Tag Archives: beings

#431925 How the Science of Decision-Making Will ...

Neuroscientist Brie Linkenhoker believes that leaders must be better prepared for future strategic challenges by continually broadening their worldviews.
As the director of Worldview Stanford, Brie and her team produce multimedia content and immersive learning experiences to make academic research and insights accessible and useable by curious leaders. These future-focused topics are designed to help curious leaders understand the forces shaping the future.
Worldview Stanford has tackled such interdisciplinary topics as the power of minds, the science of decision-making, environmental risk and resilience, and trust and power in the age of big data.
We spoke with Brie about why understanding our biases is critical to making better decisions, particularly in a time of increasing change and complexity.

Lisa Kay Solomon: What is Worldview Stanford?
Brie Linkenhoker: Leaders and decision makers are trying to navigate this complex hairball of a planet that we live on and that requires keeping up on a lot of diverse topics across multiple fields of study and research. Universities like Stanford are where that new knowledge is being created, but it’s not getting out and used as readily as we would like, so that’s what we’re working on.
Worldview is designed to expand our individual and collective worldviews about important topics impacting our future. Your worldview is not a static thing, it’s constantly changing. We believe it should be informed by lots of different perspectives, different cultures, by knowledge from different domains and disciplines. This is more important now than ever.
At Worldview, we create learning experiences that are an amalgamation of all of those things.
LKS: One of your marquee programs is the Science of Decision Making. Can you tell us about that course and why it’s important?
BL: We tend to think about decision makers as being people in leadership positions, but every person who works in your organization, every member of your family, every member of the community is a decision maker. You have to decide what to buy, who to partner with, what government regulations to anticipate.
You have to think not just about your own decisions, but you have to anticipate how other people make decisions too. So, when we set out to create the Science of Decision Making, we wanted to help people improve their own decisions and be better able to predict, understand, anticipate the decisions of others.

“I think in another 10 or 15 years, we’re probably going to have really rich models of how we actually make decisions and what’s going on in the brain to support them.”

We realized that the only way to do that was to combine a lot of different perspectives, so we recruited experts from economics, psychology, neuroscience, philosophy, biology, and religion. We also brought in cutting-edge research on artificial intelligence and virtual reality and explored conversations about how technology is changing how we make decisions today and how it might support our decision-making in the future.
There’s no single set of answers. There are as many unanswered questions as there are answered questions.
LKS: One of the other things you explore in this course is the role of biases and heuristics. Can you explain the importance of both in decision-making?
BL: When I was a strategy consultant, executives would ask me, “How do I get rid of the biases in my decision-making or my organization’s decision-making?” And my response would be, “Good luck with that. It isn’t going to happen.”
As human beings we make, probably, thousands of decisions every single day. If we had to be actively thinking about each one of those decisions, we wouldn’t get out of our house in the morning, right?
We have to be able to do a lot of our decision-making essentially on autopilot to free up cognitive resources for more difficult decisions. So, we’ve evolved in the human brain a set of what we understand to be heuristics or rules of thumb.
And heuristics are great in, say, 95 percent of situations. It’s that five percent, or maybe even one percent, that they’re really not so great. That’s when we have to become aware of them because in some situations they can become biases.
For example, it doesn’t matter so much that we’re not aware of our rules of thumb when we’re driving to work or deciding what to make for dinner. But they can become absolutely critical in situations where a member of law enforcement is making an arrest or where you’re making a decision about a strategic investment or even when you’re deciding who to hire.
Let’s take hiring for a moment.
How many years is a hire going to impact your organization? You’re potentially looking at 5, 10, 15, 20 years. Having the right person in a role could change the future of your business entirely. That’s one of those areas where you really need to be aware of your own heuristics and biases—and we all have them. There’s no getting rid of them.
LKS: We seem to be at a time when the boundaries between different disciplines are starting to blend together. How has the advancement of neuroscience help us become better leaders? What do you see happening next?
BL: Heuristics and biases are very topical these days, thanks in part to Michael Lewis’s fantastic book, The Undoing Project, which is the story of the groundbreaking work that Nobel Prize winner Danny Kahneman and Amos Tversky did in the psychology and biases of human decision-making. Their work gave rise to the whole new field of behavioral economics.
In the last 10 to 15 years, neuroeconomics has really taken off. Neuroeconomics is the combination of behavioral economics with neuroscience. In behavioral economics, they use economic games and economic choices that have numbers associated with them and have real-world application.
For example, they ask, “How much would you spend to buy A versus B?” Or, “If I offered you X dollars for this thing that you have, would you take it or would you say no?” So, it’s trying to look at human decision-making in a format that’s easy to understand and quantify within a laboratory setting.
Now you bring neuroscience into that. You can have people doing those same kinds of tasks—making those kinds of semi-real-world decisions—in a brain scanner, and we can now start to understand what’s going on in the brain while people are making decisions. You can ask questions like, “Can I look at the signals in someone’s brain and predict what decision they’re going to make?” That can help us build a model of decision-making.
I think in another 10 or 15 years, we’re probably going to have really rich models of how we actually make decisions and what’s going on in the brain to support them. That’s very exciting for a neuroscientist.
Image Credit: Black Salmon / Shutterstock.com Continue reading

Posted in Human Robots

#431690 Oxford Study Says Alien Life Would ...

The alternative universe known as science fiction has given our culture a menagerie of alien species. From overstuffed teddy bears like Ewoks and Wookies to terrifying nightmares such as Alien and Predator, our collective imagination of what form alien life from another world may take has been irrevocably imprinted by Hollywood.
It might all be possible, or all these bug-eyed critters might turn out to be just B-movie versions of how real extraterrestrials will appear if and when they finally make the evening news.
One thing for certain is that aliens from another world will be shaped by the same evolutionary forces as here on Earth—natural selection. That’s the conclusion of a team of scientists from the University of Oxford in a study published this month in the International Journal of Astrobiology.
A complex alien that comprises a hierarchy of entities, where each lower level collection of entities has aligned evolutionary interests.Image Credit: Helen S. Cooper/University of Oxford.
The researchers suggest that evolutionary theory—famously put forth by Charles Darwin in his seminal book On the Origin of Species 158 years ago this month—can be used to make some predictions about alien species. In particular, the team argues that extraterrestrials will undergo natural selection, because that is the only process by which organisms can adapt to their environment.
“Adaptation is what defines life,” lead author Samuel Levin tells Singularity Hub.
While it’s likely that NASA or some SpaceX-like private venture will eventually kick over a few space rocks and discover microbial life in the not-too-distant future, the sorts of aliens Levin and his colleagues are interested in describing are more complex. That’s because natural selection is at work.
A quick evolutionary theory 101 refresher: Natural selection is the process by which certain traits are favored over others in a given population. For example, take a group of brown and green beetles. It just so happens that birds prefer foraging on green beetles, allowing more brown beetles to survive and reproduce than the more delectable green ones. Eventually, if these population pressures persist, brown beetles will become the dominant type. Brown wins, green loses.
And just as human beings are the result of millions of years of adaptations—eyes and thumbs, for example—aliens will similarly be constructed from parts that were once free living but through time came together to work as one organism.
“Life has so many intricate parts, so much complexity, for that to happen (randomly),” Levin explains. “It’s too complex and too many things working together in a purposeful way for that to happen by chance, as how certain molecules come about. Instead you need a process for making it, and natural selection is that process.”
Just don’t expect ET to show up as a bipedal humanoid with a large head and almond-shaped eyes, Levin says.
“They can be built from entirely different chemicals and so visually, superficially, unfamiliar,” he explains. “They will have passed through the same evolutionary history as us. To me, that’s way cooler and more exciting than them having two legs.”
Need for Data
Seth Shostak, a lead astronomer at the SETI Institute and host of the organization’s Big Picture Science radio show, wrote that while the argument is interesting, it doesn’t answer the question of ET’s appearance.
Shostak argues that a more productive approach would invoke convergent evolution, where similar environments lead to similar adaptations, at least assuming a range of Earth-like conditions such as liquid oceans and thick atmospheres. For example, an alien species that evolved in a liquid environment would evolve a streamlined body to move through water.
“Happenstance and the specifics of the environment will produce variations on an alien species’ planet as it has on ours, and there’s really no way to predict these,” Shostak concludes. “Alas, an accurate cosmic bestiary cannot be written by the invocation of biological mechanisms alone. We need data. That requires more than simply thinking about alien life. We need to actually discover it.”
Search Is On
The search is on. On one hand, the task seems easy enough: There are at least 100 billion planets in the Milky Way alone, and at least 20 percent of those are likely to be capable of producing a biosphere. Even if the evolution of life is exceedingly rare—take a conservative estimate of .001 percent or 200,000 planets, as proposed by the Oxford paper—you have to like the odds.
Of course, it’s not that easy by a billion light years.
Planet hunters can’t even agree on what signatures of life they should focus on. The idea is that where there’s smoke there’s fire. In the case of an alien world home to biological life, astrobiologists are searching for the presence of “biosignature gases,” vapors that could only be produced by alien life.
As Quanta Magazine reported, scientists do this by measuring a planet’s atmosphere against starlight. Gases in the atmosphere absorb certain frequencies of starlight, offering a clue as to what is brewing around a particular planet.
The presence of oxygen would seem to be a biological no-brainer, but there are instances where a planet can produce a false positive, meaning non-biological processes are responsible for the exoplanet’s oxygen. Scientists like Sara Seager, an astrophysicist at MIT, have argued there are plenty of examples of other types of gases produced by organisms right here on Earth that could also produce the smoking gun, er, planet.

Life as We Know It
Indeed, the existence of Earth-bound extremophiles—organisms that defy conventional wisdom about where life can exist, such as in the vacuum of space—offer another clue as to what kind of aliens we might eventually meet.
Lynn Rothschild, an astrobiologist and synthetic biologist in the Earth Science Division at NASA’s Ames Research Center in Silicon Valley, takes extremophiles as a baseline and then supersizes them through synthetic biology.
For example, say a bacteria is capable of surviving at 120 degrees Celsius. Rothschild’s lab might tweak an organism’s DNA to see if it could metabolize at 150 degrees. The idea, as she explains, is to expand the envelope for life without ever getting into a rocket ship.

While researchers may not always agree on the “where” and “how” and “what” of the search for extraterrestrial life, most do share one belief: Alien life must be out there.
“It would shock me if there weren’t [extraterrestrials],” Levin says. “There are few things that would shock me more than to find out there aren’t any aliens…If I had to bet on it, I would bet on the side of there being lots and lots of aliens out there.”
Image Credit: NASA Continue reading

Posted in Human Robots

#431682 Oxford Study Says Alien Life Would ...

The alternative universe known as science fiction has given our culture a menagerie of alien species. From overstuffed teddy bears like Ewoks and Wookies to terrifying nightmares such as Alien and Predator, our collective imagination of what form alien life from another world may take has been irrevocably imprinted by Hollywood.
It might all be possible, or all these bug-eyed critters might turn out to be just B-movie versions of how real extraterrestrials will appear if and when they finally make the evening news.
One thing for certain is that aliens from another world will be shaped by the same evolutionary forces as here on Earth—natural selection. That’s the conclusion of a team of scientists from the University of Oxford in a study published this month in the International Journal of Astrobiology.
A complex alien that comprises a hierarchy of entities, where each lower level collection of entities has aligned evolutionary interests.Image Credit: Helen S. Cooper/University of Oxford.
The researchers suggest that evolutionary theory—famously put forth by Charles Darwin in his seminal book On the Origin of Species 158 years ago this month—can be used to make some predictions about alien species. In particular, the team argues that extraterrestrials will undergo natural selection, because that is the only process by which organisms can adapt to their environment.
“Adaptation is what defines life,” lead author Samuel Levin tells Singularity Hub.
While it’s likely that NASA or some SpaceX-like private venture will eventually kick over a few space rocks and discover microbial life in the not-too-distant future, the sorts of aliens Levin and his colleagues are interested in describing are more complex. That’s because natural selection is at work.
A quick evolutionary theory 101 refresher: Natural selection is the process by which certain traits are favored over others in a given population. For example, take a group of brown and green beetles. It just so happens that birds prefer foraging on green beetles, allowing more brown beetles to survive and reproduce than the more delectable green ones. Eventually, if these population pressures persist, brown beetles will become the dominant type. Brown wins, green loses.
And just as human beings are the result of millions of years of adaptations—eyes and thumbs, for example—aliens will similarly be constructed from parts that were once free living but through time came together to work as one organism.
“Life has so many intricate parts, so much complexity, for that to happen (randomly),” Levin explains. “It’s too complex and too many things working together in a purposeful way for that to happen by chance, as how certain molecules come about. Instead you need a process for making it, and natural selection is that process.”
Just don’t expect ET to show up as a bipedal humanoid with a large head and almond-shaped eyes, Levin says.
“They can be built from entirely different chemicals and so visually, superficially, unfamiliar,” he explains. “They will have passed through the same evolutionary history as us. To me, that’s way cooler and more exciting than them having two legs.”
Need for Data
Seth Shostak, a lead astronomer at the SETI Institute and host of the organization’s Big Picture Science radio show, wrote that while the argument is interesting, it doesn’t answer the question of ET’s appearance.
Shostak argues that a more productive approach would invoke convergent evolution, where similar environments lead to similar adaptations, at least assuming a range of Earth-like conditions such as liquid oceans and thick atmospheres. For example, an alien species that evolved in a liquid environment would evolve a streamlined body to move through water.
“Happenstance and the specifics of the environment will produce variations on an alien species’ planet as it has on ours, and there’s really no way to predict these,” Shostak concludes. “Alas, an accurate cosmic bestiary cannot be written by the invocation of biological mechanisms alone. We need data. That requires more than simply thinking about alien life. We need to actually discover it.”
Search is On
The search is on. On one hand, the task seems easy enough: There are at least 100 billion planets in the Milky Way alone, and at least 20 percent of those are likely to be capable of producing a biosphere. Even if the evolution of life is exceedingly rare—take a conservative estimate of .001 percent or 200,000 planets, as proposed by the Oxford paper—you have to like the odds.
Of course, it’s not that easy by a billion light years.
Planet hunters can’t even agree on what signatures of life they should focus on. The idea is that where there’s smoke there’s fire. In the case of an alien world home to biological life, astrobiologists are searching for the presence of “biosignature gases,” vapors that could only be produced by alien life.
As Quanta Magazine reported, scientists do this by measuring a planet’s atmosphere against starlight. Gases in the atmosphere absorb certain frequencies of starlight, offering a clue as to what is brewing around a particular planet.
The presence of oxygen would seem to be a biological no-brainer, but there are instances where a planet can produce a false positive, meaning non-biological processes are responsible for the exoplanet’s oxygen. Scientists like Sara Seager, an astrophysicist at MIT, have argued there are plenty of examples of other types of gases produced by organisms right here on Earth that could also produce the smoking gun, er, planet.

Life as We Know It
Indeed, the existence of Earth-bound extremophiles—organisms that defy conventional wisdom about where life can exist, such as in the vacuum of space—offer another clue as to what kind of aliens we might eventually meet.
Lynn Rothschild, an astrobiologist and synthetic biologist in the Earth Science Division at NASA’s Ames Research Center in Silicon Valley, takes extremophiles as a baseline and then supersizes them through synthetic biology.
For example, say a bacteria is capable of surviving at 120 degrees Celsius. Rothschild’s lab might tweak an organism’s DNA to see if it could metabolize at 150 degrees. The idea, as she explains, is to expand the envelope for life without ever getting into a rocket ship.

While researchers may not always agree on the “where” and “how” and “what” of the search for extraterrestrial life, most do share one belief: Alien life must be out there.
“It would shock me if there weren’t [extraterrestrials],” Levin says. “There are few things that would shock me more than to find out there aren’t any aliens…If I had to bet on it, I would bet on the side of there being lots and lots of aliens out there.”
Image Credit: NASA Continue reading

Posted in Human Robots

#431301 Collective Intelligence Is the Root of ...

Many of us intuitively think about intelligence as an individual trait. As a society, we have a tendency to praise individual game-changers for accomplishments that would not be possible without their teams, often tens of thousands of people that work behind the scenes to make extraordinary things happen.
Matt Ridley, best-selling author of multiple books, including The Rational Optimist: How Prosperity Evolves, challenges this view. He argues that human achievement and intelligence are entirely “networking phenomena.” In other words, intelligence is collective and emergent as opposed to individual.
When asked what scientific concept would improve everybody’s cognitive toolkit, Ridley highlights collective intelligence: “It is by putting brains together through the division of labor— through trade and specialization—that human society stumbled upon a way to raise the living standards, carrying capacity, technological virtuosity, and knowledge base of the species.”
Ridley has spent a lifetime exploring human prosperity and the factors that contribute to it. In a conversation with Singularity Hub, he redefined how we perceive intelligence and human progress.
Raya Bidshahri: The common perspective seems to be that competition is what drives innovation and, consequently, human progress. Why do you think collaboration trumps competition when it comes to human progress?
Matt Ridley: There is a tendency to think that competition is an animal instinct that is natural and collaboration is a human instinct we have to learn. I think there is no evidence for that. Both are deeply rooted in us as a species. The evidence from evolutionary biology tells us that collaboration is just as important as competition. Yet, at the end, the Darwinian perspective is quite correct: it’s usually cooperation for the purpose of competition, wherein a given group tries to achieve something more effectively than another group. But the point is that the capacity to co-operate is very deep in our psyche.
RB: You write that “human achievement is entirely a networking phenomenon,” and we need to stop thinking about intelligence as an individual trait, and that instead we should look at what you refer to as collective intelligence. Why is that?
MR: The best way to think about it is that IQ doesn’t matter, because a hundred stupid people who are talking to each other will accomplish more than a hundred intelligent people who aren’t. It’s absolutely vital to see that everything from the manufacturing of a pencil to the manufacturing of a nuclear power station can’t be done by an individual human brain. You can’t possibly hold in your head all the knowledge you need to do these things. For the last 200,000 years we’ve been exchanging and specializing, which enables us to achieve much greater intelligence than we can as individuals.
RB: We often think of achievement and intelligence on individual terms. Why do you think it’s so counter-intuitive for us to think about collective intelligence?
MR: People are surprisingly myopic to the extent they understand the nature of intelligence. I think it goes back to a pre-human tendency to think in terms of individual stories and actors. For example, we love to read about the famous inventor or scientist who invented or discovered something. We never tell these stories as network stories. We tell them as individual hero stories.

“It’s absolutely vital to see that everything from the manufacturing of a pencil to the manufacturing of a nuclear power station can’t be done by an individual human brain.”

This idea of a brilliant hero who saves the world in the face of every obstacle seems to speak to tribal hunter-gatherer societies, where the alpha male leads and wins. But it doesn’t resonate with how human beings have structured modern society in the last 100,000 years or so. We modern-day humans haven’t internalized a way of thinking that incorporates this definition of distributed and collective intelligence.
RB: One of the books you’re best known for is The Rational Optimist. What does it mean to be a rational optimist?
MR: My optimism is rational because it’s not based on a feeling, it’s based on evidence. If you look at the data on human living standards over the last 200 years and compare it with the way that most people actually perceive our progress during that time, you’ll see an extraordinary gap. On the whole, people seem to think that things are getting worse, but things are actually getting better.
We’ve seen the most astonishing improvements in human living standards: we’ve brought the number of people living in extreme poverty to 9 percent from about 70 percent when I was born. The human lifespan is expanding by five hours a day, child mortality has gone down by two thirds in half a century, and much more. These feats dwarf the things that are going wrong. Yet most people are quite pessimistic about the future despite the things we’ve achieved in the past.
RB: Where does this idea of collective intelligence fit in rational optimism?
MR: Underlying the idea of rational optimism was understanding what prosperity is, and why it happens to us and not to rabbits or rocks. Why are we the only species in the world that has concepts like a GDP, growth rate, or living standard? My answer is that it comes back to this phenomena of collective intelligence. The reason for a rise in living standards is innovation, and the cause of that innovation is our ability to collaborate.
The grand theme of human history is exchange of ideas, collaborating through specialization and the division of labor. Throughout history, it’s in places where there is a lot of open exchange and trade where you get a lot of innovation. And indeed, there are some extraordinary episodes in human history when societies get cut off from exchange and their innovation slows down and they start moving backwards. One example of this is Tasmania, which was isolated and lost a lot of the technologies it started off with.
RB: Lots of people like to point out that just because the world has been getting better doesn’t guarantee it will continue to do so. How do you respond to that line of argumentation?
MR: There is a quote by Thomas Babington Macaulay from 1830, where he was fed up with the pessimists of the time saying things will only get worse. He says, “On what principle is it that with nothing but improvement behind us, we are to expect nothing but deterioration before us?” And this was back in the 1830s, where in Britain and a few other parts of the world, we were only seeing the beginning of the rise of living standards. It’s perverse to argue that because things were getting better in the past, now they are about to get worse.

“I think it’s worth remembering that good news tends to be gradual, and bad news tends to be sudden. Hence, the good stuff is rarely going to make the news.”

Another thing to point out is that people have always said this. Every generation thought they were at the peak looking downhill. If you think about the opportunities technology is about to give us, whether it’s through blockchain, gene editing, or artificial intelligence, there is every reason to believe that 2017 is going to look like a time of absolute misery compared to what our children and grandchildren are going to experience.
RB: There seems to be a fair amount of mayhem in today’s world, and lots of valid problems to pay attention to in the news. What would you say to empower our readers that we will push through it and continue to grow and improve as a species?
MR: I think it’s worth remembering that good news tends to be gradual, and bad news tends to be sudden. Hence, the good stuff is rarely going to make the news. It’s happening in an inexorable way, as a result of ordinary people exchanging, specializing, collaborating, and innovating, and it’s surprisingly hard to stop it.
Even if you look back to the 1940s, at the end of a world war, there was still a lot of innovation happening. In some ways it feels like we are going through a bad period now. I do worry a lot about the anti-enlightenment values that I see spreading in various parts of the world. But then I remind myself that people are working on innovative projects in the background, and these things are going to come through and push us forward.
Image Credit: Sahacha Nilkumhang / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots

#431186 The Coming Creativity Explosion Belongs ...

Does creativity make human intelligence special?
It may appear so at first glance. Though machines can calculate, analyze, and even perceive, creativity may seem far out of reach. Perhaps this is because we find it mysterious, even in ourselves. How can the output of a machine be anything more than that which is determined by its programmers?
Increasingly, however, artificial intelligence is moving into creativity’s hallowed domain, from art to industry. And though much is already possible, the future is sure to bring ever more creative machines.
What Is Machine Creativity?
Robotic art is just one example of machine creativity, a rapidly growing sub-field that sits somewhere between the study of artificial intelligence and human psychology.
The winning paintings from the 2017 Robot Art Competition are strikingly reminiscent of those showcased each spring at university exhibitions for graduating art students. Like the works produced by skilled artists, the compositions dreamed up by the competition’s robotic painters are aesthetically ambitious. One robot-made painting features a man’s bearded face gazing intently out from the canvas, his eyes locking with the viewer’s. Another abstract painting, “inspired” by data from EEG signals, visually depicts the human emotion of misery with jagged, gloomy stripes of black and purple.
More broadly, a creative machine is software (sometimes encased in a robotic body) that synthesizes inputs to generate new and valuable ideas, solutions to complex scientific problems, or original works of art. In a process similar to that followed by a human artist or scientist, a creative machine begins its work by framing a problem. Next, its software specifies the requirements the solution should have before generating “answers” in the form of original designs, patterns, or some other form of output.
Although the notion of machine creativity sounds a bit like science fiction, the basic concept is one that has been slowly developing for decades.
Nearly 50 years ago while a high school student, inventor and futurist Ray Kurzweil created software that could analyze the patterns in musical compositions and then compose new melodies in a similar style. Aaron, one of the world’s most famous painting robots, has been hard at work since the 1970s.
Industrial designers have used an automated, algorithm-driven process for decades to design computer chips (or machine parts) whose layout (or form) is optimized for a particular function or environment. Emily Howell, a computer program created by David Cope, writes original works in the style of classical composers, some of which have been performed by human orchestras to live audiences.
What’s different about today’s new and emerging generation of robotic artists, scientists, composers, authors, and product designers is their ubiquity and power.

“The recent explosion of artificial creativity has been enabled by the rapid maturation of the same exponential technologies that have already re-drawn our daily lives.”

I’ve already mentioned the rapidly advancing fields of robotic art and music. In the realm of scientific research, so-called “robotic scientists” such as Eureqa and Adam and Eve develop new scientific hypotheses; their “insights” have contributed to breakthroughs that are cited by hundreds of academic research papers. In the medical industry, creative machines are hard at work creating chemical compounds for new pharmaceuticals. After it read over seven million words of 20th century English poetry, a neural network developed by researcher Jack Hopkins learned to write passable poetry in a number of different styles and meters.
The recent explosion of artificial creativity has been enabled by the rapid maturation of the same exponential technologies that have already re-drawn our daily lives, including faster processors, ubiquitous sensors and wireless networks, and better algorithms.
As they continue to improve, creative machines—like humans—will perform a broad range of creative activities, ranging from everyday problem solving (sometimes known as “Little C” creativity) to producing once-in-a-century masterpieces (“Big C” creativity). A creative machine’s outputs could range from a design for a cast for a marble sculpture to a schematic blueprint for a clever new gadget for opening bottles of wine.
In the coming decades, by automating the process of solving complex problems, creative machines will again transform our world. Creative machines will serve as a versatile source of on-demand talent.
In the battle to recruit a workforce that can solve complex problems, creative machines will put small businesses on equal footing with large corporations. Art and music lovers will enjoy fresh creative works that re-interpret the style of ancient disciplines. People with a health condition will benefit from individualized medical treatments, and low-income people will receive top-notch legal advice, to name but a few potentially beneficial applications.
How Can We Make Creative Machines, Unless We Understand Our Own Creativity?
One of the most intriguing—yet unsettling—aspects of watching robotic arms skillfully oil paint is that we humans still do not understand our own creative process. Over the centuries, several different civilizations have devised a variety of models to explain creativity.
The ancient Greeks believed that poets drew inspiration from a transcendent realm parallel to the material world where ideas could take root and flourish. In the Middle Ages, philosophers and poets attributed our peculiarly human ability to “make something of nothing” to an external source, namely divine inspiration. Modern academic study of human creativity has generated vast reams of scholarship, but despite the value of these insights, the human imagination remains a great mystery, second only to that of consciousness.
Today, the rise of machine creativity demonstrates (once again), that we do not have to fully understand a biological process in order to emulate it with advanced technology.
Past experience has shown that jet planes can fly higher and faster than birds by using the forward thrust of an engine rather than wings. Submarines propel themselves forward underwater without fins or a tail. Deep learning neural networks identify objects in randomly-selected photographs with super-human accuracy. Similarly, using a fairly straightforward software architecture, creative software (sometimes paired with a robotic body) can paint, write, hypothesize, or design with impressive originality, skill, and boldness.
At the heart of machine creativity is simple iteration. No matter what sort of output they produce, creative machines fall into one of three categories depending on their internal architecture.
Briefly, the first group consists of software programs that use traditional rule-based, or symbolic AI, the second group uses evolutionary algorithms, and the third group uses a variation of a form of machine learning called deep learning that has already revolutionized voice and facial recognition software.
1) Symbolic creative machines are the oldest artificial artists and musicians. In this approach—also known as “good old-fashioned AI (GOFAI) or symbolic AI—the human programmer plays a key role by writing a set of step-by-step instructions to guide the computer through a task. Despite the fact that symbolic AI is limited in its ability to adapt to environmental changes, it’s still possible for a robotic artist programmed this way to create an impressively wide variety of different outputs.
2) Evolutionary algorithms (EA) have been in use for several decades and remain powerful tools for design. In this approach, potential solutions “compete” in a software simulator in a Darwinian process reminiscent of biological evolution. The human programmer specifies a “fitness criterion” that will be used to score and rank the solutions generated by the software. The software then generates a “first generation” population of random solutions (which typically are pretty poor in quality), scores this first generation of solutions, and selects the top 50% (those random solutions deemed to be the best “fit”). The software then takes another pass and recombines the “winning” solutions to create the next generation and repeats this process for thousands (and sometimes millions) of generations.
3) Generative deep learning (DL) neural networks represent the newest software architecture of the three, since DL is data-dependent and resource-intensive. First, a human programmer “trains” a DL neural network to recognize a particular feature in a dataset, for example, an image of a dog in a stream of digital images. Next, the standard “feed forward” process is reversed and the DL neural network begins to generate the feature, for example, eventually producing new and sometimes original images of (or poetry about) dogs. Generative DL networks have tremendous and unexplored creative potential and are able to produce a broad range of original outputs, from paintings to music to poetry.
The Coming Explosion of Machine Creativity
In the near future as Moore’s Law continues its work, we will see sophisticated combinations of these three basic architectures. Since the 1950s, artificial intelligence has steadily mastered one human ability after another, and in the process of doing so, has reduced the cost of calculation, analysis, and most recently, perception. When creative software becomes as inexpensive and ubiquitous as analytical software is today, humans will no longer be the only intelligent beings capable of creative work.
This is why I have to bite my tongue when I hear the well-intended (but shortsighted) advice frequently dispensed to young people that they should pursue work that demands creativity to help them “AI-proof” their futures.
Instead, students should gain skills to harness the power of creative machines.
There are two skills in which humans excel that will enable us to remain useful in a world of ever-advancing artificial intelligence. One, the ability to frame and define a complex problem so that it can be handed off to a creative machine to solve. And two, the ability to communicate the value of both the framework and the proposed solution to the other humans involved.
What will happen to people when creative machines begin to capably tread on intellectual ground that was once considered the sole domain of the human mind, and before that, the product of divine inspiration? While machines engaging in Big C creativity—e.g., oil painting and composing new symphonies—tend to garner controversy and make the headlines, I suspect the real world-changing application of machine creativity will be in the realm of everyday problem solving, or Little C. The mainstream emergence of powerful problem-solving tools will help people create abundance where there was once scarcity.
Image Credit: adike / Shutterstock.com Continue reading

Posted in Human Robots