Tag Archives: before
#434685 How Tech Will Let You Learn Anything, ...
Today, over 77 percent of Americans own a smartphone with access to the world’s information and near-limitless learning resources.
Yet nearly 36 million adults in the US are constrained by low literacy skills, excluding them from professional opportunities, prospects of upward mobility, and full engagement with their children’s education.
And beyond its direct impact, low literacy rates affect us all. Improving literacy among adults is predicted to save $230 billion in national healthcare costs and could result in US labor productivity increases of up to 2.5 percent.
Across the board, exponential technologies are making demonetized learning tools, digital training platforms, and literacy solutions more accessible than ever before.
With rising automation and major paradigm shifts underway in the job market, these tools not only promise to make today’s workforce more versatile, but could play an invaluable role in breaking the poverty cycles often associated with low literacy.
Just three years ago, the Barbara Bush Foundation for Family Literacy and the Dollar General Literacy Foundation joined forces to tackle this intractable problem, launching a $7 million Adult Literacy XPRIZE.
Challenging teams to develop smartphone apps that significantly increase literacy skills among adult learners in just 12 months, the competition brought five prize teams to the fore, each targeting multiple demographics across the nation.
Now, after four years of research, prototyping, testing, and evaluation, XPRIZE has just this week announced two grand prize winners: Learning Upgrade and People ForWords.
In this blog, I’ll be exploring the nuts and bolts of our two winning teams and how exponential technologies are beginning to address rapidly shifting workforce demands.
We’ll discuss:
Meeting 100 percent adult literacy rates
Retooling today’s workforce for tomorrow’s job market
Granting the gift of lifelong learning
Let’s dive in.
Adult Literacy XPRIZE
Emphasizing the importance of accessible mediums and scalability, the Adult Literacy XPRIZE called for teams to create mobile solutions that lower the barrier to entry, encourage persistence, develop relevant learning content, and can scale nationally.
Outperforming the competition in two key demographic groups in aggregate—native English speakers and English language learners—teams Learning Upgrade and People ForWords together claimed the prize.
To win, both organizations successfully generated the greatest gains between a pre- and post-test, administered one year apart to learners in a 12-month field test across Los Angeles, Dallas, and Philadelphia.
Prize money in hand, Learning Upgrade and People ForWords are now scaling up their solutions, each targeting a key demographic in America’s pursuit of adult literacy.
Based in San Diego, Learning Upgrade has developed an Android and iOS app that helps students learn English and math through video, songs, and gamification. Offering a total of 21 courses from kindergarten through adult education, Learning Upgrade touts a growing platform of over 900 lessons spanning English, reading, math, and even GED prep.
To further personalize each student’s learning, Learning Upgrade measures time-on-task and builds out formative performance assessments, granting teachers a quantified, real-time view of each student’s progress across both lessons and criteria.
Specialized in English reading skills, Dallas-based People ForWords offers a similarly delocalized model with its mobile game “Codex: Lost Words of Atlantis.” Based on an archaeological adventure storyline, the app features an immersive virtual environment.
Set in the Atlantis Library (now with a 3D rendering underway), Codex takes its students through narrative-peppered lessons covering everything from letter-sound practice to vocabulary reinforcement in a hidden object game.
But while both mobile apps have recruited initial piloting populations, the key to success is scale.
Using a similar incentive prize competition structure to drive recruitment, the second phase of the XPRIZE is a $1 million Barbara Bush Foundation Adult Literacy XPRIZE Communities Competition. For 15 months, the competition will challenge organizations, communities, and individuals alike to onboard adult learners onto both prize-winning platforms and fellow finalist team apps, AmritaCREATE and Cell-Ed.
Each awarded $125,000 for participation in the Communities Competition, AmritaCREATE and Cell-Ed bring yet other nuanced advantages to the table.
While AmritaCREATE curates culturally appropriate e-content relevant to given life skills, Cell-Ed takes a learn-on-the-go approach, offering micro-lessons, on-demand essential skills training, and individualized coaching on any mobile device, no internet required.
Although all these cases target slightly different demographics and problem niches, they converge upon common phenomena: mobility, efficiency, life skill relevance, personalized learning, and practicability.
And what better to scale these benefits than AI and immersive virtual environments?
In the case of education’s growing mobility, 5G and the explosion of connectivity speeds will continue to drive a learn-anytime-anywhere education model, whereby adult users learn on the fly, untethered to web access or rigid time strictures.
As I’ve explored in a previous blog on AI-crowd collaboration, we might also see the rise of AI learning consultants responsible for processing data on how you learn.
Quantifying and analyzing your interaction with course modules, where you get stuck, where you thrive, and what tools cause you ease or frustration, each user’s AI trainer might then issue personalized recommendations based on crowd feedback.
Adding a human touch, each app’s hired teaching consultants would thereby be freed to track many more students’ progress at once, vetting AI-generated tips and adjustments, and offering life coaching along the way.
Lastly, virtual learning environments—and, one day, immersive VR—will facilitate both speed and retention, two of the most critical constraints as learners age.
As I often reference, people generally remember only 10 percent of what we see, 20 percent of what we hear, and 30 percent of what we read…. But over a staggering 90 percent of what we do or experience.
By introducing gamification, immersive testing activities, and visually rich sensory environments, adult literacy platforms have a winning chance at scalability, retention, and user persistence.
Exponential Tools: Training and Retooling a Dynamic Workforce
Beyond literacy, however, virtual and augmented reality have already begun disrupting the professional training market.
As projected by ABI Research, the enterprise VR training market is on track to exceed $6.3 billion in value by 2022.
Leading the charge, Walmart has already implemented VR across 200 Academy training centers, running over 45 modules and simulating everything from unusual customer requests to a Black Friday shopping rush.
Then in September of last year, Walmart committed to a 17,000-headset order of the Oculus Go to equip every US Supercenter, neighborhood market, and discount store with VR-based employee training.
In the engineering world, Bell Helicopter is using VR to massively expedite development and testing of its latest aircraft, FCX-001. Partnering with Sector 5 Digital and HTC VIVE, Bell found it could concentrate a typical six-year aircraft design process into the course of six months, turning physical mockups into CAD-designed virtual replicas.
But beyond the design process itself, Bell is now one of a slew of companies pioneering VR pilot tests and simulations with real-world accuracy. Seated in a true-to-life virtual cockpit, pilots have now tested countless iterations of the FCX-001 in virtual flight, drawing directly onto the 3D model and enacting aircraft modifications in real time.
And in an expansion of our virtual senses, several key players are already working on haptic feedback. In the case of VR flight, French company Go Touch VR is now partnering with software developer FlyInside on fingertip-mounted haptic tech for aviation.
Dramatically reducing time and trouble required for VR-testing pilots, they aim to give touch-based confirmation of every switch and dial activated on virtual flights, just as one would experience in a full-sized cockpit mockup. Replicating texture, stiffness, and even the sensation of holding an object, these piloted devices contain a suite of actuators to simulate everything from a light touch to higher-pressured contact, all controlled by gaze and finger movements.
When it comes to other high-risk simulations, virtual and augmented reality have barely scratched the surface.
Firefighters can now combat virtual wildfires with new platforms like FLAIM Trainer or TargetSolutions. And thanks to the expansion of medical AR/VR services like 3D4Medical or Echopixel, surgeons might soon perform operations on annotated organs and magnified incision sites, speeding up reaction times and vastly improving precision.
But perhaps most urgently, virtual reality will offer an immediate solution to today’s constant industry turnover and large-scale re-education demands.
VR educational facilities with exact replicas of anything from large industrial equipment to minute circuitry will soon give anyone a second chance at the 21st-century job market.
Want to become an electric, autonomous vehicle mechanic at age 44? Throw on a demonetized VR module and learn by doing, testing your prototype iterations at almost zero cost and with no risk of harming others.
Want to be a plasma physicist and play around with a virtual nuclear fusion reactor? Now you’ll be able to simulate results and test out different tweaks, logging Smart Educational Record credits in the process.
As tomorrow’s career model shifts from a “one-and-done graduate degree” to continuous lifelong education, professional VR-based re-education will allow for a continuous education loop, reducing the barrier to entry for anyone wanting to try their hand at a new industry.
Learn Anything, Anytime, at Any Age
As VR and artificial intelligence converge with demonetized mobile connectivity, we are finally witnessing an era in which no one will be left behind.
Whether in pursuit of fundamental life skills, professional training, linguistic competence, or specialized retooling, users of all ages, career paths, income brackets, and goals are now encouraged to be students, no longer condemned to stagnancy.
Traditional constraints need no longer prevent non-native speakers from gaining an equal foothold, or specialists from pivoting into new professions, or low-income parents from staking new career paths.
As exponential technologies drive democratized access, bolstering initiatives such as the Barbara Bush Foundation Adult Literacy XPRIZE are blazing the trail to make education a scalable priority for all.
Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: Iulia Ghimisli / Shutterstock.com Continue reading
#434673 The World’s Most Valuable AI ...
It recognizes our faces. It knows the videos we might like. And it can even, perhaps, recommend the best course of action to take to maximize our personal health.
Artificial intelligence and its subset of disciplines—such as machine learning, natural language processing, and computer vision—are seemingly becoming integrated into our daily lives whether we like it or not. What was once sci-fi is now ubiquitous research and development in company and university labs around the world.
Similarly, the startups working on many of these AI technologies have seen their proverbial stock rise. More than 30 of these companies are now valued at over a billion dollars, according to data research firm CB Insights, which itself employs algorithms to provide insights into the tech business world.
Private companies with a billion-dollar valuation were so uncommon not that long ago that they were dubbed unicorns. Now there are 325 of these once-rare creatures, with a combined valuation north of a trillion dollars, as CB Insights maintains a running count of this exclusive Unicorn Club.
The subset of AI startups accounts for about 10 percent of the total membership, growing rapidly in just 4 years from 0 to 32. Last year, an unprecedented 17 AI startups broke the billion-dollar barrier, with 2018 also a record year for venture capital into private US AI companies at $9.3 billion, CB Insights reported.
What exactly is all this money funding?
AI Keeps an Eye Out for You
Let’s start with the bad news first.
Facial recognition is probably one of the most ubiquitous applications of AI today. It’s actually a decades-old technology often credited to a man named Woodrow Bledsoe, who used an instrument called a RAND tablet that could semi-autonomously match faces from a database. That was in the 1960s.
Today, most of us are familiar with facial recognition as a way to unlock our smartphones. But the technology has gained notoriety as a surveillance tool of law enforcement, particularly in China.
It’s no secret that the facial recognition algorithms developed by several of the AI unicorns from China—SenseTime, CloudWalk, and Face++ (also known as Megvii)—are used to monitor the country’s 1.3 billion citizens. Police there are even equipped with AI-powered eyeglasses for such purposes.
A fourth billion-dollar Chinese startup, Yitu Technologies, also produces a platform for facial recognition in the security realm, and develops AI systems in healthcare on top of that. For example, its CARE.AITM Intelligent 4D Imaging System for Chest CT can reputedly identify in real time a variety of lesions for the possible early detection of cancer.
The AI Doctor Is In
As Peter Diamandis recently noted, AI is rapidly augmenting healthcare and longevity. He mentioned another AI unicorn from China in this regard—iCarbonX, which plans to use machines to develop personalized health plans for every individual.
A couple of AI unicorns on the hardware side of healthcare are OrCam Technologies and Butterfly. The former, an Israeli company, has developed a wearable device for the vision impaired called MyEye that attaches to one’s eyeglasses. The device can identify people and products, as well as read text, conveying the information through discrete audio.
Butterfly Network, out of Connecticut, has completely upended the healthcare market with a handheld ultrasound machine that works with a smartphone.
“Orcam and Butterfly are amazing examples of how machine learning can be integrated into solutions that provide a step-function improvement over state of the art in ultra-competitive markets,” noted Andrew Byrnes, investment director at Comet Labs, a venture capital firm focused on AI and robotics, in an email exchange with Singularity Hub.
AI in the Driver’s Seat
Comet Labs’ portfolio includes two AI unicorns, Megvii and Pony.ai.
The latter is one of three billion-dollar startups developing the AI technology behind self-driving cars, with the other two being Momenta.ai and Zoox.
Founded in 2016 near San Francisco (with another headquarters in China), Pony.ai debuted its latest self-driving system, called PonyAlpha, last year. The platform uses multiple sensors (LiDAR, cameras, and radar) to navigate its environment, but its “sensor fusion technology” makes things simple by choosing the most reliable sensor data for any given driving scenario.
Zoox is another San Francisco area startup founded a couple of years earlier. In late 2018, it got the green light from the state of California to be the first autonomous vehicle company to transport a passenger as part of a pilot program. Meanwhile, China-based Momenta.ai is testing level four autonomy for its self-driving system. Autonomous driving levels are ranked zero to five, with level five being equal to a human behind the wheel.
The hype around autonomous driving is currently in overdrive, and Byrnes thinks regulatory roadblocks will keep most self-driving cars in idle for the foreseeable future. The exception, he said, is China, which is adopting a “systems” approach to autonomy for passenger transport.
“If [autonomous mobility] solves bigger problems like traffic that can elicit government backing, then that has the potential to go big fast,” he said. “This is why we believe Pony.ai will be a winner in the space.”
AI in the Back Office
An AI-powered technology that perhaps only fans of the cult classic Office Space might appreciate has suddenly taken the business world by storm—robotic process automation (RPA).
RPA companies take the mundane back office work, such as filling out invoices or processing insurance claims, and turn it over to bots. The intelligent part comes into play because these bots can tackle unstructured data, such as text in an email or even video and pictures, in order to accomplish an increasing variety of tasks.
Both Automation Anywhere and UiPath are older companies, founded in 2003 and 2005, respectively. However, since just 2017, they have raised nearly a combined $1 billion in disclosed capital.
Cybersecurity Embraces AI
Cybersecurity is another industry where AI is driving investment into startups. Sporting imposing names like CrowdStrike, Darktrace, and Tanium, these cybersecurity companies employ different machine-learning techniques to protect computers and other IT assets beyond the latest software update or virus scan.
Darktrace, for instance, takes its inspiration from the human immune system. Its algorithms can purportedly “learn” the unique pattern of each device and user on a network, detecting emerging problems before things spin out of control.
All three companies are used by major corporations and governments around the world. CrowdStrike itself made headlines a few years ago when it linked the hacking of the Democratic National Committee email servers to the Russian government.
Looking Forward
I could go on, and introduce you to the world’s most valuable startup, a Chinese company called Bytedance that is valued at $75 billion for news curation and an app to create 15-second viral videos. But that’s probably not where VC firms like Comet Labs are generally putting their money.
Byrnes sees real value in startups that are taking “data-driven approaches to problems specific to unique industries.” Take the example of Chicago-based unicorn Uptake Technologies, which analyzes incoming data from machines, from wind turbines to tractors, to predict problems before they occur with the machinery. A not-yet unicorn called PingThings in the Comet Labs portfolio does similar predictive analytics for the energy utilities sector.
“One question we like asking is, ‘What does the state of the art look like in your industry in three to five years?’” Byrnes said. “We ask that a lot, then we go out and find the technology-focused teams building those things.”
Image Credit: Andrey Suslov / Shutterstock.com Continue reading
#434648 The Pediatric AI That Outperformed ...
Training a doctor takes years of grueling work in universities and hospitals. Building a doctor may be as easy as teaching an AI how to read.
Artificial intelligence has taken another step towards becoming an integral part of 21st-century medicine. New research out of Guangzhou, China, published February 11th in Nature Medicine Letters, has demonstrated a natural-language processing AI that is capable of out-performing rookie pediatricians in diagnosing common childhood ailments.
The massive study examined the electronic health records (EHR) from nearly 600,000 patients over an 18-month period at the Guangzhou Women and Children’s Medical Center and then compared AI-generated diagnoses against new assessments from physicians with a range of experience.
The verdict? On average, the AI was noticeably more accurate than junior physicians and nearly as reliable as the more senior ones. These results are the latest demonstration that artificial intelligence is on the cusp of becoming a healthcare staple on a global scale.
Less Like a Computer, More Like a Person
To outshine human doctors, the AI first had to become more human. Like IBM’s Watson, the pediatric AI leverages natural language processing, in essence “reading” written notes from EHRs not unlike how a human doctor would review those same records. But the similarities to human doctors don’t end there. The AI is a machine learning classifier (MLC), capable of placing the information learned from the EHRs into categories to improve performance.
Like traditionally-trained pediatricians, the AI broke cases down into major organ groups and infection areas (upper/lower respiratory, gastrointestinal, etc.) before breaking them down even further into subcategories. It could then develop associations between various symptoms and organ groups and use those associations to improve its diagnoses. This hierarchical approach mimics the deductive reasoning human doctors employ.
Another key strength of the AI developed for this study was the enormous size of the dataset collected to teach it: 1,362,559 outpatient visits from 567,498 patients yielded some 101.6 million data points for the MLC to devour on its quest for pediatric dominance. This allowed the AI the depth of learning needed to distinguish and accurately select from the 55 different diagnosis codes across the various organ groups and subcategories.
When comparing against the human doctors, the study used 11,926 records from an unrelated group of children, giving both the MLC and the 20 humans it was compared against an even playing field. The results were clear: while cohorts of senior pediatricians performed better than the AI, junior pediatricians (those with 3-15 years of experience) were outclassed.
Helping, Not Replacing
While the research used a competitive analysis to measure the success of the AI, the results should be seen as anything but hostile to human doctors. The near future of artificial intelligence in medicine will see these machine learning programs augment, not replace, human physicians. The authors of the study specifically call out augmentation as the key short-term application of their work. Triaging incoming patients via intake forms, performing massive metastudies using EHRs, providing rapid ‘second opinions’—the applications for an AI doctor that is better-but-not-the-best are as varied as the healthcare industry itself.
That’s only considering how artificial intelligence could make a positive impact immediately upon implementation. It’s easy to see how long-term use of a diagnostic assistant could reshape the way modern medical institutions approach their work.
Look at how the MLC results fit snugly between the junior and senior physician groups. Essentially, it took nearly 15 years before a physician could consistently out-diagnose the machine. That’s a decade and a half wherein an AI diagnostic assistant would be an invaluable partner—both as a training tool and a safety measure. Likewise, on the other side of the experience curve you have physicians whose performance could be continuously leveraged to improve the AI’s effectiveness. This is a clear opportunity for a symbiotic relationship, with humans and machines each assisting the other as they mature.
Closer to Us, But Still Dependent on Us
No matter the ultimate application, the AI doctors of the future are drawing nearer to us step by step. This latest research is a demonstration that artificial intelligence can mimic the results of human deductive reasoning even in some of the most complex and important decision-making processes. True, the MLC required input from humans to function; both the initial data points and the cases used to evaluate the AI depended on EHRs written by physicians. While every effort was made to design a test schema that removed any indication of the eventual diagnosis, some “data leakage” is bound to occur.
In other words, when AIs use human-created data, they inherit human insight to some degree. Yet the progress made in machine imaging, chatbots, sensors, and other fields all suggest that this dependence on human input is more about where we are right now than where we could be in the near future.
Data, and More Data
That near future may also have some clear winners and losers. For now, those winners seem to be the institutions that can capture and apply the largest sets of data. With a rapidly digitized society gathering incredible amounts of data, China has a clear advantage. Combined with their relatively relaxed approach to privacy, they are likely to continue as one of the driving forces behind machine learning and its applications. So too will Google/Alphabet with their massive medical studies. Data is the uranium in this AI arms race, and everyone seems to be scrambling to collect more.
In a global community that seems increasingly aware of the potential problems arising from this need for and reliance on data, it’s nice to know there’ll be an upside as well. The technology behind AI medical assistants is looking more and more mature—even if we are still struggling to find exactly where, when, and how that technology should first become universal.
Yet wherever we see the next push to make AI a standard tool in a real-world medical setting, I have little doubt it will greatly improve the lives of human patients. Today Doctor AI is performing as well as a human colleague with more than 10 years of experience. By next year or so, it may take twice as long for humans to be competitive. And in a decade, the combined medical knowledge of all human history may be a tool as common as a stethoscope in your doctor’s hands.
Image Credit: Nadia Snopek / Shutterstock.com Continue reading