Tag Archives: before

#431181 Workspace Sentry collaborative robotics ...

PRINCETON, NJ September 13, 2017 – – ST Robotics announces the availability of its Workspace Sentry collaborative robotics safety system, specifically designed to meet the International Organization for Standardization (ISO)/Technical Specification (TS) 15066 on collaborative operation. The new ISO/TS 15066, a game changer for the robotics industry, provides guidelines for the design and implementation of a collaborative workspace that reduces risks to people.

The ST Robotics Workspace Sentry robot and area safety system are based on a small module that sends infrared beams across the workspace. If the user puts his hand (or any other object) in the workspace, the robot stops using programmable emergency deceleration. Each module has three beams at different angles and the distance a beam reaches is adjustable. Two or more modules can be daisy chained to watch a wider area.
Photo Credit: ST Robotics – www.robot.md
“A robot that is tuned to stop on impact may not be safe. Robots where the trip torque can be set at low thresholds are too slow for any practical industrial application. The best system is where the work area has proximity detectors so the robot stops before impact and that is the approach ST Robotics has taken,” states President and CEO of ST Robotics David Sands.

ST Robotics, widely known for ‘robotics within reach’, has offices in Princeton, New Jersey and Cambridge, England, as well as in Asia. One of the first manufacturers of bench-top robot arms, ST Robotics has been providing the lowest-priced, easy-to-program boxed robots for the past 30 years. ST’s robots are utilized the world over by companies and institutions such as Lockheed-Martin, Motorola, Honeywell, MIT, NASA, Pfizer, Sony and NXP. The numerous applications for ST’s robots benefit the manufacturing, nuclear, pharmaceutical, laboratory and semiconductor industries.

For additional information on ST Robotics, contact:
sales1@strobotics.com
(609) 584 7522
www.strobotics.com

For press inquiries, contact:
Joanne Pransky
World’s First Robotic Psychiatrist®
drjoanne@robot.md
(650) ROBOT-MD

The post Workspace Sentry collaborative robotics safety system appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#431165 Intel Jumps Into Brain-Like Computing ...

The brain has long inspired the design of computers and their software. Now Intel has become the latest tech company to decide that mimicking the brain’s hardware could be the next stage in the evolution of computing.
On Monday the company unveiled an experimental “neuromorphic” chip called Loihi. Neuromorphic chips are microprocessors whose architecture is configured to mimic the biological brain’s network of neurons and the connections between them called synapses.
While neural networks—the in vogue approach to artificial intelligence and machine learning—are also inspired by the brain and use layers of virtual neurons, they are still implemented on conventional silicon hardware such as CPUs and GPUs.
The main benefit of mimicking the architecture of the brain on a physical chip, say neuromorphic computing’s proponents, is energy efficiency—the human brain runs on roughly 20 watts. The “neurons” in neuromorphic chips carry out the role of both processor and memory which removes the need to shuttle data back and forth between separate units, which is how traditional chips work. Each neuron also only needs to be powered while it’s firing.

At present, most machine learning is done in data centers due to the massive energy and computing requirements. Creating chips that capture some of nature’s efficiency could allow AI to be run directly on devices like smartphones, cars, and robots.
This is exactly the kind of application Michael Mayberry, managing director of Intel’s research arm, touts in a blog post announcing Loihi. He talks about CCTV cameras that can run image recognition to identify missing persons or traffic lights that can track traffic flow to optimize timing and keep vehicles moving.
There’s still a long way to go before that happens though. According to Wired, so far Intel has only been working with prototypes, and the first full-size version of the chip won’t be built until November.
Once complete, it will feature 130,000 neurons and 130 million synaptic connections split between 128 computing cores. The device will be 1,000 times more energy-efficient than standard approaches, according to Mayberry, but more impressive are claims the chip will be capable of continuous learning.
Intel’s newly launched self-learning neuromorphic chip.
Normally deep learning works by training a neural network on giant datasets to create a model that can then be applied to new data. The Loihi chip will combine training and inference on the same chip, which will allow it to learn on the fly, constantly updating its models and adapting to changing circumstances without having to be deliberately re-trained.
A select group of universities and research institutions will be the first to get their hands on the new chip in the first half of 2018, but Mayberry said it could be years before it’s commercially available. Whether commercialization happens at all may largely depend on whether early adopters can get the hardware to solve any practically useful problems.
So far neuromorphic computing has struggled to gain traction outside the research community. IBM released a neuromorphic chip called TrueNorth in 2014, but the device has yet to showcase any commercially useful applications.
Lee Gomes summarizes the hurdles facing neuromorphic computing excellently in IEEE Spectrum. One is that deep learning can run on very simple, low-precision hardware that can be optimized to use very little power, which suggests complicated new architectures may struggle to find purchase.
It’s also not easy to transfer deep learning approaches developed on conventional chips over to neuromorphic hardware, and even Intel Labs chief scientist Narayan Srinivasa admitted to Forbes Loihi wouldn’t work well with some deep learning models.
Finally, there’s considerable competition in the quest to develop new computer architectures specialized for machine learning. GPU vendors Nvidia and AMD have pivoted to take advantage of this newfound market and companies like Google and Microsoft are developing their own in-house solutions.
Intel, for its part, isn’t putting all its eggs in one basket. Last year it bought two companies building chips for specialized machine learning—Movidius and Nervana—and this was followed up with the $15 billion purchase of self-driving car chip- and camera-maker Mobileye.
And while the jury is still out on neuromorphic computing, it makes sense for a company eager to position itself as the AI chipmaker of the future to have its fingers in as many pies as possible. There are a growing number of voices suggesting that despite its undoubted power, deep learning alone will not allow us to imbue machines with the kind of adaptable, general intelligence humans possess.
What new approaches will get us there are hard to predict, but it’s entirely possible they will only work on hardware that closely mimics the one device we already know is capable of supporting this kind of intelligence—the human brain.
Image Credit: Intel Continue reading

Posted in Human Robots

#431159 How Close Is Turing’s Dream of ...

The quest for conversational artificial intelligence has been a long one.
When Alan Turing, the father of modern computing, racked his considerable brains for a test that would truly indicate that a computer program was intelligent, he landed on this area. If a computer could convince a panel of human judges that they were talking to a human—if it could hold a convincing conversation—then it would indicate that artificial intelligence had advanced to the point where it was indistinguishable from human intelligence.
This gauntlet was thrown down in 1950 and, so far, no computer program has managed to pass the Turing test.
There have been some very notable failures, however: Joseph Weizenbaum, as early as 1966—when computers were still programmed with large punch-cards—developed a piece of natural language processing software called ELIZA. ELIZA was a machine intended to respond to human conversation by pretending to be a psychotherapist; you can still talk to her today.
Talking to ELIZA is a little strange. She’ll often rephrase things you’ve said back at you: so, for example, if you say “I’m feeling depressed,” she might say “Did you come to me because you are feeling depressed?” When she’s unsure about what you’ve said, ELIZA will usually respond with “I see,” or perhaps “Tell me more.”
For the first few lines of dialogue, especially if you treat her as your therapist, ELIZA can be convincingly human. This was something Weizenbaum noticed and was slightly alarmed by: people were willing to treat the algorithm as more human than it really was. Before long, even though some of the test subjects knew ELIZA was just a machine, they were opening up with some of their deepest feelings and secrets. They were pouring out their hearts to a machine. When Weizenbaum’s secretary spoke to ELIZA, even though she knew it was a fairly simple computer program, she still insisted Weizenbaum leave the room.
Part of the unexpected reaction ELIZA generated may be because people are more willing to open up to a machine, feeling they won’t be judged, even if the machine is ultimately powerless to do or say anything to really help. The ELIZA effect was named for this computer program: the tendency of humans to anthropomorphize machines, or think of them as human.

Weizenbaum himself, who later became deeply suspicious of the influence of computers and artificial intelligence in human life, was astonished that people were so willing to believe his script was human. He wrote, “I had not realized…that extremely short exposures to a relatively simple computer program could induce powerful delusional thinking in quite normal people.”

“Consciously, you know you’re talking to a big block of code stored somewhere out there in the ether. But subconsciously, you might feel like you’re interacting with a human.”

The ELIZA effect may have disturbed Weizenbaum, but it has intrigued and fascinated others for decades. Perhaps you’ve noticed it in yourself, when talking to an AI like Siri, Alexa, or Google Assistant—the occasional response can seem almost too real. Consciously, you know you’re talking to a big block of code stored somewhere out there in the ether. But subconsciously, you might feel like you’re interacting with a human.
Yet the ELIZA effect, as enticing as it is, has proved a source of frustration for people who are trying to create conversational machines. Natural language processing has proceeded in leaps and bounds since the 1960s. Now you can find friendly chatbots like Mitsuku—which has frequently won the Loebner Prize, awarded to the machines that come closest to passing the Turing test—that aim to have a response to everything you might say.
In the commercial sphere, Facebook has opened up its Messenger program and provided software for people and companies to design their own chatbots. The idea is simple: why have an app for, say, ordering pizza when you can just chatter to a robot through your favorite messenger app and make the order in natural language, as if you were telling your friend to get it for you?
Startups like Semantic Machines hope their AI assistant will be able to interact with you just like a secretary or PA would, but with an unparalleled ability to retrieve information from the internet. They may soon be there.
But people who engineer chatbots—both in the social and commercial realm—encounter a common problem: the users, perhaps subconsciously, assume the chatbots are human and become disappointed when they’re not able to have a normal conversation. Frustration with miscommunication can often stem from raised initial expectations.
So far, no machine has really been able to crack the problem of context retention—understanding what’s been said before, referring back to it, and crafting responses based on the point the conversation has reached. Even Mitsuku will often struggle to remember the topic of conversation beyond a few lines of dialogue.

“For everything you say, there could be hundreds of responses that would make sense. When you travel a layer deeper into the conversation, those factors multiply until you end up with vast numbers of potential conversations.”

This is, of course, understandable. Conversation can be almost unimaginably complex. For everything you say, there could be hundreds of responses that would make sense. When you travel a layer deeper into the conversation, those factors multiply until—like possible games of Go or chess—you end up with vast numbers of potential conversations.
But that hasn’t deterred people from trying, most recently, tech giant Amazon, in an effort to make their AI voice assistant, Alexa, friendlier. They have been running the Alexa Prize competition, which offers a cool $500,000 to the winning AI—and a bonus of a million dollars to any team that can create a ‘socialbot’ capable of sustaining a conversation with human users for 20 minutes on a variety of themes.
Topics Alexa likes to chat about include science and technology, politics, sports, and celebrity gossip. The finalists were recently announced: chatbots from universities in Prague, Edinburgh, and Seattle. Finalists were chosen according to the ratings from Alexa users, who could trigger the socialbots into conversation by saying “Hey Alexa, let’s chat,” although the reviews for the socialbots weren’t always complimentary.
By narrowing down the fields of conversation to a specific range of topics, the Alexa Prize has cleverly started to get around the problem of context—just as commercially available chatbots hope to do. It’s much easier to model an interaction that goes a few layers into the conversational topic if you’re limiting those topics to a specific field.
Developing a machine that can hold almost any conversation with a human interlocutor convincingly might be difficult. It might even be a problem that requires artificial general intelligence to truly solve, rather than the previously-employed approaches of scripted answers or neural networks that associate inputs with responses.
But a machine that can have meaningful interactions that people might value and enjoy could be just around the corner. The Alexa Prize winner is announced in November. The ELIZA effect might mean we will relate to machines sooner than we’d thought.
So, go well, little socialbots. If you ever want to discuss the weather or what the world will be like once you guys take over, I’ll be around. Just don’t start a therapy session.
Image Credit: Shutterstock Continue reading

Posted in Human Robots

#431155 What It Will Take for Quantum Computers ...

Quantum computers could give the machine learning algorithms at the heart of modern artificial intelligence a dramatic speed up, but how far off are we? An international group of researchers has outlined the barriers that still need to be overcome.
This year has seen a surge of interest in quantum computing, driven in part by Google’s announcement that it will demonstrate “quantum supremacy” by the end of 2017. That means solving a problem beyond the capabilities of normal computers, which the company predicts will take 49 qubits—the quantum computing equivalent of bits.
As impressive as such a feat would be, the demonstration is likely to be on an esoteric problem that stacks the odds heavily in the quantum processor’s favor, and getting quantum computers to carry out practically useful calculations will take a lot more work.
But these devices hold great promise for solving problems in fields as diverse as cryptography or weather forecasting. One application people are particularly excited about is whether they could be used to supercharge the machine learning algorithms already transforming the modern world.
The potential is summarized in a recent review paper in the journal Nature written by a group of experts from the emerging field of quantum machine learning.
“Classical machine learning methods such as deep neural networks frequently have the feature that they can both recognize statistical patterns in data and produce data that possess the same statistical patterns: they recognize the patterns that they produce,” they write.
“This observation suggests the following hope. If small quantum information processors can produce statistical patterns that are computationally difficult for a classical computer to produce, then perhaps they can also recognize patterns that are equally difficult to recognize classically.”
Because of the way quantum computers work—taking advantage of strange quantum mechanical effects like entanglement and superposition—algorithms running on them should in principle be able to solve problems much faster than the best known classical algorithms, a phenomenon known as quantum speedup.
Designing these algorithms is tricky work, but the authors of the review note that there has been significant progress in recent years. They highlight multiple quantum algorithms exhibiting quantum speedup that could act as subroutines, or building blocks, for quantum machine learning programs.
We still don’t have the hardware to implement these algorithms, but according to the researchers the challenge is a technical one and clear paths to overcoming them exist. More challenging, they say, are four fundamental conceptual problems that could limit the applicability of quantum machine learning.
The first two are the input and output problems. Quantum computers, unsurprisingly, deal with quantum data, but the majority of the problems humans want to solve relate to the classical world. Translating significant amounts of classical data into the quantum systems can take so much time it can cancel out the benefits of the faster processing speeds, and the same is true of reading out the solution at the end.
The input problem could be mitigated to some extent by the development of quantum random access memory (qRAM)—the equivalent to RAM in a conventional computer used to provide the machine with quick access to its working memory. A qRAM can be configured to store classical data but allow the quantum computers to access all that information simultaneously as a superposition, which is required for a variety of quantum algorithms. But the authors note this is still a considerable engineering challenge and may not be sustainable for big data problems.
Closely related to the input/output problem is the costing problem. At present, the authors say very little is known about how many gates—or operations—a quantum machine learning algorithm will require to solve a given problem when operated on real-world devices. It’s expected that on highly complex problems they will offer considerable improvements over classical computers, but it’s not clear how big problems have to be before this becomes apparent.
Finally, whether or when these advantages kick in may be hard to prove, something the authors call the benchmarking problem. Claiming that a quantum algorithm can outperform any classical machine learning approach requires extensive testing against these other techniques that may not be feasible.
They suggest that this could be sidestepped by lowering the standards quantum machine learning algorithms are currently held to. This makes sense, as it doesn’t really matter whether an algorithm is intrinsically faster than all possible classical ones, as long as it’s faster than all the existing ones.
Another way of avoiding some of these problems is to apply these techniques directly to quantum data, the actual states generated by quantum systems and processes. The authors say this is probably the most promising near-term application for quantum machine learning and has the added benefit that any insights can be fed back into the design of better hardware.
“This would enable a virtuous cycle of innovation similar to that which occurred in classical computing, wherein each generation of processors is then leveraged to design the next-generation processors,” they conclude.
Image Credit: archy13 / Shutterstock.com Continue reading

Posted in Human Robots

#431058 How to Make Your First Chatbot With the ...

You’re probably wondering what Game of Thrones has to do with chatbots and artificial intelligence. Before I explain this weird connection, I need to warn you that this article may contain some serious spoilers. Continue with your reading only if you are a passionate GoT follower, who watches new episodes immediately after they come out.
Why are chatbots so important anyway?
According to the study “When Will AI Exceed Human Performance?,” researchers believe there is a 50% chance artificial intelligence could take over all human jobs by around the year 2060. This technology has already replaced dozens of customer service and sales positions and helped businesses make substantial savings.
Apart from the obvious business advantages, chatbot creation can be fun. You can create an artificial personality with a strong attitude and a unique set of traits and flaws. It’s like creating a new character for your favorite TV show. That’s why I decided to explain the most important elements of the chatbot creation process by using the TV characters we all know and love (or hate).
Why Game of Thrones?
Game of Thrones is the most popular TV show in the world. More than 10 million viewers watched the seventh season premiere, and you have probably seen internet users fanatically discussing the series’ characters, storyline, and possible endings.
Apart from writing about chatbots, I’m also a GoT fanatic, and I will base this chatbot on one of the characters from my favorite series. But before you find out the name of my bot, you should read a few lines about incredible free tools that allow us to build chatbots without coding.
Are chatbots expensive?
Today, you can create a chatbot even if you don’t know how to code. Most chatbot building platforms offer at least one free plan that allows you to use basic functionalities, create your bot, deploy it to Facebook Messenger, and analyze its performance. Free plans usually allow your bot to talk to a limited number of users.
Why should you personalize your bot?
Every platform will ask you to write a bot’s name before you start designing conversations. You will also be able to add the bot’s photograph and bio. Personalizing your bot is the only way to ensure that you will stick to the same personality and storyline throughout the building process. Users often see chatbots as people, and by giving your bot an identity, you will make sure that it doesn’t sound like it has multiple personality disorder.
I think connecting my chatbot with a GoT character will help readers understand the process of chatbot creation.
And the name of our GoT chatbot is…
…Cersei. She is mean, pragmatic, and fearless and she would do anything to stay on the Iron Throne. Many people would rather hang out with Daenerys or Jon Snow. These characters are honest, noble and good-hearted, which means their actions are often predictable.
Cersei, on the other hand, is the queen of intrigues. As the meanest and the most vengeful character in the series, she has an evil plan for everybody who steps on her toes. While viewers can easily guess where Jon and Daenerys stand, there are dozens of questions they would like to ask Cersei. But before we start talking to our bot, we need to build her personality by using the most basic elements of chatbot interaction.
Choosing the bot’s name on Botsify.
Welcome / Greeting Message
The welcome message is the greeting Cersei says to every commoner who clicks on the ‘start conversation’ button. She is not a welcoming person (ask Sansa), except if you are a banker from Braavos. Her introductory message may sound something like this:
“Dear {{user_full_name}}, My name is Cersei of the House Lannister, the First of Her Name, Queen of the Andals and the First Men, Protector of the Seven Kingdoms. You can ask me questions, and I will answer them. If the question is not worth answering, I will redirect you to Ser Gregor Clegane, who will give you a step-by-step course on how to talk to the Queen of Westeros.”
Creating the welcome message on Chatfuel
Default Message / Answer
In the bot game, users, bots, and their creators often need to learn from failed attempts and mistakes. The default message is the text Cersei will send whenever you ask her a question she doesn’t understand. Knowing Cersei, it would sound something like this:
“Ser Gregor, please escort {{user_full_name}} to the dungeon.”
Creating default message on Botsify
Menu
To avoid calling out the Mountain every time someone asks her a question, Cersei might give you a few (safe) options to choose. The best way to do this is by using a menu function. We can classify the questions people want to ask Cersei in several different categories:

Iron Throne
Relationship with Jaime — OK, this isn’t a “safe option,” get ready to get close and personal with Sir Gregor Clegane.
War plans
Euron Greyjoy

After users choose a menu item, Cersei can give them a default response on the topic or set up a plot that will make their lives miserable. Knowing Cersei, she will probably go for the second option.
Adding chatbot menu on Botsify
Stories / Blocks
This feature allows us to build a longer Cersei-to-user interaction. The structure of stories and blocks is different on every chatbot platform, but most of them use keywords and phrases for finding out the user’s intention.

Keywords — where the bot recognizes a certain keyword within the user’s reply. Users who have chosen the ‘war plans’ option might ask Cersei how is she planning to defeat Daenerys’s dragons. We can add ‘dragon’ and ‘dragons’ as keywords, and connect them with an answer that will sound something like this:

“Dragons are not invulnerable as you may think. Maester Qyburn is developing a weapon that will bring them down for good!”
Adding keywords on Chatfuel
People may also ask her about White Walkers. Do you plan to join Daenerys and Jon Snow in a fight against White Walkers? After we add ‘White Walker’ and ‘White Walkers’ on the keyword list, Cersei will answer:
“White Walkers? Do you think the Queen of Westeros has enough free time to think about creatures from fairy tales and legends?”
Adding Keywords on Botsify

Phrases — are more complex syntaxes that the bot can be trained to recognize. Many people would like to ask Cersei if she’s going to marry Euron Greyjoy after the war ends. We can add ‘Euron’ as a keyword, but then we won’t be sure what answer the user is expecting. Instead, we can use the phrase ‘(Will you) marry Euron Greyjoy (after the war?)’. Just to be sure, we should also add a few alternative phrases like ‘(Do you plan on) marrying Euron Greyjoy (after the war),’ ‘(Will you) end up with Euron Greyjoy (after the war?)’, ‘(Will) Euron Greyjoy be the new King?’ etc. Cersei would probably answer this inquiry in her style:

“Of course not, Euron is a useful idiot. I will use his fleet and send him back to the Iron Islands, where he belongs.”
Adding phrases on Botsify
Forms
We have already asked Cersei several questions, and now she would like to ask us something. She can do so by using the form/user input feature. Most tools allow us to add a question and the criteria for checking the users’ answer. If the user provides us the answer that is compliant to the predefined form (like email address, phone number, or a ZIP code), the bot will identify and extract the answer. If the answer doesn’t fit into the predefined criteria, the bot will notify the user and ask him/her to try again.
If Cersei would ask you a question, she would probably want to know your address so she could send her guards to fill your basement with barrels of wildfire.
Creating forms on Botsify
Templates
If you have problems building your first chatbot, templates can help you create the basic conversation structure. Unfortunately, not all platforms offer this feature for free. Snatchbot currently has the most comprehensive list of free templates. There you can choose a pre-built layout. The template selection ranges from simple FAQ bots to ones created for a specific industry, like banking, airline, healthcare, or e-commerce.
Choosing templates on Snatchbot
Plugins
Most tools also provide plugins that can be used for making the conversations more meaningful. These plugins allow Cersei to send images, audio and video files. She can unleash her creativity and make you suffer by sending you her favorite GoT execution videos.

With the help of integrations, Cersei can talk to you on Facebook Messenger, Telegram, WeChat, Slack, and many other communication apps. She can also sell her fan gear and ask you for donations by integrating in-bot payments from PayPal accounts. Her sales pitch will probably sound something like this:
“Gold wins wars! Would you rather invest your funds in a member of a respected family, who always pays her debts, or in the chaotic war endeavor of a crazy revolutionary, whose strength lies in three flying lizards? If your pockets are full of gold, you are already on my side. Now you can complete your checkout on PayPal.”
Chatbot building is now easier than ever, and even small businesses are starting to use the incredible benefits of artificial intelligence. If you still don’t believe that chatbots can replace customer service representatives, I suggest you try to develop a bot based on your favorite TV show, movie or book character and talk with him/her for a while. This way, you will be able to understand the concept that stands behind this amazing technology and use it to improve your business.
Now I’m off to talk to Cersei. Maybe she will feed me some Season 8 spoilers.
This article was originally published by Chatbots Magazine. Read the original post here.
Image credits for screenshots in post: Branislav Srdanovic
Banner stock media provided by new_vision_studio / Pond5 Continue reading

Posted in Human Robots