Tag Archives: best
#436578 AI Just Discovered a New Antibiotic to ...
Penicillin, one of the greatest discoveries in the history of medicine, was a product of chance.
After returning from summer vacation in September 1928, bacteriologist Alexander Fleming found a colony of bacteria he’d left in his London lab had sprouted a fungus. Curiously, wherever the bacteria contacted the fungus, their cell walls broke down and they died. Fleming guessed the fungus was secreting something lethal to the bacteria—and the rest is history.
Fleming’s discovery of penicillin and its later isolation, synthesis, and scaling in the 1940s released a flood of antibiotic discoveries in the next few decades. Bacteria and fungi had been waging an ancient war against each other, and the weapons they’d evolved over eons turned out to be humanity’s best defense against bacterial infection and disease.
In recent decades, however, the flood of new antibiotics has slowed to a trickle.
Their development is uneconomical for drug companies, and the low-hanging fruit has long been picked. We’re now facing the emergence of strains of super bacteria resistant to one or more antibiotics and an aging arsenal to fight them with. Gone unchallenged, an estimated 700,000 deaths worldwide due to drug resistance could rise to as many as 10 million in 2050.
Increasingly, scientists warn the tide is turning, and we need a new strategy to keep pace with the remarkably quick and boundlessly creative tactics of bacterial evolution.
But where the golden age of antibiotics was sparked by serendipity, human intelligence, and natural molecular weapons, its sequel may lean on the uncanny eye of artificial intelligence to screen millions of compounds—and even design new ones—in search of the next penicillin.
Hal Discovers a Powerful Antibiotic
In a paper published this week in the journal, Cell, MIT researchers took a step in this direction. The team says their machine learning algorithm discovered a powerful new antibiotic.
Named for the AI in 2001: A Space Odyssey, the antibiotic, halicin, successfully wiped out dozens of bacterial strains, including some of the most dangerous drug-resistant bacteria on the World Health Organization’s most wanted list. The bacteria also failed to develop resistance to E. coli during a month of observation, in stark contrast to existing antibiotic ciprofloxacin.
“In terms of antibiotic discovery, this is absolutely a first,” Regina Barzilay, a senior author on the study and computer science professor at MIT, told The Guardian.
The algorithm that discovered halicin was trained on the molecular features of 2,500 compounds. Nearly half were FDA-approved drugs, and another 800 naturally occurring. The researchers specifically tuned the algorithm to look for molecules with antibiotic properties but whose structures would differ from existing antibiotics (as halicin’s does). Using another machine learning program, they screened the results for those likely to be safe for humans.
Early study suggests halicin attacks the bacteria’s cell membranes, disrupting their ability to produce energy. Protecting the cell membrane from halicin might take more than one or two genetic mutations, which could account for its impressive ability to prevent resistance.
“I think this is one of the more powerful antibiotics that has been discovered to date,” James Collins, an MIT professor of bioengineering and senior author told The Guardian. “It has remarkable activity against a broad range of antibiotic-resistant pathogens.”
Beyond tests in petri-dish bacterial colonies, the team also tested halicin in mice. The antibiotic cleared up infections of a strain of bacteria resistant to all known antibiotics in a day. The team plans further study in partnership with a pharmaceutical company or nonprofit, and they hope to eventually prove it safe and effective for use in humans.
This last bit remains the trickiest step, given the cost of getting a new drug approved. But Collins hopes algorithms like theirs will help. “We could dramatically reduce the cost required to get through clinical trials,” he told the Financial Times.
A Universe of Drugs Awaits
The bigger story may be what happens next.
How many novel antibiotics await discovery, and how far can AI screening take us? The initial 6,000 compounds scanned by Barzilay and Collins’s team is a drop in the bucket.
They’ve already begun digging deeper by setting the algorithm loose on 100 million molecules from an online library of 1.5 billion compounds called the ZINC15 database. This first search took three days and turned up 23 more candidates that, like halicin, differ structurally from existing antibiotics and may be safe for humans. Two of these—which the team will study further—appear to be especially powerful.
Even more ambitiously, Barzilay hopes the approach can find or even design novel antibiotics that kill bad bacteria with alacrity while sparing the good guys. In this way, a round of antibiotics would cure whatever ails you without taking out your whole gut microbiome in the process.
All this is part of a larger movement to use machine learning algorithms in the long, expensive process of drug discovery. Other players in the area are also training AI on the vast possibility space of drug-like compounds. Last fall, one of the leaders in the area, Insilico, was challenged by a partner to see just how fast their method could do the job. The company turned out a new a proof-of-concept drug candidate in only 46 days.
The field is still developing, however, and it has yet to be seen exactly how valuable these approaches will be in practice. Barzilay is optimistic though.
“There is still a question of whether machine-learning tools are really doing something intelligent in healthcare, and how we can develop them to be workhorses in the pharmaceuticals industry,” she said. “This shows how far you can adapt this tool.”
Image Credit: Halicin (top row) prevented the development of antibiotic resistance in E. coli, while ciprofloxacin (bottom row) did not. Collins Lab at MIT Continue reading
#436546 How AI Helped Predict the Coronavirus ...
Coronavirus has been all over the news for the last couple weeks. A dedicated hospital sprang up in just eight days, the stock market took a hit, Chinese New Year celebrations were spoiled, and travel restrictions are in effect.
But let’s rewind a bit; some crucial events took place before we got to this point.
A little under two weeks before the World Health Organization (WHO) alerted the public of the coronavirus outbreak, a Canadian artificial intelligence company was already sounding the alarm. BlueDot uses AI-powered algorithms to analyze information from a multitude of sources to identify disease outbreaks and forecast how they may spread. On December 31st 2019, the company sent out a warning to its customers to avoid Wuhan, where the virus originated. The WHO didn’t send out a similar public notice until January 9th, 2020.
The story of BlueDot’s early warning is the latest example of how AI can improve our identification of and response to new virus outbreaks.
Predictions Are Bad News
Global pandemic or relatively minor scare? The jury is still out on the coronavirus. However, the math points to signs that the worst is yet to come.
Scientists are still working to determine how infectious the virus is. Initial analysis suggests it may be somewhere between influenza and polio on the virus reproduction number scale, which indicates how many new cases one case leads to.
UK and US-based researchers have published a preliminary paper estimating that the confirmed infected people in Wuhan only represent five percent of those who are actually infected. If the models are correct, 190,000 people in Wuhan will be infected by now, major Chinese cities are on the cusp of large-scale outbreaks, and the virus will continue to spread to other countries.
Finding the Start
The spread of a given virus is partly linked to how long it remains undetected. Identifying a new virus is the first step towards mobilizing a response and, in time, creating a vaccine. Warning at-risk populations as quickly as possible also helps with limiting the spread.
These are among the reasons why BlueDot’s achievement is important in and of itself. Furthermore, it illustrates how AIs can sift through vast troves of data to identify ongoing virus outbreaks.
BlueDot uses natural language processing and machine learning to scour a variety of information sources, including chomping through 100,000 news reports in 65 languages a day. Data is compared with flight records to help predict virus outbreak patterns. Once the automated data sifting is completed, epidemiologists check that the findings make sense from a scientific standpoint, and reports are sent to BlueDot’s customers, which include governments, businesses, and public health organizations.
AI for Virus Detection and Prevention
Other companies, such as Metabiota, are also using data-driven approaches to track the spread of the likes of the coronavirus.
Researchers have trained neural networks to predict the spread of infectious diseases in real time. Others are using AI algorithms to identify how preventive measures can have the greatest effect. AI is also being used to create new drugs, which we may well see repeated for the coronavirus.
If the work of scientists Barbara Han and David Redding comes to fruition, AI and machine learning may even help us predict where virus outbreaks are likely to strike—before they do.
The Uncertainty Factor
One of AI’s core strengths when working on identifying and limiting the effects of virus outbreaks is its incredibly insistent nature. AIs never tire, can sift through enormous amounts of data, and identify possible correlations and causations that humans can’t.
However, there are limits to AI’s ability to both identify virus outbreaks and predict how they will spread. Perhaps the best-known example comes from the neighboring field of big data analytics. At its launch, Google Flu Trends was heralded as a great leap forward in relation to identifying and estimating the spread of the flu—until it underestimated the 2013 flu season by a whopping 140 percent and was quietly put to rest.
Poor data quality was identified as one of the main reasons Google Flu Trends failed. Unreliable or faulty data can wreak havoc on the prediction power of AIs.
In our increasingly interconnected world, tracking the movements of potentially infected individuals (by car, trains, buses, or planes) is just one vector surrounded by a lot of uncertainty.
The fact that BlueDot was able to correctly identify the coronavirus, in part due to its AI technology, illustrates that smart computer systems can be incredibly useful in helping us navigate these uncertainties.
Importantly, though, this isn’t the same as AI being at a point where it unerringly does so on its own—which is why BlueDot employs human experts to validate the AI’s findings.
Image Credit: Coronavirus molecular illustration, Gianluca Tomasello/Wikimedia Commons Continue reading