DARPA both hop aboard the cyborg hypetrain, you know brain-machine interfaces (BMIs) are about to achieve the impossible.

BMIs, already the stuff of science fiction, facilitate crosstalk between biological wetware with external computers, turning human users into literal cyborgs. Yet mind-controlled robotic arms, microelectrode “nerve patches”, or “memory Band-Aids” are still purely experimental medical treatments for those with nervous system impairments.

With the Next-Generation Nonsurgical Neurotechnology (N3) program, DARPA is looking to expand BMIs to the military. This month, the project tapped six academic teams to engineer radically different BMIs to hook up machines to the brains of able-bodied soldiers. The goal is to ditch surgery altogether—while minimizing any biological interventions—to link up brain and machine.

Rather than microelectrodes, which are currently surgically inserted into the brain to hijack neural communication, the project is looking to acoustic signals, electromagnetic waves, nanotechnology, genetically-enhanced neurons, and infrared beams for their next-gen BMIs.

It’s a radical departure from current protocol, with potentially thrilling—or devastating—impact. Wireless BMIs could dramatically boost bodily functions of veterans with neural damage or post-traumatic stress disorder (PTSD), or allow a single soldier to control swarms of AI-enabled drones with his or her mind. Or, similar to the Black Mirror episode Men Against Fire, it could cloud the perception of soldiers, distancing them from the emotional guilt of warfare.

When trickled down to civilian use, these new technologies are poised to revolutionize medical treatment. Or they could galvanize the transhumanist movement with an inconceivably powerful tool that fundamentally alters society—for better or worse.

Here’s what you need to know.

Radical Upgrades
The four-year N3 program focuses on two main aspects: noninvasive and “minutely” invasive neural interfaces to both read and write into the brain.

Because noninvasive technologies sit on the scalp, their sensors and stimulators will likely measure entire networks of neurons, such as those controlling movement. These systems could then allow soldiers to remotely pilot robots in the field—drones, rescue bots, or carriers like Boston Dynamics’ BigDog. The system could even boost multitasking prowess—mind-controlling multiple weapons at once—similar to how able-bodied humans can operate a third robotic arm in addition to their own two.

In contrast, minutely invasive technologies allow scientists to deliver nanotransducers without surgery: for example, an injection of a virus carrying light-sensitive sensors, or other chemical, biotech, or self-assembled nanobots that can reach individual neurons and control their activity independently without damaging sensitive tissue. The proposed use for these technologies isn’t yet well-specified, but as animal experiments have shown, controlling the activity of single neurons at multiple points is sufficient to program artificial memories of fear, desire, and experiences directly into the brain.

“A neural interface that enables fast, effective, and intuitive hands-free interaction with military systems by able-bodied warfighters is the ultimate program goal,” DARPA wrote in its funding brief, released early last year.

The only technologies that will be considered must have a viable path toward eventual use in healthy human subjects.

“Final N3 deliverables will include a complete integrated bidirectional brain-machine interface system,” the project description states. This doesn’t just include hardware, but also new algorithms tailored to these system, demonstrated in a “Department of Defense-relevant application.”

The Tools
Right off the bat, the usual tools of the BMI trade, including microelectrodes, MRI, or transcranial magnetic stimulation (TMS) are off the table. These popular technologies rely on surgery, heavy machinery, or personnel to sit very still—conditions unlikely in the real world.

The six teams will tap into three different kinds of natural phenomena for communication: magnetism, light beams, and acoustic waves.

Dr. Jacob Robinson at Rice University, for example, is combining genetic engineering, infrared laser beams, and nanomagnets for a bidirectional system. The $18 million project, MOANA (Magnetic, Optical and Acoustic Neural Access device) uses viruses to deliver two extra genes into the brain. One encodes a protein that sits on top of neurons and emits infrared light when the cell activates. Red and infrared light can penetrate through the skull. This lets a skull cap, embedded with light emitters and detectors, pick up these signals for subsequent decoding. Ultra-fast and utra-sensitvie photodetectors will further allow the cap to ignore scattered light and tease out relevant signals emanating from targeted portions of the brain, the team explained.

The other new gene helps write commands into the brain. This protein tethers iron nanoparticles to the neurons’ activation mechanism. Using magnetic coils on the headset, the team can then remotely stimulate magnetic super-neurons to fire while leaving others alone. Although the team plans to start in cell cultures and animals, their goal is to eventually transmit a visual image from one person to another. “In four years we hope to demonstrate direct, brain-to-brain communication at the speed of thought and without brain surgery,” said Robinson.

Other projects in N3 are just are ambitious.

The Carnegie Mellon team, for example, plans to use ultrasound waves to pinpoint light interaction in targeted brain regions, which can then be measured through a wearable “hat.” To write into the brain, they propose a flexible, wearable electrical mini-generator that counterbalances the noisy effect of the skull and scalp to target specific neural groups.

Similarly, a group at Johns Hopkins is also measuring light path changes in the brain to correlate them with regional brain activity to “read” wetware commands.

The Teledyne Scientific & Imaging group, in contrast, is turning to tiny light-powered “magnetometers” to detect small, localized magnetic fields that neurons generate when they fire, and match these signals to brain output.

The nonprofit Battelle team gets even fancier with their ”BrainSTORMS” nanotransducers: magnetic nanoparticles wrapped in a piezoelectric shell. The shell can convert electrical signals from neurons into magnetic ones and vice-versa. This allows external transceivers to wirelessly pick up the transformed signals and stimulate the brain through a bidirectional highway.

The magnetometers can be delivered into the brain through a nasal spray or other non-invasive methods, and magnetically guided towards targeted brain regions. When no longer needed, they can once again be steered out of the brain and into the bloodstream, where the body can excrete them without harm.

Four-Year Miracle
Mind-blown? Yeah, same. However, the challenges facing the teams are enormous.

DARPA’s stated goal is to hook up at least 16 sites in the brain with the BMI, with a lag of less than 50 milliseconds—on the scale of average human visual perception. That’s crazy high resolution for devices sitting outside the brain, both in space and time. Brain tissue, blood vessels, and the scalp and skull are all barriers that scatter and dissipate neural signals. All six teams will need to figure out the least computationally-intensive ways to fish out relevant brain signals from background noise, and triangulate them to the appropriate brain region to decipher intent.

In the long run, four years and an average $20 million per project isn’t much to potentially transform our relationship with machines—for better or worse. DARPA, to its credit, is keenly aware of potential misuse of remote brain control. The program is under the guidance of a panel of external advisors with expertise in bioethical issues. And although DARPA’s focus is on enabling able-bodied soldiers to better tackle combat challenges, it’s hard to argue that wireless, non-invasive BMIs will also benefit those most in need: veterans and other people with debilitating nerve damage. To this end, the program is heavily engaging the FDA to ensure it meets safety and efficacy regulations for human use.

Will we be there in just four years? I’m skeptical. But these electrical, optical, acoustic, magnetic, and genetic BMIs, as crazy as they sound, seem inevitable.

“DARPA is preparing for a future in which a combination of unmanned systems, AI, and cyber operations may cause conflicts to play out on timelines that are too short for humans to effectively manage with current technology alone,” said Al Emondi, the N3 program manager.

The question is, now that we know what’s in store, how should the rest of us prepare?

Image Credit: With permission from DARPA N3 project. Continue reading

Posted in Human Robots