Tag Archives: before

#432467 Dungeons and Dragons, Not Chess and Go: ...

Everyone had died—not that you’d know it, from how they were laughing about their poor choices and bad rolls of the dice. As a social anthropologist, I study how people understand artificial intelligence (AI) and our efforts towards attaining it; I’m also a life-long fan of Dungeons and Dragons (D&D), the inventive fantasy roleplaying game. During a recent quest, when I was playing an elf ranger, the trainee paladin (or holy knight) acted according to his noble character, and announced our presence at the mouth of a dragon’s lair. The results were disastrous. But while success in D&D means “beating the bad guy,” the game is also a creative sandbox, where failure can count as collective triumph so long as you tell a great tale.

What does this have to do with AI? In computer science, games are frequently used as a benchmark for an algorithm’s “intelligence.” The late Robert Wilensky, a professor at the University of California, Berkeley and a leading figure in AI, offered one reason why this might be. Computer scientists “looked around at who the smartest people were, and they were themselves, of course,” he told the authors of Compulsive Technology: Computers as Culture (1985). “They were all essentially mathematicians by training, and mathematicians do two things—they prove theorems and play chess. And they said, hey, if it proves a theorem or plays chess, it must be smart.” No surprise that demonstrations of AI’s “smarts” have focused on the artificial player’s prowess.

Yet the games that get chosen—like Go, the main battlefield for Google DeepMind’s algorithms in recent years—tend to be tightly bounded, with set objectives and clear paths to victory or defeat. These experiences have none of the open-ended collaboration of D&D. Which got me thinking: do we need a new test for intelligence, where the goal is not simply about success, but storytelling? What would it mean for an AI to “pass” as human in a game of D&D? Instead of the Turing test, perhaps we need an elf ranger test?

Of course, this is just a playful thought experiment, but it does highlight the flaws in certain models of intelligence. First, it reveals how intelligence has to work across a variety of environments. D&D participants can inhabit many characters in many games, and the individual player can “switch” between roles (the fighter, the thief, the healer). Meanwhile, AI researchers know that it’s super difficult to get a well-trained algorithm to apply its insights in even slightly different domains—something that we humans manage surprisingly well.

Second, D&D reminds us that intelligence is embodied. In computer games, the bodily aspect of the experience might range from pressing buttons on a controller in order to move an icon or avatar (a ping-pong paddle; a spaceship; an anthropomorphic, eternally hungry, yellow sphere), to more recent and immersive experiences involving virtual-reality goggles and haptic gloves. Even without these add-ons, games can still produce biological responses associated with stress and fear (if you’ve ever played Alien: Isolation you’ll understand). In the original D&D, the players encounter the game while sitting around a table together, feeling the story and its impact. Recent research in cognitive science suggests that bodily interactions are crucial to how we grasp more abstract mental concepts. But we give minimal attention to the embodiment of artificial agents, and how that might affect the way they learn and process information.

Finally, intelligence is social. AI algorithms typically learn through multiple rounds of competition, in which successful strategies get reinforced with rewards. True, it appears that humans also evolved to learn through repetition, reward and reinforcement. But there’s an important collaborative dimension to human intelligence. In the 1930s, the psychologist Lev Vygotsky identified the interaction of an expert and a novice as an example of what became called “scaffolded” learning, where the teacher demonstrates and then supports the learner in acquiring a new skill. In unbounded games, this cooperation is channelled through narrative. Games of It among small children can evolve from win/lose into attacks by terrible monsters, before shifting again to more complex narratives that explain why the monsters are attacking, who is the hero, and what they can do and why—narratives that aren’t always logical or even internally compatible. An AI that could engage in social storytelling is doubtless on a surer, more multifunctional footing than one that plays chess; and there’s no guarantee that chess is even a step on the road to attaining intelligence of this sort.

In some ways, this failure to look at roleplaying as a technical hurdle for intelligence is strange. D&D was a key cultural touchstone for technologists in the 1980s and the inspiration for many early text-based computer games, as Katie Hafner and Matthew Lyon point out in Where Wizards Stay up Late: The Origins of the Internet (1996). Even today, AI researchers who play games in their free time often mention D&D specifically. So instead of beating adversaries in games, we might learn more about intelligence if we tried to teach artificial agents to play together as we do: as paladins and elf rangers.

This article was originally published at Aeon and has been republished under Creative Commons.

Image Credit:Benny Mazur/Flickr / CC BY 2.0 Continue reading

Posted in Human Robots

#432324 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
China Wants to Shape the Global Future of Artificial Intelligence
Will Knight | MIT Technology Review
“China’s booming AI industry and massive government investment in the technology have raised fears in the US and elsewhere that the nation will overtake international rivals in a fundamentally important technology. In truth, it may be possible for both the US and the Chinese economies to benefit from AI. But there may be more rivalry when it comes to influencing the spread of the technology worldwide. ‘I think this is the first technology area where China has a real chance to set the rules of the game,’ says Ding.”

SPACE
Astronaut’s Gene Expression No Longer Same as His Identical Twin, NASA Finds
Susan Scutti | CNN
“Preliminary results from NASA’s Twins Study reveal that 7% of astronaut Scott Kelly’s genetic expression—how his genes function within cells—did not return to baseline after his return to Earth two years ago. The study looks at what happened to Kelly before, during and after he spent one year aboard the International Space Station through an extensive comparison with his identical twin, Mark, who remained on Earth.”

3D PRINTING
This Cheap 3D-Printed Home Is a Start for the 1 Billion Who Lack Shelter
Tamara Warren | The Verge
“ICON has developed a method for printing a single-story 650-square-foot house out of cement in only 12 to 24 hours, a fraction of the time it takes for new construction. If all goes according to plan, a community made up of about 100 homes will be constructed for residents in El Salvador next year. The company has partnered with New Story, a nonprofit that is vested in international housing solutions. ‘We have been building homes for communities in Haiti, El Salvador, and Bolivia,’ Alexandria Lafci, co-founder of New Story, tells The Verge.”

SCIENCE
Our Microbiomes Are Making Scientists Question What It Means to Be Human
Rebecca Flowers | Motherboard
“Studies in genetics and Watson and Crick’s discovery of DNA gave more credence to the idea of individuality. But as scientists learn more about the microbiome, the idea of humans as a singular organism is being reconsidered: ‘There is now overwhelming evidence that normal development as well as the maintenance of the organism depend on the microorganisms…that we harbor,’ they state (others have taken this position, too).”

CULTURE
Stephen Hawking, Who Awed Both Scientists and the Public, Dies
Joe Palca | NPR
“Hawking was probably the best-known scientist in the world. He was a theoretical physicist whose early work on black holes transformed how scientists think about the nature of the universe. But his fame wasn’t just a result of his research. Hawking, who had a debilitating neurological disease that made it impossible for him to move his limbs or speak, was also a popular public figure and best-selling author. There was even a biopic about his life, The Theory of Everything, that won an Oscar for the actor, Eddie Redmayne, who portrayed Hawking.”

Image Credit: NASA/JPL-Caltech/STScI Continue reading

Posted in Human Robots

#432311 Everyone Is Talking About AI—But Do ...

In 2017, artificial intelligence attracted $12 billion of VC investment. We are only beginning to discover the usefulness of AI applications. Amazon recently unveiled a brick-and-mortar grocery store that has successfully supplanted cashiers and checkout lines with computer vision, sensors, and deep learning. Between the investment, the press coverage, and the dramatic innovation, “AI” has become a hot buzzword. But does it even exist yet?

At the World Economic Forum Dr. Kai-Fu Lee, a Taiwanese venture capitalist and the founding president of Google China, remarked, “I think it’s tempting for every entrepreneur to package his or her company as an AI company, and it’s tempting for every VC to want to say ‘I’m an AI investor.’” He then observed that some of these AI bubbles could burst by the end of 2018, referring specifically to “the startups that made up a story that isn’t fulfillable, and fooled VCs into investing because they don’t know better.”

However, Dr. Lee firmly believes AI will continue to progress and will take many jobs away from workers. So, what is the difference between legitimate AI, with all of its pros and cons, and a made-up story?

If you parse through just a few stories that are allegedly about AI, you’ll quickly discover significant variation in how people define it, with a blurred line between emulated intelligence and machine learning applications.

I spoke to experts in the field of AI to try to find consensus, but the very question opens up more questions. For instance, when is it important to be accurate to a term’s original definition, and when does that commitment to accuracy amount to the splitting of hairs? It isn’t obvious, and hype is oftentimes the enemy of nuance. Additionally, there is now a vested interest in that hype—$12 billion, to be precise.

This conversation is also relevant because world-renowned thought leaders have been publicly debating the dangers posed by AI. Facebook CEO Mark Zuckerberg suggested that naysayers who attempt to “drum up these doomsday scenarios” are being negative and irresponsible. On Twitter, business magnate and OpenAI co-founder Elon Musk countered that Zuckerberg’s understanding of the subject is limited. In February, Elon Musk engaged again in a similar exchange with Harvard professor Steven Pinker. Musk tweeted that Pinker doesn’t understand the difference between functional/narrow AI and general AI.

Given the fears surrounding this technology, it’s important for the public to clearly understand the distinctions between different levels of AI so that they can realistically assess the potential threats and benefits.

As Smart As a Human?
Erik Cambria, an expert in the field of natural language processing, told me, “Nobody is doing AI today and everybody is saying that they do AI because it’s a cool and sexy buzzword. It was the same with ‘big data’ a few years ago.”

Cambria mentioned that AI, as a term, originally referenced the emulation of human intelligence. “And there is nothing today that is even barely as intelligent as the most stupid human being on Earth. So, in a strict sense, no one is doing AI yet, for the simple fact that we don’t know how the human brain works,” he said.

He added that the term “AI” is often used in reference to powerful tools for data classification. These tools are impressive, but they’re on a totally different spectrum than human cognition. Additionally, Cambria has noticed people claiming that neural networks are part of the new wave of AI. This is bizarre to him because that technology already existed fifty years ago.

However, technologists no longer need to perform the feature extraction by themselves. They also have access to greater computing power. All of these advancements are welcomed, but it is perhaps dishonest to suggest that machines have emulated the intricacies of our cognitive processes.

“Companies are just looking at tricks to create a behavior that looks like intelligence but that is not real intelligence, it’s just a mirror of intelligence. These are expert systems that are maybe very good in a specific domain, but very stupid in other domains,” he said.

This mimicry of intelligence has inspired the public imagination. Domain-specific systems have delivered value in a wide range of industries. But those benefits have not lifted the cloud of confusion.

Assisted, Augmented, or Autonomous
When it comes to matters of scientific integrity, the issue of accurate definitions isn’t a peripheral matter. In a 1974 commencement address at the California Institute of Technology, Richard Feynman famously said, “The first principle is that you must not fool yourself—and you are the easiest person to fool.” In that same speech, Feynman also said, “You should not fool the layman when you’re talking as a scientist.” He opined that scientists should bend over backwards to show how they could be wrong. “If you’re representing yourself as a scientist, then you should explain to the layman what you’re doing—and if they don’t want to support you under those circumstances, then that’s their decision.”

In the case of AI, this might mean that professional scientists have an obligation to clearly state that they are developing extremely powerful, controversial, profitable, and even dangerous tools, which do not constitute intelligence in any familiar or comprehensive sense.

The term “AI” may have become overhyped and confused, but there are already some efforts underway to provide clarity. A recent PwC report drew a distinction between “assisted intelligence,” “augmented intelligence,” and “autonomous intelligence.” Assisted intelligence is demonstrated by the GPS navigation programs prevalent in cars today. Augmented intelligence “enables people and organizations to do things they couldn’t otherwise do.” And autonomous intelligence “establishes machines that act on their own,” such as autonomous vehicles.

Roman Yampolskiy is an AI safety researcher who wrote the book “Artificial Superintelligence: A Futuristic Approach.” I asked him whether the broad and differing meanings might present difficulties for legislators attempting to regulate AI.

Yampolskiy explained, “Intelligence (artificial or natural) comes on a continuum and so do potential problems with such technology. We typically refer to AI which one day will have the full spectrum of human capabilities as artificial general intelligence (AGI) to avoid some confusion. Beyond that point it becomes superintelligence. What we have today and what is frequently used in business is narrow AI. Regulating anything is hard, technology is no exception. The problem is not with terminology but with complexity of such systems even at the current level.”

When asked if people should fear AI systems, Dr. Yampolskiy commented, “Since capability comes on a continuum, so do problems associated with each level of capability.” He mentioned that accidents are already reported with AI-enabled products, and as the technology advances further, the impact could spread beyond privacy concerns or technological unemployment. These concerns about the real-world effects of AI will likely take precedence over dictionary-minded quibbles. However, the issue is also about honesty versus deception.

Is This Buzzword All Buzzed Out?
Finally, I directed my questions towards a company that is actively marketing an “AI Virtual Assistant.” Carl Landers, the CMO at Conversica, acknowledged that there are a multitude of explanations for what AI is and isn’t.

He said, “My definition of AI is technology innovation that helps solve a business problem. I’m really not interested in talking about the theoretical ‘can we get machines to think like humans?’ It’s a nice conversation, but I’m trying to solve a practical business problem.”

I asked him if AI is a buzzword that inspires publicity and attracts clients. According to Landers, this was certainly true three years ago, but those effects have already started to wane. Many companies now claim to have AI in their products, so it’s less of a differentiator. However, there is still a specific intention behind the word. Landers hopes to convey that previously impossible things are now possible. “There’s something new here that you haven’t seen before, that you haven’t heard of before,” he said.

According to Brian Decker, founder of Encom Lab, machine learning algorithms only work to satisfy their preexisting programming, not out of an interior drive for better understanding. Therefore, he views AI as an entirely semantic argument.

Decker stated, “A marketing exec will claim a photodiode controlled porch light has AI because it ‘knows when it is dark outside,’ while a good hardware engineer will point out that not one bit in a register in the entire history of computing has ever changed unless directed to do so according to the logic of preexisting programming.”

Although it’s important for everyone to be on the same page regarding specifics and underlying meaning, AI-powered products are already powering past these debates by creating immediate value for humans. And ultimately, humans care more about value than they do about semantic distinctions. In an interview with Quartz, Kai-Fu Lee revealed that algorithmic trading systems have already given him an 8X return over his private banking investments. “I don’t trade with humans anymore,” he said.

Image Credit: vrender / Shutterstock.com Continue reading

Posted in Human Robots

#432303 What If the AI Revolution Is Neither ...

Why does everyone assume that the AI revolution will either lead to a fiery apocalypse or a glorious utopia, and not something in between? Of course, part of this is down to the fact that you get more attention by saying “The end is nigh!” or “Utopia is coming!”

But part of it is down to how humans think about change, especially unprecedented change. Millenarianism doesn’t have anything to do with being a “millennial,” being born in the 90s and remembering Buffy the Vampire Slayer. It is a way of thinking about the future that involves a deeply ingrained sense of destiny. A definition might be: “Millenarianism is the expectation that the world as it is will be destroyed and replaced with a perfect world, that a redeemer will come to cast down the evil and raise up the righteous.”

Millenarian beliefs, then, intimately link together the ideas of destruction and creation. They involve the idea of a huge, apocalyptic, seismic shift that will destroy the fabric of the old world and create something entirely new. Similar belief systems exist in many of the world’s major religions, and also the unspoken religion of some atheists and agnostics, which is a belief in technology.

Look at some futurist beliefs around the technological Singularity. In Ray Kurzweil’s vision, the Singularity is the establishment of paradise. Everyone is rendered immortal by biotechnology that can cure our ills; our brains can be uploaded to the cloud; inequality and suffering wash away under the wave of these technologies. The “destruction of the world” is replaced by a Silicon Valley buzzword favorite: disruption. And, as with many millenarian beliefs, your mileage varies on whether this destruction paves the way for a new utopia—or simply ends the world.

There are good reasons to be skeptical and interrogative towards this way of thinking. The most compelling reason is probably that millenarian beliefs seem to be a default mode of how humans think about change; just look at how many variants of this belief have cropped up all over the world.

These beliefs are present in aspects of Christian theology, although they only really became mainstream in their modern form in the 19th and 20th centuries. Ideas like the Tribulations—many years of hardship and suffering—before the Rapture, when the righteous will be raised up and the evil punished. After this destruction, the world will be made anew, or humans will ascend to paradise.

Despite being dogmatically atheist, Marxism has many of the same beliefs. It is all about a deterministic view of history that builds to a crescendo. In the same way as Rapture-believers look for signs that prophecies are beginning to be fulfilled, so Marxists look for evidence that we’re in the late stages of capitalism. They believe that, inevitably, society will degrade and degenerate to a breaking point—just as some millenarian Christians do.

In Marxism, this is when the exploitation of the working class by the rich becomes unsustainable, and the working class bands together and overthrows the oppressors. The “tribulation” is replaced by a “revolution.” Sometimes revolutionary figures, like Lenin, or Marx himself, are heralded as messiahs who accelerate the onset of the Millennium; and their rhetoric involves utterly smashing the old system such that a new world can be built. Of course, there is judgment, when the righteous workers take what’s theirs and the evil bourgeoisie are destroyed.

Even Norse mythology has an element of this, as James Hughes points out in his essay in Nick Bostrom’s book Global Catastrophic Risks. Ragnarok involves men and gods being defeated in a final, apocalyptic battle—but because that was a little bleak, they add in the idea that a new earth will arise where the survivors will live in harmony.

Judgement day is a cultural trope, too. Take the ancient Egyptians and their beliefs around the afterlife; the Lord of the underworld, Osiris, weighs the mortal’s heart against a feather. “Should the heart of the deceased prove to be heavy with wrongdoing, it would be eaten by a demon, and the hope of an afterlife vanished.”

Perhaps in the Singularity, something similar goes on. As our technology and hence our power improve, a final reckoning approaches: our hearts, as humans, will be weighed against a feather. If they prove too heavy with wrongdoing—with misguided stupidity, with arrogance and hubris, with evil—then we will fail the test, and we will destroy ourselves. But if we pass, and emerge from the Singularity and all of its threats and promises unscathed, then we will have paradise. And, like the other belief systems, there’s no room for non-believers; all of society is going to be radically altered, whether you want it to be or not, whether it benefits you or leaves you behind. A technological rapture.

It almost seems like every major development provokes this response. Nuclear weapons did, too. Either this would prove the final straw and we’d destroy ourselves, or the nuclear energy could be harnessed to build a better world. People talked at the dawn of the nuclear age about electricity that was “too cheap to meter.” The scientists who worked on the bomb often thought that with such destructive power in human hands, we’d be forced to cooperate and work together as a species.

When we see the same response over and over again to different circumstances, cropping up in different areas, whether it’s science, religion, or politics, we need to consider human biases. We like millenarian beliefs; and so when the idea of artificial intelligence outstripping human intelligence emerges, these beliefs spring up around it.

We don’t love facts. We don’t love information. We aren’t as rational as we’d like to think. We are creatures of narrative. Physicists observe the world and we weave our observations into narrative theories, stories about little billiard balls whizzing around and hitting each other, or space and time that bend and curve and expand. Historians try to make sense of an endless stream of events. We rely on stories: stories that make sense of the past, justify the present, and prepare us for the future.

And as stories go, the millenarian narrative is a brilliant and compelling one. It can lead you towards social change, as in the case of the Communists, or the Buddhist uprisings in China. It can justify your present-day suffering, if you’re in the tribulation. It gives you hope that your life is important and has meaning. It gives you a sense that things are evolving in a specific direction, according to rules—not just randomly sprawling outwards in a chaotic way. It promises that the righteous will be saved and the wrongdoers will be punished, even if there is suffering along the way. And, ultimately, a lot of the time, the millenarian narrative promises paradise.

We need to be wary of the millenarian narrative when we’re considering technological developments and the Singularity and existential risks in general. Maybe this time is different, but we’ve cried wolf many times before. There is a more likely, less appealing story. Something along the lines of: there are many possibilities, none of them are inevitable, and lots of the outcomes are less extreme than you might think—or they might take far longer than you think to arrive. On the surface, it’s not satisfying. It’s so much easier to think of things as either signaling the end of the world or the dawn of a utopia—or possibly both at once. It’s a narrative we can get behind, a good story, and maybe, a nice dream.

But dig a little below the surface, and you’ll find that the millenarian beliefs aren’t always the most promising ones, because they remove human agency from the equation. If you think that, say, the malicious use of algorithms, or the control of superintelligent AI, are serious and urgent problems that are worth solving, you can’t be wedded to a belief system that insists utopia or dystopia are inevitable. You have to believe in the shades of grey—and in your own ability to influence where we might end up. As we move into an uncertain technological future, we need to be aware of the power—and the limitations—of dreams.

Image Credit: Photobank gallery / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots

#432264 Robot Research in the Wild: Water ...

What can we learn from bringing practical robotics to people who have never seen a robot before? Continue reading

Posted in Human Robots