Tag Archives: before
#439247 Drones and Sensors Could Spot Fires ...
The speed at which a wildfire can rip through an area and wreak havoc is nothing short of awe-inspiring and terrifying. Early detection of these events is critical for fire management efforts, whether that involves calling in firefighters or evacuating nearby communities.
Currently, early fire detection in remote areas is typically done by satellite—but this approach can be hindered by cloud cover. What’s more, even the most advanced satellite systems detect fires once the burning area reaches an average seize of 18.4 km2 (7.1 square miles).
To detect wildfires earlier on, some researchers are proposing a novel solution that harnesses a network of Internet of Things (IoT) sensors and a fleet of drones, or unmanned aerial vehicles (UAVs). The researchers tested their approach through simulations, described in a study published May 5 in IEEE Internet of Things Journal, finding that it can detect fires that are just 2.5 km2 (just under one square mile) in size with near perfect accuracy.
Their idea is timely, as climate change is driving an increase in wildfires around many regions of the world, as seen recently in California and Australia.
“In the last few years, the number, frequency, and severity of wildfires have increased dramatically worldwide, significantly impacting countries’ economies, ecosystems, and communities. Wildfire management presents a significant challenge in which early fire detection is key,” emphasizes Osama Bushnaq, a senior researcher at the Autonomous Robotics Research Center of the Technology Innovation Institute in Abu Dhabi, who was involved in the study.
The approach that Bushnaq and his colleagues are proposing involves a network of IoT sensors scattered throughout regions of concern, such as a national park or forests situated near communities. If a fire ignites, IoT devices deployed in the area will detect it and wait until a patrolling UAV is within transmission range to report their measurements. If a UAV receives multiple positive detections by the IoT devices, it will notify the nearby firefighting department that a wildfire has been verified.
The researchers evaluated a number of different UAVs and IoT sensors based on cost and features to determine the optimal combinations. Next, they tested their UAV-IoT approach through simulations, whereby 420 IoT sensors were deployed and 18 UAVs patrolled per square kilometer of simulated forest. The system could detect fires covering 2.5 km2 with greater than 99 percent accuracy. For smaller fires covering 0.5 km2 the approach yielded 69 percent accuracy.
These results suggest that, if an optimal number of UAVs and IoT devices are present, wildfires can be detected in much shorter time than with the satellite imaging. But Bushnaq acknowledges that this approach has its limitations. “UAV-IoT networks can only cover relatively smaller areas,” he explains. “Therefore, the UAV-IoT network would be particularly suitable for wildfire detection at high-risk regions.”
For these reasons, the researchers are proposing that UAV-IoT approach be used alongside satellite imaging, which can cover vast areas but with less wildfire detection speed and reliability.
Moving forward, the team plans to explore ways of further improving upon this approach, for example by optimizing the trajectory of the UAVs or addressing issues related to the battery life of UAVs.
Bushnaq envisions such UAV-IoT systems having much broader applications, too. “Although the system is designed for wildfire detection, it can be used for monitoring different forest parameters, such as wind speed, moisture content, or temperature estimation,” he says, noting that such a system could also be extended beyond the forest setting, for example by monitoring oil spills in bodies of water. Continue reading
#439110 Robotic Exoskeletons Could One Day Walk ...
Engineers, using artificial intelligence and wearable cameras, now aim to help robotic exoskeletons walk by themselves.
Increasingly, researchers around the world are developing lower-body exoskeletons to help people walk. These are essentially walking robots users can strap to their legs to help them move.
One problem with such exoskeletons: They often depend on manual controls to switch from one mode of locomotion to another, such as from sitting to standing, or standing to walking, or walking on the ground to walking up or down stairs. Relying on joysticks or smartphone apps every time you want to switch the way you want to move can prove awkward and mentally taxing, says Brokoslaw Laschowski, a robotics researcher at the University of Waterloo in Canada.
Scientists are working on automated ways to help exoskeletons recognize when to switch locomotion modes — for instance, using sensors attached to legs that can detect bioelectric signals sent from your brain to your muscles telling them to move. However, this approach comes with a number of challenges, such as how how skin conductivity can change as a person’s skin gets sweatier or dries off.
Now several research groups are experimenting with a new approach: fitting exoskeleton users with wearable cameras to provide the machines with vision data that will let them operate autonomously. Artificial intelligence (AI) software can analyze this data to recognize stairs, doors, and other features of the surrounding environment and calculate how best to respond.
Laschowski leads the ExoNet project, the first open-source database of high-resolution wearable camera images of human locomotion scenarios. It holds more than 5.6 million images of indoor and outdoor real-world walking environments. The team used this data to train deep-learning algorithms; their convolutional neural networks can already automatically recognize different walking environments with 73 percent accuracy “despite the large variance in different surfaces and objects sensed by the wearable camera,” Laschowski notes.
According to Laschowski, a potential limitation of their work their reliance on conventional 2-D images, whereas depth cameras could also capture potentially useful distance data. He and his collaborators ultimately chose not to rely on depth cameras for a number of reasons, including the fact that the accuracy of depth measurements typically degrades in outdoor lighting and with increasing distance, he says.
In similar work, researchers in North Carolina had volunteers with cameras either mounted on their eyeglasses or strapped onto their knees walk through a variety of indoor and outdoor settings to capture the kind of image data exoskeletons might use to see the world around them. The aim? “To automate motion,” says Edgar Lobaton an electrical engineering researcher at North Carolina State University. He says they are focusing on how AI software might reduce uncertainty due to factors such as motion blur or overexposed images “to ensure safe operation. We want to ensure that we can really rely on the vision and AI portion before integrating it into the hardware.”
In the future, Laschowski and his colleagues will focus on improving the accuracy of their environmental analysis software with low computational and memory storage requirements, which are important for onboard, real-time operations on robotic exoskeletons. Lobaton and his team also seek to account for uncertainty introduced into their visual systems by movements .
Ultimately, the ExoNet researchers want to explore how AI software can transmit commands to exoskeletons so they can perform tasks such as climbing stairs or avoiding obstacles based on a system’s analysis of a user's current movements and the upcoming terrain. With autonomous cars as inspiration, they are seeking to develop autonomous exoskeletons that can handle the walking task without human input, Laschowski says.
However, Laschowski adds, “User safety is of the utmost importance, especially considering that we're working with individuals with mobility impairments,” resulting perhaps from advanced age or physical disabilities.
“The exoskeleton user will always have the ability to override the system should the classification algorithm or controller make a wrong decision.” Continue reading
#439073 There’s a ‘New’ Nirvana Song Out, ...
One of the primary capabilities separating human intelligence from artificial intelligence is our ability to be creative—to use nothing but the world around us, our experiences, and our brains to create art. At present, AI needs to be extensively trained on human-made works of art in order to produce new work, so we’ve still got a leg up. That said, neural networks like OpenAI’s GPT-3 and Russian designer Nikolay Ironov have been able to create content indistinguishable from human-made work.
Now there’s another example of AI artistry that’s hard to tell apart from the real thing, and it’s sure to excite 90s alternative rock fans the world over: a brand-new, never-heard-before Nirvana song. Or, more accurately, a song written by a neural network that was trained on Nirvana’s music.
The song is called “Drowned in the Sun,” and it does have a pretty Nirvana-esque ring to it. The neural network that wrote it is Magenta, which was launched by Google in 2016 with the goal of training machines to create art—or as the tool’s website puts it, exploring the role of machine learning as a tool in the creative process. Magenta was built using TensorFlow, Google’s massive open-source software library focused on deep learning applications.
The song was written as part of an album called Lost Tapes of the 27 Club, a project carried out by a Toronto-based organization called Over the Bridge focused on mental health in the music industry.
Here’s how a computer was able to write a song in the unique style of a deceased musician. Music, 20 to 30 tracks, was fed into Magenta’s neural network in the form of MIDI files. MIDI stands for Musical Instrument Digital Interface, and the format contains the details of a song written in code that represents musical parameters like pitch and tempo. Components of each song, like vocal melody or rhythm guitar, were fed in one at a time.
The neural network found patterns in these different components, and got enough of a handle on them that when given a few notes to start from, it could use those patterns to predict what would come next; in this case, chords and melodies that sound like they could’ve been written by Kurt Cobain.
To be clear, Magenta didn’t spit out a ready-to-go song complete with lyrics. The AI wrote the music, but a different neural network wrote the lyrics (using essentially the same process as Magenta), and the team then sifted through “pages and pages” of output to find lyrics that fit the melodies Magenta created.
Eric Hogan, a singer for a Nirvana tribute band who the Over the Bridge team hired to sing “Drowned in the Sun,” felt that the lyrics were spot-on. “The song is saying, ‘I’m a weirdo, but I like it,’” he said. “That is total Kurt Cobain right there. The sentiment is exactly what he would have said.”
Cobain isn’t the only musician the Lost Tapes project tried to emulate; songs in the styles of Jimi Hendrix, Jim Morrison, and Amy Winehouse were also included. What all these artists have in common is that they died by suicide at the age of 27.
The project is meant to raise awareness around mental health, particularly among music industry professionals. It’s not hard to think of great artists of all persuasions—musicians, painters, writers, actors—whose lives are cut short due to severe depression and other mental health issues for which it can be hard to get help. These issues are sometimes romanticized, as suffering does tend to create art that’s meaningful, relatable, and timeless. But according to the Lost Tapes website, suicide attempts among music industry workers are more than double that of the general population.
How many more hit songs would these artists have written if they were still alive? We’ll never know, but hopefully Lost Tapes of the 27 Club and projects like it will raise awareness of mental health issues, both in the music industry and in general, and help people in need find the right resources. Because no matter how good computers eventually get at creating music, writing, or other art, as Lost Tapes’ website pointedly says, “Even AI will never replace the real thing.”
Image Credit: Edward Xu on Unsplash Continue reading