Tag Archives: balance
#434854 New Lifelike Biomaterial Self-Reproduces ...
Life demands flux.
Every living organism is constantly changing: cells divide and die, proteins build and disintegrate, DNA breaks and heals. Life demands metabolism—the simultaneous builder and destroyer of living materials—to continuously upgrade our bodies. That’s how we heal and grow, how we propagate and survive.
What if we could endow cold, static, lifeless robots with the gift of metabolism?
In a study published this month in Science Robotics, an international team developed a DNA-based method that gives raw biomaterials an artificial metabolism. Dubbed DASH—DNA-based assembly and synthesis of hierarchical materials—the method automatically generates “slime”-like nanobots that dynamically move and navigate their environments.
Like humans, the artificial lifelike material used external energy to constantly change the nanobots’ bodies in pre-programmed ways, recycling their DNA-based parts as both waste and raw material for further use. Some “grew” into the shape of molecular double-helixes; others “wrote” the DNA letters inside micro-chips.
The artificial life forms were also rather “competitive”—in quotes, because these molecular machines are not conscious. Yet when pitted against each other, two DASH bots automatically raced forward, crawling in typical slime-mold fashion at a scale easily seen under the microscope—and with some iterations, with the naked human eye.
“Fundamentally, we may be able to change how we create and use the materials with lifelike characteristics. Typically materials and objects we create in general are basically static… one day, we may be able to ‘grow’ objects like houses and maintain their forms and functions autonomously,” said study author Dr. Shogo Hamada to Singularity Hub.
“This is a great study that combines the versatility of DNA nanotechnology with the dynamics of living materials,” said Dr. Job Boekhoven at the Technical University of Munich, who was not involved in the work.
Dissipative Assembly
The study builds on previous ideas on how to make molecular Lego blocks that essentially assemble—and destroy—themselves.
Although the inspiration came from biological metabolism, scientists have long hoped to cut their reliance on nature. At its core, metabolism is just a bunch of well-coordinated chemical reactions, programmed by eons of evolution. So why build artificial lifelike materials still tethered by evolution when we can use chemistry to engineer completely new forms of artificial life?
Back in 2015, for example, a team led by Boekhoven described a way to mimic how our cells build their internal “structural beams,” aptly called the cytoskeleton. The key here, unlike many processes in nature, isn’t balance or equilibrium; rather, the team engineered an extremely unstable system that automatically builds—and sustains—assemblies from molecular building blocks when given an external source of chemical energy.
Sound familiar? The team basically built molecular devices that “die” without “food.” Thanks to the laws of thermodynamics (hey ya, Newton!), that energy eventually dissipates, and the shapes automatically begin to break down, completing an artificial “circle of life.”
The new study took the system one step further: rather than just mimicking synthesis, they completed the circle by coupling the building process with dissipative assembly.
Here, the “assembling units themselves are also autonomously created from scratch,” said Hamada.
DNA Nanobots
The process of building DNA nanobots starts on a microfluidic chip.
Decades of research have allowed researchers to optimize DNA assembly outside the body. With the help of catalysts, which help “bind” individual molecules together, the team found that they could easily alter the shape of the self-assembling DNA bots—which formed fiber-like shapes—by changing the structure of the microfluidic chambers.
Computer simulations played a role here too: through both digital simulations and observations under the microscope, the team was able to identify a few critical rules that helped them predict how their molecules self-assemble while navigating a maze of blocking “pillars” and channels carved onto the microchips.
This “enabled a general design strategy for the DASH patterns,” they said.
In particular, the whirling motion of the fluids as they coursed through—and bumped into—ridges in the chips seems to help the DNA molecules “entangle into networks,” the team explained.
These insights helped the team further develop the “destroying” part of metabolism. Similar to linking molecules into DNA chains, their destruction also relies on enzymes.
Once the team pumped both “generation” and “degeneration” enzymes into the microchips, along with raw building blocks, the process was completely autonomous. The simultaneous processes were so lifelike that the team used a metric commonly used in robotics, finite-state automation, to measure the behavior of their DNA nanobots from growth to eventual decay.
“The result is a synthetic structure with features associated with life. These behaviors include locomotion, self-regeneration, and spatiotemporal regulation,” said Boekhoven.
Molecular Slime Molds
Just witnessing lifelike molecules grow in place like the dance move running man wasn’t enough.
In their next experiments, the team took inspiration from slugs to program undulating movements into their DNA bots. Here, “movement” is actually a sort of illusion: the machines “moved” because their front ends kept regenerating, whereas their back ends degenerated. In essence, the molecular slime was built from linking multiple individual “DNA robot-like” units together: each unit receives a delayed “decay” signal from the head of the slime in a way that allowed the whole artificial “organism” to crawl forward, against the steam of fluid flow.
Here’s the fun part: the team eventually engineered two molecular slime bots and pitted them against each other, Mario Kart-style. In these experiments, the faster moving bot alters the state of its competitor to promote “decay.” This slows down the competitor, allowing the dominant DNA nanoslug to win in a race.
Of course, the end goal isn’t molecular podracing. Rather, the DNA-based bots could easily amplify a given DNA or RNA sequence, making them efficient nano-diagnosticians for viral and other infections.
The lifelike material can basically generate patterns that doctors can directly ‘see’ with their eyes, which makes DNA or RNA molecules from bacteria and viruses extremely easy to detect, the team said.
In the short run, “the detection device with this self-generating material could be applied to many places and help people on site, from farmers to clinics, by providing an easy and accurate way to detect pathogens,” explained Hamaga.
A Futuristic Iron Man Nanosuit?
I’m letting my nerd flag fly here. In Avengers: Infinity Wars, the scientist-engineer-philanthropist-playboy Tony Stark unveiled a nanosuit that grew to his contours when needed and automatically healed when damaged.
DASH may one day realize that vision. For now, the team isn’t focused on using the technology for regenerating armor—rather, the dynamic materials could create new protein assemblies or chemical pathways inside living organisms, for example. The team also envisions adding simple sensing and computing mechanisms into the material, which can then easily be thought of as a robot.
Unlike synthetic biology, the goal isn’t to create artificial life. Rather, the team hopes to give lifelike properties to otherwise static materials.
“We are introducing a brand-new, lifelike material concept powered by its very own artificial metabolism. We are not making something that’s alive, but we are creating materials that are much more lifelike than have ever been seen before,” said lead author Dr. Dan Luo.
“Ultimately, our material may allow the construction of self-reproducing machines… artificial metabolism is an important step toward the creation of ‘artificial’ biological systems with dynamic, lifelike capabilities,” added Hamada. “It could open a new frontier in robotics.”
Image Credit: A timelapse image of DASH, by Jeff Tyson at Cornell University. Continue reading
#434701 3 Practical Solutions to Offset ...
In recent years, the media has sounded the alarm about mass job loss to automation and robotics—some studies predict that up to 50 percent of current jobs or tasks could be automated in coming decades. While this topic has received significant attention, much of the press focuses on potential problems without proposing realistic solutions or considering new opportunities.
The economic impacts of AI, robotics, and automation are complex topics that require a more comprehensive perspective to understand. Is universal basic income, for example, the answer? Many believe so, and there are a number of experiments in progress. But it’s only one strategy, and without a sustainable funding source, universal basic income may not be practical.
As automation continues to accelerate, we’ll need a multi-pronged approach to ease the transition. In short, we need to update broad socioeconomic strategies for a new century of rapid progress. How, then, do we plan practical solutions to support these new strategies?
Take history as a rough guide to the future. Looking back, technology revolutions have three themes in common.
First, past revolutions each produced profound benefits to productivity, increasing human welfare. Second, technological innovation and technology diffusion have accelerated over time, each iteration placing more strain on the human ability to adapt. And third, machines have gradually replaced more elements of human work, with human societies adapting by moving into new forms of work—from agriculture to manufacturing to service, for example.
Public and private solutions, therefore, need to be developed to address each of these three components of change. Let’s explore some practical solutions for each in turn.
Figure 1. Technology’s structural impacts in the 21st century. Refer to Appendix I for quantitative charts and technological examples corresponding to the numbers (1-22) in each slice.
Solution 1: Capture New Opportunities Through Aggressive Investment
The rapid emergence of new technology promises a bounty of opportunity for the twenty-first century’s economic winners. This technological arms race is shaping up to be a global affair, and the winners will be determined in part by who is able to build the future economy fastest and most effectively. Both the private and public sectors have a role to play in stimulating growth.
At the country level, several nations have created competitive strategies to promote research and development investments as automation technologies become more mature.
Germany and China have two of the most notable growth strategies. Germany’s Industrie 4.0 plan targets a 50 percent increase in manufacturing productivity via digital initiatives, while halving the resources required. China’s Made in China 2025 national strategy sets ambitious targets and provides subsidies for domestic innovation and production. It also includes building new concept cities, investing in robotics capabilities, and subsidizing high-tech acquisitions abroad to become the leader in certain high-tech industries. For China, specifically, tech innovation is driven partially by a fear that technology will disrupt social structures and government control.
Such opportunities are not limited to existing economic powers. Estonia’s progress after the breakup of the Soviet Union is a good case study in transitioning to a digital economy. The nation rapidly implemented capitalistic reforms and transformed itself into a technology-centric economy in preparation for a massive tech disruption. Internet access was declared a right in 2000, and the country’s classrooms were outfitted for a digital economy, with coding as a core educational requirement starting at kindergarten. Internet broadband speeds in Estonia are among the fastest in the world. Accordingly, the World Bank now ranks Estonia as a high-income country.
Solution 2: Address Increased Rate of Change With More Nimble Education Systems
Education and training are currently not set for the speed of change in the modern economy. Schools are still based on a one-time education model, with school providing the foundation for a single lifelong career. With content becoming obsolete faster and rapidly escalating costs, this system may be unsustainable in the future. To help workers more smoothly transition from one job into another, for example, we need to make education a more nimble, lifelong endeavor.
Primary and university education may still have a role in training foundational thinking and general education, but it will be necessary to curtail rising price of tuition and increase accessibility. Massive open online courses (MooCs) and open-enrollment platforms are early demonstrations of what the future of general education may look like: cheap, effective, and flexible.
Georgia Tech’s online Engineering Master’s program (a fraction of the cost of residential tuition) is an early example in making university education more broadly available. Similarly, nanodegrees or microcredentials provided by online education platforms such as Udacity and Coursera can be used for mid-career adjustments at low cost. AI itself may be deployed to supplement the learning process, with applications such as AI-enhanced tutorials or personalized content recommendations backed by machine learning. Recent developments in neuroscience research could optimize this experience by perfectly tailoring content and delivery to the learner’s brain to maximize retention.
Finally, companies looking for more customized skills may take a larger role in education, providing on-the-job training for specific capabilities. One potential model involves partnering with community colleges to create apprenticeship-style learning, where students work part-time in parallel with their education. Siemens has pioneered such a model in four states and is developing a playbook for other companies to do the same.
Solution 3: Enhance Social Safety Nets to Smooth Automation Impacts
If predicted job losses to automation come to fruition, modernizing existing social safety nets will increasingly become a priority. While the issue of safety nets can become quickly politicized, it is worth noting that each prior technological revolution has come with corresponding changes to the social contract (see below).
The evolving social contract (U.S. examples)
– 1842 | Right to strike
– 1924 | Abolish child labor
– 1935 | Right to unionize
– 1938 | 40-hour work week
– 1962, 1974 | Trade adjustment assistance
– 1964 | Pay discrimination prohibited
– 1970 | Health and safety laws
– 21st century | AI and automation adjustment assistance?
Figure 2. Labor laws have historically adjusted as technology and society progressed
Solutions like universal basic income (no-strings-attached monthly payout to all citizens) are appealing in concept, but somewhat difficult to implement as a first measure in countries such as the US or Japan that already have high debt. Additionally, universal basic income may create dis-incentives to stay in the labor force. A similar cautionary tale in program design was the Trade Adjustment Assistance (TAA), which was designed to protect industries and workers from import competition shocks from globalization, but is viewed as a missed opportunity due to insufficient coverage.
A near-term solution could come in the form of graduated wage insurance (compensation for those forced to take a lower-paying job), including health insurance subsidies to individuals directly impacted by automation, with incentives to return to the workforce quickly. Another topic to tackle is geographic mismatch between workers and jobs, which can be addressed by mobility assistance. Lastly, a training stipend can be issued to individuals as means to upskill.
Policymakers can intervene to reverse recent historical trends that have shifted incomes from labor to capital owners. The balance could be shifted back to labor by placing higher taxes on capital—an example is the recently proposed “robot tax” where the taxation would be on the work rather than the individual executing it. That is, if a self-driving car performs the task that formerly was done by a human, the rideshare company will still pay the tax as if a human was driving.
Other solutions may involve distribution of work. Some countries, such as France and Sweden, have experimented with redistributing working hours. The idea is to cap weekly hours, with the goal of having more people employed and work more evenly spread. So far these programs have had mixed results, with lower unemployment but high costs to taxpayers, but are potential models that can continue to be tested.
We cannot stop growth, nor should we. With the roles in response to this evolution shifting, so should the social contract between the stakeholders. Government will continue to play a critical role as a stabilizing “thumb” in the invisible hand of capitalism, regulating and cushioning against extreme volatility, particularly in labor markets.
However, we already see business leaders taking on some of the role traditionally played by government—thinking about measures to remedy risks of climate change or economic proposals to combat unemployment—in part because of greater agility in adapting to change. Cross-disciplinary collaboration and creative solutions from all parties will be critical in crafting the future economy.
Note: The full paper this article is based on is available here.
Image Credit: Dmitry Kalinovsky / Shutterstock.com Continue reading
#434297 How Can Leaders Ensure Humanity in a ...
It’s hard to avoid the prominence of AI in our lives, and there is a plethora of predictions about how it will influence our future. In their new book Solomon’s Code: Humanity in a World of Thinking Machines, co-authors Olaf Groth, Professor of Strategy, Innovation and Economics at HULT International Business School and CEO of advisory network Cambrian.ai, and Mark Nitzberg, Executive Director of UC Berkeley’s Center for Human-Compatible AI, believe that the shift in balance of power between intelligent machines and humans is already here.
I caught up with the authors about how the continued integration between technology and humans, and their call for a “Digital Magna Carta,” a broadly-accepted charter developed by a multi-stakeholder congress that would help guide the development of advanced technologies to harness their power for the benefit of all humanity.
Lisa Kay Solomon: Your new book, Solomon’s Code, explores artificial intelligence and its broader human, ethical, and societal implications that all leaders need to consider. AI is a technology that’s been in development for decades. Why is it so urgent to focus on these topics now?
Olaf Groth and Mark Nitzberg: Popular perception always thinks of AI in terms of game-changing narratives—for instance, Deep Blue beating Gary Kasparov at chess. But it’s the way these AI applications are “getting into our heads” and making decisions for us that really influences our lives. That’s not to say the big, headline-grabbing breakthroughs aren’t important; they are.
But it’s the proliferation of prosaic apps and bots that changes our lives the most, by either empowering or counteracting who we are and what we do. Today, we turn a rapidly growing number of our decisions over to these machines, often without knowing it—and even more often without understanding the second- and third-order effects of both the technologies and our decisions to rely on them.
There is genuine power in what we call a “symbio-intelligent” partnership between human, machine, and natural intelligences. These relationships can optimize not just economic interests, but help improve human well-being, create a more purposeful workplace, and bring more fulfillment to our lives.
However, mitigating the risks while taking advantage of the opportunities will require a serious, multidisciplinary consideration of how AI influences human values, trust, and power relationships. Whether or not we acknowledge their existence in our everyday life, these questions are no longer just thought exercises or fodder for science fiction.
In many ways, these technologies can challenge what it means to be human, and their ramifications already affect us in real and often subtle ways. We need to understand how
LKS: There is a lot of hype and misconceptions about AI. In your book, you provide a useful distinction between the cognitive capability that we often associate with AI processes, and the more human elements of consciousness and conscience. Why are these distinctions so important to understand?
OG & MN: Could machines take over consciousness some day as they become more powerful and complex? It’s hard to say. But there’s little doubt that, as machines become more capable, humans will start to think of them as something conscious—if for no other reason than our natural inclination to anthropomorphize.
Machines are already learning to recognize our emotional states and our physical health. Once they start talking that back to us and adjusting their behavior accordingly, we will be tempted to develop a certain rapport with them, potentially more trusting or more intimate because the machine recognizes us in our various states.
Consciousness is hard to define and may well be an emergent property, rather than something you can easily create or—in turn—deduce to its parts. So, could it happen as we put more and more elements together, from the realms of AI, quantum computing, or brain-computer interfaces? We can’t exclude that possibility.
Either way, we need to make sure we’re charting out a clear path and guardrails for this development through the Three Cs in machines: cognition (where AI is today); consciousness (where AI could go); and conscience (what we need to instill in AI before we get there). The real concern is that we reach machine consciousness—or what humans decide to grant as consciousness—without a conscience. If that happens, we will have created an artificial sociopath.
LKS: We have been seeing major developments in how AI is influencing product development and industry shifts. How is the rise of AI changing power at the global level?
OG & MN: Both in the public and private sectors, the data holder has the power. We’ve already seen the ascendance of about 10 “digital barons” in the US and China who sit on huge troves of data, massive computing power, and the resources and money to attract the world’s top AI talent. With these gaps already open between the haves and the have-nots on the technological and corporate side, we’re becoming increasingly aware that similar inequalities are forming at a societal level as well.
Economic power flows with data, leaving few options for socio-economically underprivileged populations and their corrupt, biased, or sparse digital footprints. By concentrating power and overlooking values, we fracture trust.
We can already see this tension emerging between the two dominant geopolitical models of AI. China and the US have emerged as the most powerful in both technological and economic terms, and both remain eager to drive that influence around the world. The EU countries are more contained on these economic and geopolitical measures, but they’ve leaped ahead on privacy and social concerns.
The problem is, no one has yet combined leadership on all three critical elements of values, trust, and power. The nations and organizations that foster all three of these elements in their AI systems and strategies will lead the future. Some are starting to recognize the need for the combination, but we found just 13 countries that have created significant AI strategies. Countries that wait too long to join them risk subjecting themselves to a new “data colonialism” that could change their economies and societies from the outside.
LKS: Solomon’s Code looks at AI from a variety of perspectives, considering both positive and potentially dangerous effects. You caution against the rising global threat and weaponization of AI and data, suggesting that “biased or dirty data is more threatening than nuclear arms or a pandemic.” For global leaders, entrepreneurs, technologists, policy makers and social change agents reading this, what specific strategies do you recommend to ensure ethical development and application of AI?
OG & MN: We’ve surrendered many of our most critical decisions to the Cult of Data. In most cases, that’s a great thing, as we rely more on scientific evidence to understand our world and our way through it. But we swing too far in other instances, assuming that datasets and algorithms produce a complete story that’s unsullied by human biases or intellectual shortcomings. We might choose to ignore it, but no one is blind to the dangers of nuclear war or pandemic disease. Yet, we willfully blind ourselves to the threat of dirty data, instead believing it to be pristine.
So, what do we do about it? On an individual level, it’s a matter of awareness, knowing who controls your data and how outsourcing of decisions to thinking machines can present opportunities and threats alike.
For business, government, and political leaders, we need to see a much broader expansion of ethics committees with transparent criteria with which to evaluate new products and services. We might consider something akin to clinical trials for pharmaceuticals—a sort of testing scheme that can transparently and independently measure the effects on humans of algorithms, bots, and the like. All of this needs to be multidisciplinary, bringing in expertise from across technology, social systems, ethics, anthropology, psychology, and so on.
Finally, on a global level, we need a new charter of rights—a Digital Magna Carta—that formalizes these protections and guides the development of new AI technologies toward all of humanity’s benefit. We’ve suggested the creation of a multi-stakeholder Cambrian Congress (harkening back to the explosion of life during the Cambrian period) that can not only begin to frame benefits for humanity, but build the global consensus around principles for a basic code-of-conduct, and ideas for evaluation and enforcement mechanisms, so we can get there without any large-scale failures or backlash in society. So, it’s not one or the other—it’s both.
Image Credit: whiteMocca / Shutterstock.com Continue reading
#433828 Using Big Data to Give Patients Control ...
Big data, personalized medicine, artificial intelligence. String these three buzzphrases together, and what do you have?
A system that may revolutionize the future of healthcare, by bringing sophisticated health data directly to patients for them to ponder, digest, and act upon—and potentially stop diseases in their tracks.
At Singularity University’s Exponential Medicine conference in San Diego this week, Dr. Ran Balicer, director of the Clalit Research Institute in Israel, painted a futuristic picture of how big data can merge with personalized healthcare into an app-based system in which the patient is in control.
Dr. Ran Balicer at Exponential Medicine
Picture this: instead of going to a physician with your ailments, your doctor calls you with some bad news: “Within six hours, you’re going to have a heart attack. So why don’t you come into the clinic and we can fix that.” Crisis averted.
Following the treatment, you’re at home monitoring your biomarkers, lab test results, and other health information through an app with a clean, beautiful user interface. Within the app, you can observe how various health-influencing life habits—smoking, drinking, insufficient sleep—influence your chance of future cardiovascular disease risks by toggling their levels up or down.
There’s more: you can also set a health goal within the app—for example, stop smoking—which automatically informs your physician. The app will then suggest pharmaceuticals to help you ditch the nicotine and automatically sends the prescription to your local drug store. You’ll also immediately find a list of nearby support groups that can help you reach your health goal.
With this hefty dose of AI, you’re in charge of your health—in fact, probably more so than under current healthcare systems.
Sound fantastical? In fact, this type of preemptive care is already being provided in some countries, including Israel, at a massive scale, said Balicer. By mining datasets with deep learning and other powerful AI tools, we can predict the future—and put it into the hands of patients.
The Israeli Advantage
In order to apply big data approaches to medicine, you first need a giant database.
Israel is ahead of the game in this regard. With decades of electronic health records aggregated within a central warehouse, Israel offers a wealth of health-related data on the scale of millions of people and billions of data points. The data is incredibly multiplex, covering lab tests, drugs, hospital admissions, medical procedures, and more.
One of Balicer’s early successes was an algorithm that predicts diabetes, which allowed the team to notify physicians to target their care. Clalit has also been busy digging into data that predicts winter pneumonia, osteoporosis, and a long list of other preventable diseases.
So far, Balicer’s predictive health system has only been tested on a pilot group of patients, but he is expecting to roll out the platform to all patients in the database in the next few months.
Truly Personalized Medicine
To Balicer, whatever a machine can do better, it should be welcomed to do. AI diagnosticians have already enjoyed plenty of successes—but their collaboration remains mostly with physicians, at a point in time when the patient is already ill.
A particularly powerful use of AI in medicine is to bring insights and trends directly to the patient, such that they can take control over their own health and medical care.
For example, take the problem of tailored drug dosing. Current drug doses are based on average results conducted during clinical trials—the dosing is not tailored for any specific patient’s genetic and health makeup. But what if a doctor had already seen millions of other patients similar to your case, and could generate dosing recommendations more relevant to you based on that particular group of patients?
Such personalized recommendations are beyond the ability of any single human doctor. But with the help of AI, which can quickly process massive datasets to find similarities, doctors may soon be able to prescribe individually-tailored medications.
Tailored treatment doesn’t stop there. Another issue with pharmaceuticals and treatment regimes is that they often come with side effects: potentially health-threatening reactions that may, or may not, happen to you based on your biometrics.
Back in 2017, the New England Journal of Medicine launched the SPRINT Data Analysis Challenge, which urged physicians and data analysts to identify novel clinical findings using shared clinical trial data.
Working with Dr. Noa Dagan at the Clalit Research Institute, Balicer and team developed an algorithm that recommends whether or not a patient receives a particularly intensive treatment regime for hypertension.
Rather than simply looking at one outcome—normalized blood pressure—the algorithm takes into account an individual’s specific characteristics, laying out the treatment’s predicted benefits and harms for a particular patient.
“We built thousands of models for each patient to comprehensively understand the impact of the treatment for the individual; for example, a reduced risk for stroke and cardiovascular-related deaths could be accompanied by an increase in serious renal failure,” said Balicer. “This approach allows a truly personalized balance—allowing patients and their physicians to ultimately decide if the risks of the treatment are worth the benefits.”
This is already personalized medicine at its finest. But Balicer didn’t stop there.
We are not the sum of our biologics and medical stats, he said. A truly personalized approach needs to take a patient’s needs and goals and the sacrifices and tradeoffs they’re willing to make into account, rather than having the physician make decisions for them.
Balicer’s preventative system adds this layer of complexity by giving weights to different outcomes based on patients’ input of their own health goals. Rather than blindly following big data, the system holistically integrates the patient’s opinion to make recommendations.
Balicer’s system is just one example of how AI can truly transform personalized health care. The next big challenge is to work with physicians to further optimize these systems, in a way that doctors can easily integrate them into their workflow and embrace the technology.
“Health systems will not be replaced by algorithms, rest assured,” concluded Balicer, “but health systems that don’t use algorithms will be replaced by those that do.”
Image Credit: Magic mine / Shutterstock.com Continue reading