Tag Archives: based
#439913 A system to control robotic arms based ...
For people with motor impairments or physical disabilities, completing daily tasks and house chores can be incredibly challenging. Recent advancements in robotics, such as brain-controlled robotic limbs, have the potential to significantly improve their quality of life. Continue reading
#439192 Too Perilous For AI? EU Proposes ...
As part of its emerging role as a global regulatory watchdog, the European Commission published a proposal on 21 April for regulations to govern artificial intelligence use in the European Union.
The economic stakes are high: the Commission predicts European public and private investment in AI reaching €20 billion a year this decade, and that was before the additional earmark of up to €134 billion earmarked for digital transitions in Europe’s Covid-19 pandemic recovery fund, some of which the Commission presumes will fund AI, too. Add to that counting investments in AI outside the EU but which target EU residents, since these rules will apply to any use of AI in the EU, not just by EU-based companies or governments.
Things aren’t going to change overnight: the EU’s AI rules proposal is the result of three years of work by bureaucrats, industry experts, and public consultations and must go through the European Parliament—which requested it—before it can become law. EU member states then often take years to transpose EU-level regulations into their national legal codes.
The proposal defines four tiers for AI-related activity and differing levels of oversight for each. The first tier is unacceptable risk: some AI uses would be banned outright in public spaces, with specific exceptions granted by national laws and subject to additional oversight and stricter logging and human oversight. The to-be-banned AI activity that has probably garnered the most attention is real-time remote biometric identification, i.e. facial recognition. The proposal also bans subliminal behavior modification and social scoring applications. The proposal suggests fines of up to 6 percent of commercial violators’ global annual revenue.
The proposal next defines a high-risk category, determined by the purpose of the system and the potential and probability of harm. Examples listed in the proposal include job recruiting, credit checks, and the justice system. The rules would require such AI applications to use high-quality datasets, document their traceability, share information with users, and account for human oversight. The EU would create a central registry of such systems under the proposed rules and require approval before deployment.
Limited-risk activities, such as the use of chatbots or deepfakes on a website, will have less oversight but will require a warning label, to allow users to opt in or out. Then finally there is a tier for applications judged to present minimal risk.
As often happens when governments propose dense new rulebooks (this one is 108 pages), the initial reactions from industry and civil society groups seem to be more about the existence and reach of industry oversight than the specific content of the rules. One tech-funded think tank told the Wall Street Journal that it could become “infeasible to build AI in Europe.” In turn, privacy-focused civil society groups such as European Digital Rights (EDRi) said in a statement that the “regulation allows too wide a scope for self-regulation by companies.”
“I think one of the ideas behind this piece of regulation was trying to balance risk and get people excited about AI and regain trust,” saysLisa-Maria Neudert, AI governance researcher at the University of Oxford, England, and the Weizenbaum Institut in Berlin, Germany. A 2019 Lloyds Register Foundation poll found that the global public is about evenly split between fear and excitement about AI.
“I can imagine it might help if you have an experienced large legal team,” to help with compliance, Neudert says, and it may be “a difficult balance to strike” between rules that remain startup-friendly and succeed in reining in mega-corporations.
AI researchers Mona Sloane and Andrea Renda write in VentureBeat that the rules are weaker on monitoring of how AI plays out after approval and launch, neglecting “a crucial feature of AI-related risk: that it is pervasive, and it is emergent, often evolving in unpredictable ways after it has been developed and deployed.”
Europe has already been learning from the impact its sweeping 2018 General Data Protection Regulation (GDPR) had on global tech and privacy. Yes, some outside websites still serve Europeans a page telling them the website owners can’t be bothered to comply with GDPR, so Europeans can’t see any content. But most have found a way to adapt in order to reach this unified market of 448 million people.
“I don’t think we should generalize [from GDPR to the proposed AI rules], but it’s fair to assume that such a big piece of legislation will have effects beyond the EU,” Neudert says. It will be easier for legislators in other places to follow a template than to replicate the EU’s heavy investment in research, community engagement, and rule-writing.
While tech companies and their industry groups may grumble about the need to comply with the incipient AI rules, Register columnist Rupert Goodwin suggests they’d be better off focusing on forming the industry groups that will shape the implementation and enforcement of the rules in the future: “You may already be in one of the industry organizations for AI ethics or assessment; if not, then consider them the seeds from which influence will grow.” Continue reading
#439172 Origami based tires can change shape ...
A team of researchers affiliated with Seoul National University, Harvard University and Hankook Tire and Technology Co. Ltd., has developed a tire based on an origami design that allows for changing the shape of a tire while a vehicle is moving. In their paper published in the journal Science Robotics, the group describes their new tire design and how well it worked when tested. Continue reading
#439110 Robotic Exoskeletons Could One Day Walk ...
Engineers, using artificial intelligence and wearable cameras, now aim to help robotic exoskeletons walk by themselves.
Increasingly, researchers around the world are developing lower-body exoskeletons to help people walk. These are essentially walking robots users can strap to their legs to help them move.
One problem with such exoskeletons: They often depend on manual controls to switch from one mode of locomotion to another, such as from sitting to standing, or standing to walking, or walking on the ground to walking up or down stairs. Relying on joysticks or smartphone apps every time you want to switch the way you want to move can prove awkward and mentally taxing, says Brokoslaw Laschowski, a robotics researcher at the University of Waterloo in Canada.
Scientists are working on automated ways to help exoskeletons recognize when to switch locomotion modes — for instance, using sensors attached to legs that can detect bioelectric signals sent from your brain to your muscles telling them to move. However, this approach comes with a number of challenges, such as how how skin conductivity can change as a person’s skin gets sweatier or dries off.
Now several research groups are experimenting with a new approach: fitting exoskeleton users with wearable cameras to provide the machines with vision data that will let them operate autonomously. Artificial intelligence (AI) software can analyze this data to recognize stairs, doors, and other features of the surrounding environment and calculate how best to respond.
Laschowski leads the ExoNet project, the first open-source database of high-resolution wearable camera images of human locomotion scenarios. It holds more than 5.6 million images of indoor and outdoor real-world walking environments. The team used this data to train deep-learning algorithms; their convolutional neural networks can already automatically recognize different walking environments with 73 percent accuracy “despite the large variance in different surfaces and objects sensed by the wearable camera,” Laschowski notes.
According to Laschowski, a potential limitation of their work their reliance on conventional 2-D images, whereas depth cameras could also capture potentially useful distance data. He and his collaborators ultimately chose not to rely on depth cameras for a number of reasons, including the fact that the accuracy of depth measurements typically degrades in outdoor lighting and with increasing distance, he says.
In similar work, researchers in North Carolina had volunteers with cameras either mounted on their eyeglasses or strapped onto their knees walk through a variety of indoor and outdoor settings to capture the kind of image data exoskeletons might use to see the world around them. The aim? “To automate motion,” says Edgar Lobaton an electrical engineering researcher at North Carolina State University. He says they are focusing on how AI software might reduce uncertainty due to factors such as motion blur or overexposed images “to ensure safe operation. We want to ensure that we can really rely on the vision and AI portion before integrating it into the hardware.”
In the future, Laschowski and his colleagues will focus on improving the accuracy of their environmental analysis software with low computational and memory storage requirements, which are important for onboard, real-time operations on robotic exoskeletons. Lobaton and his team also seek to account for uncertainty introduced into their visual systems by movements .
Ultimately, the ExoNet researchers want to explore how AI software can transmit commands to exoskeletons so they can perform tasks such as climbing stairs or avoiding obstacles based on a system’s analysis of a user's current movements and the upcoming terrain. With autonomous cars as inspiration, they are seeking to develop autonomous exoskeletons that can handle the walking task without human input, Laschowski says.
However, Laschowski adds, “User safety is of the utmost importance, especially considering that we're working with individuals with mobility impairments,” resulting perhaps from advanced age or physical disabilities.
“The exoskeleton user will always have the ability to override the system should the classification algorithm or controller make a wrong decision.” Continue reading