Tag Archives: bbc

#438447 How to get close to a robot, or not

In some countries, like Japan (with a fast-aging population, and not enough young productive people), they want to rely for a large part on robots. Other people believe robots will steal our jobs. What do you think!

Posted in Human Robots

#437974 China Wants to Be the World’s AI ...

China’s star has been steadily rising for decades. Besides slashing extreme poverty rates from 88 percent to under 2 percent in just 30 years, the country has become a global powerhouse in manufacturing and technology. Its pace of growth may slow due to an aging population, but China is nonetheless one of the world’s biggest players in multiple cutting-edge tech fields.

One of these fields, and perhaps the most significant, is artificial intelligence. The Chinese government announced a plan in 2017 to become the world leader in AI by 2030, and has since poured billions of dollars into AI projects and research across academia, government, and private industry. The government’s venture capital fund is investing over $30 billion in AI; the northeastern city of Tianjin budgeted $16 billion for advancing AI; and a $2 billion AI research park is being built in Beijing.

On top of these huge investments, the government and private companies in China have access to an unprecedented quantity of data, on everything from citizens’ health to their smartphone use. WeChat, a multi-functional app where people can chat, date, send payments, hail rides, read news, and more, gives the CCP full access to user data upon request; as one BBC journalist put it, WeChat “was ahead of the game on the global stage and it has found its way into all corners of people’s existence. It could deliver to the Communist Party a life map of pretty much everybody in this country, citizens and foreigners alike.” And that’s just one (albeit big) source of data.

Many believe these factors are giving China a serious leg up in AI development, even providing enough of a boost that its progress will surpass that of the US.

But there’s more to AI than data, and there’s more to progress than investing billions of dollars. Analyzing China’s potential to become a world leader in AI—or in any technology that requires consistent innovation—from multiple angles provides a more nuanced picture of its strengths and limitations. In a June 2020 article in Foreign Affairs, Oxford fellows Carl Benedikt Frey and Michael Osborne argued that China’s big advantages may not actually be that advantageous in the long run—and its limitations may be very limiting.

Moving the AI Needle
To get an idea of who’s likely to take the lead in AI, it could help to first consider how the technology will advance beyond its current state.

To put it plainly, AI is somewhat stuck at the moment. Algorithms and neural networks continue to achieve new and impressive feats—like DeepMind’s AlphaFold accurately predicting protein structures or OpenAI’s GPT-3 writing convincing articles based on short prompts—but for the most part these systems’ capabilities are still defined as narrow intelligence: completing a specific task for which the system was painstakingly trained on loads of data.

(It’s worth noting here that some have speculated OpenAI’s GPT-3 may be an exception, the first example of machine intelligence that, while not “general,” has surpassed the definition of “narrow”; the algorithm was trained to write text, but ended up being able to translate between languages, write code, autocomplete images, do math, and perform other language-related tasks it wasn’t specifically trained for. However, all of GPT-3’s capabilities are limited to skills it learned in the language domain, whether spoken, written, or programming language).

Both AlphaFold’s and GPT-3’s success was due largely to the massive datasets they were trained on; no revolutionary new training methods or architectures were involved. If all it was going to take to advance AI was a continuation or scaling-up of this paradigm—more input data yields increased capability—China could well have an advantage.

But one of the biggest hurdles AI needs to clear to advance in leaps and bounds rather than baby steps is precisely this reliance on extensive, task-specific data. Other significant challenges include the technology’s fast approach to the limits of current computing power and its immense energy consumption.

Thus, while China’s trove of data may give it an advantage now, it may not be much of a long-term foothold on the climb to AI dominance. It’s useful for building products that incorporate or rely on today’s AI, but not for pushing the needle on how artificially intelligent systems learn. WeChat data on users’ spending habits, for example, would be valuable in building an AI that helps people save money or suggests items they might want to purchase. It will enable (and already has enabled) highly tailored products that will earn their creators and the companies that use them a lot of money.

But data quantity isn’t what’s going to advance AI. As Frey and Osborne put it, “Data efficiency is the holy grail of further progress in artificial intelligence.”

To that end, research teams in academia and private industry are working on ways to make AI less data-hungry. New training methods like one-shot learning and less-than-one-shot learning have begun to emerge, along with myriad efforts to make AI that learns more like the human brain.

While not insignificant, these advancements still fall into the “baby steps” category. No one knows how AI is going to progress beyond these small steps—and that uncertainty, in Frey and Osborne’s opinion, is a major speed bump on China’s fast-track to AI dominance.

How Innovation Happens
A lot of great inventions have happened by accident, and some of the world’s most successful companies started in garages, dorm rooms, or similarly low-budget, nondescript circumstances (including Google, Facebook, Amazon, and Apple, to name a few). Innovation, the authors point out, often happens “through serendipity and recombination, as inventors and entrepreneurs interact and exchange ideas.”

Frey and Osborne argue that although China has great reserves of talent and a history of building on technologies conceived elsewhere, it doesn’t yet have a glowing track record in terms of innovation. They note that of the 100 most-cited patents from 2003 to present, none came from China. Giants Tencent, Alibaba, and Baidu are all wildly successful in the Chinese market, but they’re rooted in technologies or business models that came out of the US and were tweaked for the Chinese population.

“The most innovative societies have always been those that allowed people to pursue controversial ideas,” Frey and Osborne write. China’s heavy censorship of the internet and surveillance of citizens don’t quite encourage the pursuit of controversial ideas. The country’s social credit system rewards people who follow the rules and punishes those who step out of line. Frey adds that top-down execution of problem-solving is effective when the problem at hand is clearly defined—and the next big leaps in AI are not.

It’s debatable how strongly a culture of social conformism can impact technological innovation, and of course there can be exceptions. But a relevant historical example is the Soviet Union, which, despite heavy investment in science and technology that briefly rivaled the US in fields like nuclear energy and space exploration, ended up lagging far behind primarily due to political and cultural factors.

Similarly, China’s focus on computer science in its education system could give it an edge—but, as Frey told me in an email, “The best students are not necessarily the best researchers. Being a good researcher also requires coming up with new ideas.”

Winner Take All?
Beyond the question of whether China will achieve AI dominance is the issue of how it will use the powerful technology. Several of the ways China has already implemented AI could be considered morally questionable, from facial recognition systems used aggressively against ethnic minorities to smart glasses for policemen that can pull up information about whoever the wearer looks at.

This isn’t to say the US would use AI for purely ethical purposes. The military’s Project Maven, for example, used artificially intelligent algorithms to identify insurgent targets in Iraq and Syria, and American law enforcement agencies are also using (mostly unregulated) facial recognition systems.

It’s conceivable that “dominance” in AI won’t go to one country; each nation could meet milestones in different ways, or meet different milestones. Researchers from both countries, at least in the academic sphere, could (and likely will) continue to collaborate and share their work, as they’ve done on many projects to date.

If one country does take the lead, it will certainly see some major advantages as a result. Brookings Institute fellow Indermit Gill goes so far as to say that whoever leads in AI in 2030 will “rule the world” until 2100. But Gill points out that in addition to considering each country’s strengths, we should consider how willing they are to improve upon their weaknesses.

While China leads in investment and the US in innovation, both nations are grappling with huge economic inequalities that could negatively impact technological uptake. “Attitudes toward the social change that accompanies new technologies matter as much as the technologies, pointing to the need for complementary policies that shape the economy and society,” Gill writes.

Will China’s leadership be willing to relax its grip to foster innovation? Will the US business environment be enough to compete with China’s data, investment, and education advantages? And can both countries find a way to distribute technology’s economic benefits more equitably?

Time will tell, but it seems we’ve got our work cut out for us—and China does too.

Image Credit: Adam Birkett on Unsplash Continue reading

Posted in Human Robots

#437845 Video Friday: Harmonic Bionics ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ICRA 2020 – May 31-August 31, 2020 – [Virtual Conference]
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today's videos.

Designed to protect employees and passengers from both harmful pathogens and cleaning agents, Breezy One can quickly, safely and effectively decontaminate spaces over 100,000 square feet in 1.5 hours with a patented, environmentally safe disinfectant. Breezy One was co-developed with the City of Albuquerque’s Aviation Department, where it autonomously sanitizes the Sunport’s facilities every night in the ongoing fight against COVID-19.

[ Fetch Robotics ]

Harmonic Bionics is redefining upper extremity neurorehabilitation with intelligent robotic technology designed to maximize patient recovery. Harmony SHR, our flagship product, works with a patient’s scapulohumeral rhythm (SHR) to enable natural, comprehensive therapy for both arms. When combined with Harmony’s Weight Support mode, this unique shoulder design may allow for earlier initiation of post-stroke therapy as Harmony can support a partial dislocation or subluxation of the shoulder prior to initiating traditional therapy exercises.

Harmony's Preprogrammed Exercises promotes functional treatment through patient-specific movements that can enable an increased number of repetitions per session without placing a larger physical burden on therapists or their resources. As the only rehabilitation exoskeleton with Bilateral Sync Therapy (BST), Harmony enables intent-based therapy by registering healthy arm movements and synchronizing that motion onto the stroke-affected side to help reestablish neural pathways.

[ Harmonic Bionics ]

Thanks Mok!

Some impressive work here from IHMC and IIT getting Atlas to take steps upward in a way that’s much more human-like than robot-like, which ends up reducing maximum torque requirements by 20 percent.

[ Paper ]

GITAI’s G1 is the space dedicated general-purpose robot. G1 robot will enable automation of various tasks internally & externally on space stations and for lunar base development.

[ GITAI ]

Malloy Aeronautics, which now makes drones rather than hoverbikes, has been working with the Royal Navy in New Zealand to figure out how to get cargo drones to land on ships.

The challenge was to test autonomous landing of heavy lift UAVs on a moving ship, however, due to the Covid19 lockdown no ship trails were possible. The moving deck was simulated by driving a vehicle and trailer across an airfield while carrying out multiple landing and take-offs. The autonomous system partner was Planck Aerosystems and autolanding was triggered by a camera on the UAV reading a QR code on the trailer.

[ Malloy Aeronautics ]

Thanks Paul!

Tertill looks to be relentlessly effective.

[ Franklin Robotics ]

A Swedish company, TikiSafety has experienced a record amount of orders for their protective masks. At ABB, we are grateful for the opportunity to help Tiki Safety to speed up their manufacturing process from 6 minutes to 40 seconds.

[ Tiki Safety ]

The Korea Atomic Energy Research Institute is not messing around with ARMstrong, their robot for nuclear and radiation emergency response.

[ KAERI ]

OMOY is a robot that communicates with its users via internal weight shifting.

[ Paper ]

Now this, this is some weird stuff.

[ Segway ]

CaTARo is a Care Training Assistant Robot from the AIS Lab at Ritsumeikan University.

[ AIS Lab ]

Originally launched in 2015 to assist workers in lightweight assembly tasks, ABB’s collaborative YuMi robot has gone on to blaze a trail in a raft of diverse applications and industries, opening new opportunities and helping to fire people’s imaginations about what can be achieved with robotic automation.

[ ABB ]

This music video features COMAN+, from the Humanoids and Human Centered Mechatronics Lab at IIT, doing what you’d call dance moves if you dance like I do.

[ Alex Braga ] via [ IIT ]

The NVIDIA Isaac Software Development Kit (SDK) enables accelerated AI robot development workflows. Stacked with new tools and application support, Isaac SDK 2020.1 is an end-to-end solution supporting each step of robot fleet deployment, from design collaboration and training to the ongoing maintenance of AI applications.

[ NVIDIA ]

Robot Spy Komodo Dragon and Spy Pig film “a tender moment” between Komodo dragons but will they both survive the encounter?

[ BBC ] via [ Laughing Squid ]

This is part one of a mostly excellent five-part documentary about ROS produced by Red Hat. I say mostly only because they put ME in it for some reason, but fortunately, they talked with many of the core team that developed ROS back at Willow Garage back in the day, and it’s definitely worth watching.

[ Red Hat Open Source Stories ]

It’s been a while, but here’s an update on SRI’s Abacus Drive, from Alexander Kernbaum.

[ SRI ]

This Robots For Infectious Diseases interview features IEEE Fellow Antonio Bicchi, professor of robotics at the University of Pisa, talking about how Italy has been using technology to help manage COVID-19.

[ R4ID ]

Two more interviews this week of celebrity roboticists from MassRobotics: Helen Greiner and Marc Raibert. I’d introduce them, but you know who they are already!

[ MassRobotics ] Continue reading

Posted in Human Robots