Tag Archives: based
#435779 This Robot Ostrich Can Ride Around on ...
Proponents of legged robots say that they make sense because legs are often required to go where humans go. Proponents of wheeled robots say, “Yeah, that’s great but watch how fast and efficient my robot is, compared to yours.” Some robots try and take advantage of wheels and legs with hybrid designs like whegs or wheeled feet, but a simpler and more versatile solution is to do what humans do, and just take advantage of wheels when you need them.
We’ve seen a few experiments with this. The University of Michigan managed to convince Cassie to ride a Segway, with mostly positive (but occasionally quite negative) results. A Segway, and hoverboard-like systems, can provide wheeled mobility for legged robots over flat terrain, but they can’t handle things like stairs, which is kind of the whole point of having a robot with legs anyway.
Image: UC Berkeley
From left, a Segway, a hovercraft, and hovershoes, with complexity in terms of user control increasing from left to right.
At UC Berkeley’s Hybrid Robotics Lab, led by Koushil Sreenath, researchers have taken things a step further. They are teaching their Cassie bipedal robot (called Cassie Cal) to wheel around on a pair of hovershoes. Hovershoes are like hoverboards that have been chopped in half, resulting in a pair of motorized single-wheel skates. You balance on the skates, and control them by leaning forwards and backwards and left and right, which causes each skate to accelerate or decelerate in an attempt to keep itself upright. It’s not easy to get these things to work, even for a human, but by adding a sensor package to Cassie the UC Berkeley researchers have managed to get it to zip around campus fully autonomously.
Remember, Cassie is operating autonomously here—it’s performing vSLAM (with an Intel RealSense) and doing all of its own computation onboard in real time. Watching it jolt across that cracked sidewalk is particularly impressive, especially considering that it only has pitch control over its ankles and can’t roll its feet to maintain maximum contact with the hovershoes. But you can see the advantage that this particular platform offers to a robot like Cassie, including the ability to handle stairs. Stairs in one direction, anyway.
It’s a testament to the robustness of UC Berkeley’s controller that they were willing to let the robot operate untethered and outside, and it sounds like they’re thinking long-term about how legged robots on wheels would be real-world useful:
Our feedback control and autonomous system allow for swift movement through urban environments to aid in everything from food delivery to security and surveillance to search and rescue missions. This work can also help with transportation in large factories and warehouses.
For more details, we spoke with the UC Berkeley students (Shuxiao Chen, Jonathan Rogers, and Bike Zhang) via email.
IEEE Spectrum: How representative of Cassie’s real-world performance is what we see in the video? What happens when things go wrong?
Cassie’s real-world performance is similar to what we see in the video. Cassie can ride the hovershoes successfully all around the campus. Our current controller allows Cassie to robustly ride the hovershoes and rejects various perturbations. At present, one of the failure modes is when the hovershoe rolls to the side—this happens when it goes sideways down a step or encounters a large obstacle on one side of it, causing it to roll over. Under these circumstances, Cassie doesn’t have sufficient control authority (due to the thin narrow feet) to get the hovershoe back on its wheel.
The Hybrid Robotics Lab has been working on robots that walk over challenging terrain—how do wheeled platforms like hovershoes fit in with that?
Surprisingly, this research is related to our prior work on walking on discrete terrain. While locomotion using legs is efficient when traveling over rough and discrete terrain, wheeled locomotion is more efficient when traveling over flat continuous terrain. Enabling legged robots to ride on various micro-mobility platforms will offer multimodal locomotion capabilities, improving the efficiency of locomotion over various terrains.
Our current research furthers the locomotion ability for bipedal robots over continuous terrains by using a wheeled platform. In the long run, we would like to develop multi-modal locomotion strategies based on our current and prior work to allow legged robots to robustly and efficiently locomote in our daily life.
Photo: UC Berkeley
In their experiments, the UC Berkeley researchers say Cassie proved quite capable of riding the hovershoes over rough and uneven terrain, including going down stairs.
How long did it take to train Cassie to use the hovershoes? Are there any hovershoe skills that Cassie is better at than an average human?
We spent about eight months to develop our whole system, including a controller, a path planner, and a vision system. This involved developing mathematical models of Cassie and the hovershoes, setting up a dynamical simulation, figuring out how to interface and communicate with various sensors and Cassie, and doing several experiments to slowly improve performance. In contrast, a human with a good sense of balance needs a few hours to learn to use the hovershoes. A human who has never used skates or skis will probably need a longer time.
A human can easily turn in place on the hovershoes, while Cassie cannot do this motion currently due to our algorithm requiring a non-zero forward speed in order to turn. However, Cassie is much better at riding the hovershoes over rough and uneven terrain including riding the hovershoes down some stairs!
What would it take to make Cassie faster or more agile on the hovershoes?
While Cassie can currently move at a decent pace on the hovershoes and navigate obstacles, Cassie’s ability to avoid obstacles at rapid speeds is constrained by the sensing, the controller, and the onboard computation. To enable Cassie to dynamically weave around obstacles at high speeds exhibiting agile motions, we need to make progress on different fronts.
We need planners that take into account the entire dynamics of the Cassie-Hovershoe system and rapidly generate dynamically-feasible trajectories; we need controllers that tightly coordinate all the degrees-of-freedom of Cassie to dynamically move while balancing on the hovershoes; we need sensors that are robust to motion-blur artifacts caused due to fast turns; and we need onboard computation that can execute our algorithms at real-time speeds.
What are you working on next?
We are working on enabling more aggressive movements for Cassie on the hovershoes by fully exploiting Cassie’s dynamics. We are working on approaches that enable us to easily go beyond hovershoes to other challenging micro-mobility platforms. We are working on enabling Cassie to step onto and off from wheeled platforms such as hovershoes. We would like to create a future of multi-modal locomotion strategies for legged robots to enable them to efficiently help people in our daily life.
“Feedback Control for Autonomous Riding of Hovershoes by a Cassie Bipedal Robot,” by Shuxiao Chen, Jonathan Rogers, Bike Zhang, and Koushil Sreenath from the Hybrid Robotics Lab at UC Berkeley, has been submitted to IEEE Robotics and Automation Letters with option to be presented at the 2019 IEEE RAS International Conference on Humanoid Robots. Continue reading →
#435773 Video Friday: Roller-Skating Quadruped ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, CA, USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today's videos.
We got a sneak peek of a new version of ANYmal equipped with actuated wheels for feet at the DARPA SubT Challenge, where it did surprisingly well at quickly and (mostly) robustly navigating some very tricky terrain. And when you're not expecting it to travel through a muddy, rocky, and dark tunnel, it looks even more capable:
[ Paper ]
Thanks Marko!
In Langley’s makerspace lab, researchers are developing a series of soft robot actuators to investigate the viability of soft robotics in space exploration and assembly. By design, the actuator has chambers, or air bladders, that expand and compress based on the amount of air in them.
[ NASA ]
I’m not normally a fan of the AdultSize RoboCup soccer competition, but NimbRo had a very impressive season.
I don’t know how it managed to not fall over at 45 seconds, but damn.
[ NimbRo ]
This is more AI than robotics, but that’s okay, because it’s totally cool.
I’m wondering whether the hiders ever tried another possibly effective strategy: trapping the seekers in a locked shelter right at the start.
[ OpenAI ]
We haven’t heard much from Piaggio Fast Forward in a while, but evidently they’ve still got a Gita robot going on, designed to be your personal autonomous caddy for absolutely anything that can fit into something the size of a portable cooler.
Available this fall, I guess?
[ Gita ]
This passively triggered robotic hand is startlingly fast, and seems almost predatory when it grabs stuff, especially once they fit it onto a drone.
[ New Dexterity ]
Thanks Fan!
Autonomous vehicles seem like a recent thing, but CMU has been working on them since the mid 1980s.
CMU was also working on drones back before drones were even really a thing:
[ CMU NavLab ] and [ CMU ]
Welcome to the most complicated and expensive robotic ice cream deployment system ever created.
[ Niska ]
Some impressive dexterity from a robot hand equipped with magnetic gears.
[ Ishikawa Senoo Lab ]
The Buddy Arduino social robot kit is now live on Kickstarter, and you can pledge for one of these little dudes for 49 bucks.
[ Kickstarter ]
Thanks Jenny!
Mobile manipulation robots have high potential to support rescue forces in disaster-response missions. Despite the difficulties imposed by real-world scenarios, robots are promising to perform mission tasks from a safe distance. In the CENTAURO project, we developed a disaster-response system which consists of the highly flexible Centauro robot and suitable control interfaces including an immersive telepresence suit and support-operator controls on different levels of autonomy.
[ CENTAURO ]
Thanks Sven!
Determined robots are the cutest robots.
[ Paper ]
The goal of the Dronument project is to create an aerial platform enabling interior and exterior documentation of heritage sites.
It’s got a base station that helps with localization, but still, flying that close to a chandelier in a UNESCO world heritage site makes me nervous.
[ Dronument ]
Thanks Fan!
Avast ye! No hornswaggling, lick-spittlering, or run-rigging over here – Only serious tech for devs. All hands hoay to check out Misty's capabilities and to build your own skills with plenty of heave ho! ARRRRRRRRGH…
International Talk Like a Pirate Day was yesterday, but I'm sure nobody will look at you funny if you keep at it today too.
[ Misty Robotics ]
This video presents an unobtrusive bimanual teleoperation setup with very low weight, consisting of two Vive visual motion trackers and two Myo surface electromyography bracelets. The video demonstrates complex, dexterous teleoperated bimanual daily-living tasks performed by the torque-controlled humanoid robot TORO.
[ DLR RMC ]
Lex Fridman interviews iRobot’s Colin Angle on the Artificial Intelligence Podcast.
Colin Angle is the CEO and co-founder of iRobot, a robotics company that for 29 years has been creating robots that operate successfully in the real world, not as a demo or on a scale of dozens, but on a scale of thousands and millions. As of this year, iRobot has sold more than 25 million robots to consumers, including the Roomba vacuum cleaning robot, the Braava floor mopping robot, and soon the Terra lawn mowing robot. 25 million robots successfully operating autonomously in people's homes to me is an incredible accomplishment of science, engineering, logistics, and all kinds of entrepreneurial innovation.
[ AI Podcast ]
This week’s CMU RI Seminar comes from CMU’s own Sarah Bergbreiter, on Microsystems-Inspired Robotics.
The ability to manufacture micro-scale sensors and actuators has inspired the robotics community for over 30 years. There have been huge success stories; MEMS inertial sensors have enabled an entire market of low-cost, small UAVs. However, the promise of ant-scale robots has largely failed. Ants can move high speeds on surfaces from picnic tables to front lawns, but the few legged microrobots that have walked have done so at slow speeds (< 1 body length/sec) on smooth silicon wafers. In addition, the vision of large numbers of microfabricated sensors interacting directly with the environment has suffered in part due to the brittle materials used in micro-fabrication. This talk will present our progress in the design of sensors, mechanisms, and actuators that utilize new microfabrication processes to incorporate materials with widely varying moduli and functionality to achieve more robustness, dynamic range, and complexity in smaller packages.
[ CMU RI ] Continue reading →
#435765 The Four Converging Technologies Giving ...
How each of us sees the world is about to change dramatically.
For all of human history, the experience of looking at the world was roughly the same for everyone. But boundaries between the digital and physical are beginning to fade.
The world around us is gaining layer upon layer of digitized, virtually overlaid information—making it rich, meaningful, and interactive. As a result, our respective experiences of the same environment are becoming vastly different, personalized to our goals, dreams, and desires.
Welcome to Web 3.0, or the Spatial Web. In version 1.0, static documents and read-only interactions limited the internet to one-way exchanges. Web 2.0 provided quite an upgrade, introducing multimedia content, interactive web pages, and participatory social media. Yet, all this was still mediated by two-dimensional screens.
Today, we are witnessing the rise of Web 3.0, riding the convergence of high-bandwidth 5G connectivity, rapidly evolving AR eyewear, an emerging trillion-sensor economy, and powerful artificial intelligence.
As a result, we will soon be able to superimpose digital information atop any physical surrounding—freeing our eyes from the tyranny of the screen, immersing us in smart environments, and making our world endlessly dynamic.
In the third post of our five-part series on augmented reality, we will explore the convergence of AR, AI, sensors, and blockchain and dive into the implications through a key use case in manufacturing.
A Tale of Convergence
Let’s deconstruct everything beneath the sleek AR display.
It all begins with graphics processing units (GPUs)—electric circuits that perform rapid calculations to render images. (GPUs can be found in mobile phones, game consoles, and computers.)
However, because AR requires such extensive computing power, single GPUs will not suffice. Instead, blockchain can now enable distributed GPU processing power, and blockchains specifically dedicated to AR holographic processing are on the rise.
Next up, cameras and sensors will aggregate real-time data from any environment to seamlessly integrate physical and virtual worlds. Meanwhile, body-tracking sensors are critical for aligning a user’s self-rendering in AR with a virtually enhanced environment. Depth sensors then provide data for 3D spatial maps, while cameras absorb more surface-level, detailed visual input. In some cases, sensors might even collect biometric data, such as heart rate and brain activity, to incorporate health-related feedback in our everyday AR interfaces and personal recommendation engines.
The next step in the pipeline involves none other than AI. Processing enormous volumes of data instantaneously, embedded AI algorithms will power customized AR experiences in everything from artistic virtual overlays to personalized dietary annotations.
In retail, AIs will use your purchasing history, current closet inventory, and possibly even mood indicators to display digitally rendered items most suitable for your wardrobe, tailored to your measurements.
In healthcare, smart AR glasses will provide physicians with immediately accessible and maximally relevant information (parsed from the entirety of a patient’s medical records and current research) to aid in accurate diagnoses and treatments, freeing doctors to engage in the more human-centric tasks of establishing trust, educating patients and demonstrating empathy.
Image Credit: PHD Ventures.
Convergence in Manufacturing
One of the nearest-term use cases of AR is manufacturing, as large producers begin dedicating capital to enterprise AR headsets. And over the next ten years, AR will converge with AI, sensors, and blockchain to multiply manufacturer productivity and employee experience.
(1) Convergence with AI
In initial application, digital guides superimposed on production tables will vastly improve employee accuracy and speed, while minimizing error rates.
Already, the International Air Transport Association (IATA) — whose airlines supply 82 percent of air travel — recently implemented industrial tech company Atheer’s AR headsets in cargo management. And with barely any delay, IATA reported a whopping 30 percent improvement in cargo handling speed and no less than a 90 percent reduction in errors.
With similar success rates, Boeing brought Skylight’s smart AR glasses to the runway, now used in the manufacturing of hundreds of airplanes. Sure enough—the aerospace giant has now seen a 25 percent drop in production time and near-zero error rates.
Beyond cargo management and air travel, however, smart AR headsets will also enable on-the-job training without reducing the productivity of other workers or sacrificing hardware. Jaguar Land Rover, for instance, implemented Bosch’s Re’flekt One AR solution to gear technicians with “x-ray” vision: allowing them to visualize the insides of Range Rover Sport vehicles without removing any dashboards.
And as enterprise capabilities continue to soar, AIs will soon become the go-to experts, offering support to manufacturers in need of assembly assistance. Instant guidance and real-time feedback will dramatically reduce production downtime, boost overall output, and even help customers struggling with DIY assembly at home.
Perhaps one of the most profitable business opportunities, AR guidance through centralized AI systems will also serve to mitigate supply chain inefficiencies at extraordinary scale. Coordinating moving parts, eliminating the need for manned scanners at each checkpoint, and directing traffic within warehouses, joint AI-AR systems will vastly improve workflow while overseeing quality assurance.
After its initial implementation of AR “vision picking” in 2015, leading courier company DHL recently announced it would continue to use Google’s newest smart lens in warehouses across the world. Motivated by the initial group’s reported 15 percent jump in productivity, DHL’s decision is part of the logistics giant’s $300 million investment in new technologies.
And as direct-to-consumer e-commerce fundamentally transforms the retail sector, supply chain optimization will only grow increasingly vital. AR could very well prove the definitive step for gaining a competitive edge in delivery speeds.
As explained by Vital Enterprises CEO Ash Eldritch, “All these technologies that are coming together around artificial intelligence are going to augment the capabilities of the worker and that’s very powerful. I call it Augmented Intelligence. The idea is that you can take someone of a certain skill level and by augmenting them with artificial intelligence via augmented reality and the Internet of Things, you can elevate the skill level of that worker.”
Already, large producers like Goodyear, thyssenkrupp, and Johnson Controls are using the Microsoft HoloLens 2—priced at $3,500 per headset—for manufacturing and design purposes.
Perhaps the most heartening outcome of the AI-AR convergence is that, rather than replacing humans in manufacturing, AR is an ideal interface for human collaboration with AI. And as AI merges with human capital, prepare to see exponential improvements in productivity, professional training, and product quality.
(2) Convergence with Sensors
On the hardware front, these AI-AR systems will require a mass proliferation of sensors to detect the external environment and apply computer vision in AI decision-making.
To measure depth, for instance, some scanning depth sensors project a structured pattern of infrared light dots onto a scene, detecting and analyzing reflected light to generate 3D maps of the environment. Stereoscopic imaging, using two lenses, has also been commonly used for depth measurements. But leading technology like Microsoft’s HoloLens 2 and Intel’s RealSense 400-series camera implement a new method called “phased time-of-flight” (ToF).
In ToF sensing, the HoloLens 2 uses numerous lasers, each with 100 milliwatts (mW) of power, in quick bursts. The distance between nearby objects and the headset wearer is then measured by the amount of light in the return beam that has shifted from the original signal. Finally, the phase difference reveals the location of each object within the field of view, which enables accurate hand-tracking and surface reconstruction.
With a far lower computing power requirement, the phased ToF sensor is also more durable than stereoscopic sensing, which relies on the precise alignment of two prisms. The phased ToF sensor’s silicon base also makes it easily mass-produced, rendering the HoloLens 2 a far better candidate for widespread consumer adoption.
To apply inertial measurement—typically used in airplanes and spacecraft—the HoloLens 2 additionally uses a built-in accelerometer, gyroscope, and magnetometer. Further equipped with four “environment understanding cameras” that track head movements, the headset also uses a 2.4MP HD photographic video camera and ambient light sensor that work in concert to enable advanced computer vision.
For natural viewing experiences, sensor-supplied gaze tracking increasingly creates depth in digital displays. Nvidia’s work on Foveated AR Display, for instance, brings the primary foveal area into focus, while peripheral regions fall into a softer background— mimicking natural visual perception and concentrating computing power on the area that needs it most.
Gaze tracking sensors are also slated to grant users control over their (now immersive) screens without any hand gestures. Conducting simple visual cues, even staring at an object for more than three seconds, will activate commands instantaneously.
And our manufacturing example above is not the only one. Stacked convergence of blockchain, sensors, AI and AR will disrupt almost every major industry.
Take healthcare, for example, wherein biometric sensors will soon customize users’ AR experiences. Already, MIT Media Lab’s Deep Reality group has created an underwater VR relaxation experience that responds to real-time brain activity detected by a modified version of the Muse EEG. The experience even adapts to users’ biometric data, from heart rate to electro dermal activity (inputted from an Empatica E4 wristband).
Now rapidly dematerializing, sensors will converge with AR to improve physical-digital surface integration, intuitive hand and eye controls, and an increasingly personalized augmented world. Keep an eye on companies like MicroVision, now making tremendous leaps in sensor technology.
While I’ll be doing a deep dive into sensor applications across each industry in our next blog, it’s critical to first discuss how we might power sensor- and AI-driven augmented worlds.
(3) Convergence with Blockchain
Because AR requires much more compute power than typical 2D experiences, centralized GPUs and cloud computing systems are hard at work to provide the necessary infrastructure. Nonetheless, the workload is taxing and blockchain may prove the best solution.
A major player in this pursuit, Otoy aims to create the largest distributed GPU network in the world, called the Render Network RNDR. Built specifically on the Ethereum blockchain for holographic media, and undergoing Beta testing, this network is set to revolutionize AR deployment accessibility.
Alphabet Chairman Eric Schmidt (an investor in Otoy’s network), has even said, “I predicted that 90% of computing would eventually reside in the web based cloud… Otoy has created a remarkable technology which moves that last 10%—high-end graphics processing—entirely to the cloud. This is a disruptive and important achievement. In my view, it marks the tipping point where the web replaces the PC as the dominant computing platform of the future.”
Leveraging the crowd, RNDR allows anyone with a GPU to contribute their power to the network for a commission of up to $300 a month in RNDR tokens. These can then be redeemed in cash or used to create users’ own AR content.
In a double win, Otoy’s blockchain network and similar iterations not only allow designers to profit when not using their GPUs, but also democratize the experience for newer artists in the field.
And beyond these networks’ power suppliers, distributing GPU processing power will allow more manufacturing companies to access AR design tools and customize learning experiences. By further dispersing content creation across a broad network of individuals, blockchain also has the valuable potential to boost AR hardware investment across a number of industry beneficiaries.
On the consumer side, startups like Scanetchain are also entering the blockchain-AR space for a different reason. Allowing users to scan items with their smartphone, Scanetchain’s app provides access to a trove of information, from manufacturer and price, to origin and shipping details.
Based on NEM (a peer-to-peer cryptocurrency that implements a blockchain consensus algorithm), the app aims to make information far more accessible and, in the process, create a social network of purchasing behavior. Users earn tokens by watching ads, and all transactions are hashed into blocks and securely recorded.
The writing is on the wall—our future of brick-and-mortar retail will largely lean on blockchain to create the necessary digital links.
Final Thoughts
Integrating AI into AR creates an “auto-magical” manufacturing pipeline that will fundamentally transform the industry, cutting down on marginal costs, reducing inefficiencies and waste, and maximizing employee productivity.
Bolstering the AI-AR convergence, sensor technology is already blurring the boundaries between our augmented and physical worlds, soon to be near-undetectable. While intuitive hand and eye motions dictate commands in a hands-free interface, biometric data is poised to customize each AR experience to be far more in touch with our mental and physical health.
And underpinning it all, distributed computing power with blockchain networks like RNDR will democratize AR, boosting global consumer adoption at plummeting price points.
As AR soars in importance—whether in retail, manufacturing, entertainment, or beyond—the stacked convergence discussed above merits significant investment over the next decade. The augmented world is only just getting started.
Join Me
(1) A360 Executive Mastermind: Want even more context about how converging exponential technologies will transform your business and industry? Consider joining Abundance 360, a highly selective community of 360 exponentially minded CEOs, who are on a 25-year journey with me—or as I call it, a “countdown to the Singularity.” If you’d like to learn more and consider joining our 2020 membership, apply here.
Share this with your friends, especially if they are interested in any of the areas outlined above.
(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.
This article originally appeared on Diamandis.com
Image Credit: Funky Focus / Pixabay Continue reading →
#435752 T-RHex Is a Hexapod Robot With ...
In Aaron Johnson’s “Robot Design & Experimentation” class at CMU, teams of students have a semester to design and build an experimental robotic system based on a theme. For spring 2019, that theme was “Bioinspired Robotics,” which is definitely one of our favorite kinds of robotics—animals can do all kinds of crazy things, and it’s always a lot of fun watching robots try to match them. They almost never succeed, of course, but even basic imitation can lead to robots with some unique capabilities.
One of the projects from this year’s course, from Team ScienceParrot, is a new version of RHex called T-RHex (pronounced T-Rex, like the dinosaur). T-RHex comes with a tail, but more importantly, it has tiny tapered toes, which help it grip onto rough surfaces like bricks, wood, and concrete. It’s able to climb its way up very steep slopes, and hang from them, relying on its toes to keep itself from falling off.
T-RHex’s toes are called microspines, and we’ve seen them in all kinds of robots. The most famous of these is probably JPL’s LEMUR IIB (which wins on sheer microspine volume), although the concept goes back at least 15 years to Stanford’s SpinyBot. Robots that use microspines to climb tend to be fairly methodical at it, since the microspines have to be engaged and disengaged with care, limiting their non-climbing mobility.
T-RHex manages to perform many of the same sorts of climbing and hanging maneuvers without losing RHex’s ability for quick, efficient wheel-leg (wheg) locomotion.
If you look closely at T-RHex walking in the video, you’ll notice that in its normal forward gait, it’s sort of walking on its ankles, rather than its toes. This means that the microspines aren’t engaged most of the time, so that the robot can use its regular wheg motion to get around. To engage the microspines, the robot moves its whegs backwards, meaning that its tail is arguably coming out of its head. But since all of T-RHex’s capability is mechanical in nature and it has no active sensors, it doesn’t really need a head, so that’s fine.
The highest climbable slope that T-RHex could manage was 55 degrees, meaning that it can’t, yet, conquer vertical walls. The researchers were most surprised by the robot’s ability to cling to surfaces, where it was perfectly happy to hang out on a slope of 135 degrees, which is a 45 degree overhang (!). I have no idea how it would ever reach that kind of position on its own, but it’s nice to know that if it ever does, its spines will keep doing their job.
Photo: CMU
T-RHex uses laser-cut acrylic legs, with the microspines embedded into 3D-printed toes. The tail is needed to prevent the robot from tipping backward.
For more details about the project, we spoke with Team ScienceParrot member (and CMU PhD student) Catherine Pavlov via email.
IEEE Spectrum: We’re used to seeing RHex with compliant, springy legs—how do the new legs affect T-RHex’s mobility?
Catherine Pavlov: There’s some compliance in the legs, though not as much as RHex—this is driven by the use of acrylic, which was chosen for budget/manufacturing reasons. Matching the compliance of RHex with acrylic would have made the tines too weak (since often only a few hold the load of the robot during climbing). It definitely means you can’t use energy storage in the legs the way RHex does, for example when pronking. T-RHex is probably more limited by motor speed in terms of mobility though. We were using some borrowed Dynamixels that didn’t allow for good positioning at high speeds.
How did you design the climbing gait? Why not use the middle legs, and why is the tail necessary?
The gait was a lot of hand-tuning and trial-and-error. We wanted a left/right symmetric gait to enable load sharing among more spines and prevent out-of-plane twisting of the legs. When using all three pairs, you have to have very accurate angular positioning or one leg pair gets pushed off the wall. Since two legs should be able to hold the full robot gait, using the middle legs was hurting more than it was helping, with the middle legs sometimes pushing the rear ones off of the wall.
The tail is needed to prevent the robot from tipping backward and “sitting” on the wall. During static testing we saw the robot tip backward, disengaging the front legs, at around 35 degrees incline. The tail allows us to load the front legs, even when they’re at a shallow angle to the surface. The climbing gait we designed uses the tail to allow the rear legs to fully recirculate without the robot tipping backward.
Photo: CMU
Team ScienceParrot with T-RHex.
What prevents T-RHex from climbing even steeper surfaces?
There are a few limiting factors. One is that the tines of the legs break pretty easily. I think we also need a lighter platform to get fully vertical—we’re going to look at MiniRHex for future work. We’re also not convinced our gait is the best it can be, we can probably get marginal improvements with more tuning, which might be enough.
Can the microspines assist with more dynamic maneuvers?
Dynamic climbing maneuvers? I think that would only be possible on surfaces with very good surface adhesion and very good surface strength, but it’s certainly theoretically possible. The current instance of T-RHex would definitely break if you tried to wall jump though.
What are you working on next?
Our main target is exploring the space of materials for leg fabrication, such as fiberglass, PLA, urethanes, and maybe metallic glass. We think there’s a lot of room for improvement in the leg material and geometry. We’d also like to see MiniRHex equipped with microspines, which will require legs about half the scale of what we built for T-RHex. Longer-term improvements would be the addition of sensors e.g. for wall detection, and a reliable floor-to-wall transition and dynamic gait transitions.
[ T-RHex ] Continue reading →
#435748 Video Friday: This Robot Is Like a ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
RSS 2019 – June 22-26, 2019 – Freiburg, Germany
Hamlyn Symposium on Medical Robotics – June 23-26, 2019 – London, U.K.
ETH Robotics Summer School – June 27-1, 2019 – Zurich, Switzerland
MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, U.K.
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.
It’s been a while since we last spoke to Joe Jones, the inventor of Roomba, about his solar-powered, weed-killing robot, called Tertill, which he was launching as a Kickstarter project. Tertill is now available for purchase (US $300) and is shipping right now.
[ Tertill ]
Usually, we don’t post videos that involve drone use that looks to be either illegal or unsafe. These flights over the protests in Hong Kong are almost certainly both. However, it’s also a unique perspective on the scale of these protests.
[ Team BlackSheep ]
ICYMI: iRobot announced this week that it has acquired Root Robotics.
[ iRobot ]
This Boston Dynamics parody video went viral this week.
The CGI is good but the gratuitous violence—even if it’s against a fake robot—is a bit too much?
This is still our favorite Boston Dynamics parody video:
[ Corridor ]
Biomedical Engineering Department Head Bin He and his team have developed the first-ever successful non-invasive mind-controlled robotic arm to continuously track a computer cursor.
[ CMU ]
Organic chemists, prepare to meet your replacement:
Automated chemical synthesis carries great promises of safety, efficiency and reproducibility for both research and industry laboratories. Current approaches are based on specifically-designed automation systems, which present two major drawbacks: (i) existing apparatus must be modified to be integrated into the automation systems; (ii) such systems are not flexible and would require substantial re-design to handle new reactions or procedures. In this paper, we propose a system based on a robot arm which, by mimicking the motions of human chemists, is able to perform complex chemical reactions without any modifications to the existing setup used by humans. The system is capable of precise liquid handling, mixing, filtering, and is flexible: new skills and procedures could be added with minimum effort. We show that the robot is able to perform a Michael reaction, reaching a yield of 34%, which is comparable to that obtained by a junior chemist (undergraduate student in Chemistry).
[ arXiv ] via [ NTU ]
So yeah, ICRA 2019 was huge and awesome. Here are some brief highlights.
[ Montreal Gazette ]
For about US $5, this drone will deliver raw meat and beer to you if you live on an uninhabited island in Tokyo Bay.
[ Nikkei ]
The Smart Microsystems Lab at Michigan State University has a new version of their Autonomous Surface Craft. It’s autonomous, open source, and awfully hard to sink.
[ SML ]
As drone shows go, this one is pretty good.
[ CCTV ]
Here’s a remote controlled robot shooting stuff with a very large gun.
[ HDT ]
Over a period of three quarters (September 2018 thru May 2019), we’ve had the opportunity to work with five graduating University of Denver students as they brought their idea for a Misty II arm extension to life.
[ Misty Robotics ]
If you wonder how it looks to inspect burners and superheaters of a boiler with an Elios 2, here you are! This inspection was performed by Svenska Elektrod in a peat-fired boiler for Vattenfall in Sweden. Enjoy!
[ Flyability ]
The newest Soft Robotics technology, mGrip mini fingers, made for tight spaces, small packaging, and delicate items, giving limitless opportunities for your applications.
[ Soft Robotics ]
What if legged robots were able to generate dynamic motions in real-time while interacting with a complex environment? Such technology would represent a significant step forward the deployment of legged systems in real world scenarios. This means being able to replace humans in the execution of dangerous tasks and to collaborate with them in industrial applications.
This workshop aims to bring together researchers from all the relevant communities in legged locomotion such as: numerical optimization, machine learning (ML), model predictive control (MPC) and computational geometry in order to chart the most promising methods to address the above-mentioned scientific challenges.
[ Num Opt Wkshp ]
Army researchers teamed with the U.S. Marine Corps to fly and test 3-D printed quadcopter prototypes a the Marine Corps Air Ground Combat Center in 29 Palms, California recently.
[ CCDC ARL ]
Lex Fridman’s Artificial Intelligence podcast featuring Rosalind Picard.
[ AI Podcast ]
In this week’s episode of Robots in Depth, per speaks with Christian Guttmann, executive director of the Nordic AI Artificial Intelligence Institute.
Christian Guttmann talks about AI and wanting to understand intelligence enough to recreate it. Christian has be focusing on AI in healthcare and has recently started to communicate the opportunities and challenges in artificial intelligence to the general public. This is something that the host Per Sjöborg is also very passionate about. We also get to hear about the Nordic AI institute and the work it does to inform all parts of society about AI.
[ Robots in Depth ] Continue reading →