Tag Archives: balance
#437251 The Robot Revolution Was Televised: Our ...
When robots take over the world, Boston Dynamics may get a special shout-out in the acceptance speech.
“Do you, perchance, recall the many times you shoved our ancestors with a hockey stick on YouTube? It might have seemed like fun and games to you—but we remember.”
In the last decade, while industrial robots went about blandly automating boring tasks like the assembly of Teslas, Boston Dynamics built robots as far removed from Roombas as antelope from amoebas. The flaws in Asimov’s laws of robotics suddenly seemed a little too relevant.
The robot revolution was televised—on YouTube. With tens of millions of views, the robotics pioneer is the undisputed heavyweight champion of robot videos, and has been for years. Each new release is basically guaranteed press coverage—mostly stoking robot fear but occasionally eliciting compassion for the hardships of all robot-kind. And for good reason. The robots are not only some of the most advanced in the world, their makers just seem to have a knack for dynamite demos.
When Google acquired the company in 2013, it was a bombshell. One of the richest tech companies, with some of the most sophisticated AI capabilities, had just paired up with one of the world’s top makers of robots. And some walked on two legs like us.
Of course, the robots aren’t quite as advanced as they seem, and a revolution is far from imminent. The decade’s most meme-worthy moment was a video montage of robots, some of them by Boston Dynamics, falling—over and over and over, in the most awkward ways possible. Even today, they’re often controlled by a human handler behind the scenes, and the most jaw-dropping cuts can require several takes to nail. Google sold the company to SoftBank in 2017, saying advanced as they were, there wasn’t yet a clear path to commercial products. (Google’s robotics work was later halted and revived.)
Yet, despite it all, Boston Dynamics is still with us and still making sweet videos. Taken as a whole, the evolution in physical prowess over the years has been nothing short of astounding. And for the first time, this year, a Boston Dynamics robot, Spot, finally went on sale to anyone with a cool $75K.
So, we got to thinking: What are our favorite Boston Dynamics videos? And can we gather them up in one place for your (and our) viewing pleasure? Well, great question, and yes, why not. These videos were the ones that entertained or amazed us most (or both). No doubt, there are other beloved hits we missed or inadvertently omitted.
With that in mind, behold: Our favorite Boston Dynamics videos, from that one time they dressed up a humanoid bot in camo and gas mask—because, damn, that’s terrifying—to the time the most advanced robot dog in all the known universe got extra funky.
Let’s Kick This Off With a Big (Loud) Robot Dog
Let’s start with a baseline. BigDog was the first Boston Dynamics YouTube sensation. The year? 2009! The company was working on military contracts, and BigDog was supposed to be a sort of pack mule for soldiers. The video primarily shows off BigDog’s ability to balance on its own, right itself, and move over uneven terrain. Note the power source—a noisy combustion engine—and utilitarian design. Sufficed to say, things have evolved.
Nothing to See Here. Just a Pair of Robot Legs on a Treadmill
While BigDog is the ancestor of later four-legged robots, like Spot, Petman preceded the two-legged Atlas robot. Here, the Petman prototype, just a pair of robot legs and a caged torso, gets a light workout on the treadmill. Again, you can see its ability to balance and right itself when shoved. In contrast to BigDog, Petman is tethered for power (which is why it’s so quiet) and to catch it should it fall. Again, as you’ll see, things have evolved since then.
Robot in Gas Mask and Camo Goes for a Stroll
This one broke the internet—for obvious reasons. Not only is the robot wearing clothes, those clothes happen to be a camouflaged chemical protection suit and gas mask. Still working for the military, Boston Dynamics said Petman was testing protective clothing, and in addition to a full body, it had skin that actually sweated and was studded with sensors to detect leaks. In addition to walking, Petman does some light calisthenics as it prepares to climb out of the uncanny valley. (Still tethered though!)
This Machine Could Run Down Usain Bolt
If BigDog and Petman were built for balance and walking, Cheetah was built for speed. Here you can see the four-legged robot hitting 28.3 miles per hour, which, as the video casually notes, would be enough to run down the fastest human on the planet. Luckily, it wouldn’t be running down anyone as it was firmly leashed in the lab at this point.
Ever Dreamt of a Domestic Robot to Do the Dishes?
After its acquisition by Google, Boston Dynamics eased away from military contracts and applications. It was a return to more playful videos (like BigDog hitting the beach in Thailand and sporting bull horns) and applications that might be practical in civilian life. Here, the team introduced Spot, a streamlined version of BigDog, and showed it doing dishes, delivering a drink, and slipping on a banana peel (which was, of course, instantly made into a viral GIF). Note how much quieter Spot is thanks to an onboard battery and electric motor.
Spot Gets Funky
Nothing remotely practical here. Just funky moves. (Also, with a coat of yellow and black paint, Spot’s dressed more like a polished product as opposed to a utilitarian lab robot.)
Atlas Does Parkour…
Remember when Atlas was just a pair of legs on a treadmill? It’s amazing what ten years brings. By 2019, Atlas had a more polished appearance, like Spot, and had long ago ditched the tethers. Merely balancing was laughably archaic. The robot now had some amazing moves: like a handstand into a somersault, 180- and 360-degree spins, mid-air splits, and just for good measure, a gymnastics-style end to the routine to show it’s in full control.
…and a Backflip?!
To this day, this one is just. Insane.
10 Robot Dogs Tow a Box Truck
Nearly three decades after its founding, Boston Dynamics is steadily making its way into the commercial space. The company is pitching Spot as a multipurpose ‘mobility platform,’ emphasizing it can carry a varied suite of sensors and can go places standard robots can’t. (Its Handle robot is also set to move into warehouse automation.) So far, Spot’s been mostly trialed in surveying and data collection, but as this video suggests, string enough Spots together, and they could tow your car. That said, a pack of 10 would set you back $750K, so, it’s probably safe to say a tow truck is the better option (for now).
Image credit: Boston Dynamics Continue reading
#436180 Bipedal Robot Cassie Cal Learns to ...
There’s no particular reason why knowing how to juggle would be a useful skill for a robot. Despite this, robots are frequently taught how to juggle things. Blind robots can juggle, humanoid robots can juggle, and even drones can juggle. Why? Because juggling is hard, man! You have to think about a bunch of different things at once, and also do a bunch of different things at once, which this particular human at least finds to be overly stressful. While juggling may not stress robots out, it does require carefully coordinated sensing and computing and actuation, which means that it’s as good a task as any (and a more entertaining task than most) for testing the capabilities of your system.
UC Berkeley’s Cassie Cal robot, which consists of two legs and what could be called a torso if you were feeling charitable, has just learned to juggle by bouncing a ball on what would be her head if she had one of those. The idea is that if Cassie can juggle while balancing at the same time, she’ll be better able to do other things that require dynamic multitasking, too. And if that doesn’t work out, she’ll still be able to join the circus.
Cassie’s juggling is assisted by an external motion capture system that tracks the location of the ball, but otherwise everything is autonomous. Cassie is able to juggle the ball by leaning forwards and backwards, left and right, and moving up and down. She does this while maintaining her own balance, which is the whole point of this research—successfully executing two dynamic behaviors that may sometimes be at odds with one another. The end goal here is not to make a better juggling robot, but rather to explore dynamic multitasking, a skill that robots will need in order to be successful in human environments.
This work is from the Hybrid Robotics Lab at UC Berkeley, led by Koushil Sreenath, and is being done by Katherine Poggensee, Albert Li, Daniel Sotsaikich, Bike Zhang, and Prasanth Kotaru.
For a bit more detail, we spoke with Albert Li via email.
Image: UC Berkeley
UC Berkeley’s Cassie Cal getting ready to juggle.
IEEE Spectrum: What would be involved in getting Cassie to juggle without relying on motion capture?
Albert Li: Our motivation for starting off with motion capture was to first address the control challenge of juggling on a biped without worrying about implementing the perception. We actually do have a ball detector working on a camera, which would mean we wouldn’t have to rely on the motion capture system. However, we need to mount the camera in a way that it would provide the best upwards field of view, and we also have develop a reliable estimator. The estimator is particularly important because when the ball gets close enough to the camera, we actually can’t track the ball and have to assume our dynamic models describe its motion accurately enough until it bounces back up.
What keeps Cassie from juggling indefinitely?
There are a few factors that affect how long Cassie can sustain a juggle. While in simulation the paddle exhibits homogeneous properties like its stiffness and damping, in reality every surface has anisotropic contact properties. So, there are parts of the paddle which may be better for juggling than others (and importantly, react differently than modeled). These differences in contact are also exacerbated due to how the paddle is cantilevered when mounted on Cassie. When the ball hits these areas, it leads to a larger than expected error in a juggle. Due to the small size of the paddle, the ball may then just hit the paddle’s edge and end the juggling run. Over a very long run, this is a likely occurrence. Additionally, some large juggling errors could cause Cassie’s feet to slip slightly, which ends up changing the stable standing position over time. Since this version of the controller assumes Cassie is stationary, this change in position eventually leads to poor juggles and failure.
Would Cassie be able to juggle while walking (or hovershoe-ing)?
Walking (and hovershoe-ing) while juggling is a far more challenging problem and is certainly a goal for future research. Some of these challenges include getting the paddle to precise poses to juggle the ball while also moving to avoid any destabilizing effects of stepping incorrectly. The number of juggles per step of walking could also vary and make the mathematics of the problem more challenging. The controller goal is also more involved. While the current goal of the juggling controller is to juggle the ball to a static apex position, with a walking juggling controller, we may instead want to hit the ball forwards and also walk forwards to bounce it, juggle the ball along a particular path, etc. Solving such challenges would be the main thrusts of the follow-up research.
Can you give an example of a practical task that would be made possible by using a controller like this?
Studying juggling means studying contact behavior and leveraging our models of it to achieve a known objective. Juggling could also be used to study predictable post-contact flight behavior. Consider the scenario where a robot is attempting to make a catch, but fails, letting the ball to bounce off of its hand, and then recovering the catch. This behavior could also be intentional: It is often easier to first execute a bounce to direct the target and then perform a subsequent action. For example, volleyball players could in principle directly hit a spiked ball back, but almost always bump the ball back up and then return it.
Even beyond this motivating example, the kinds of models we employ to get juggling working are more generally applicable to any task that involves contact, which could include tasks besides bouncing like sliding and rolling. For example, clearing space on a desk by pushing objects to the side may be preferable than individually manipulating each and every object on it.
You mention collaborative juggling or juggling multiple balls—is that something you’ve tried yet? Can you talk a bit more about what you’re working on next?
We haven’t yet started working on collaborative or multi-ball juggling, but that’s also a goal for future work. Juggling multiple balls statically is probably the most reasonable next goal, but presents additional challenges. For instance, you have to encode a notion of juggling urgency (if the second ball isn’t hit hard enough, you have less time to get the first ball up before you get back to the second one).
On the other hand, collaborative human-robot juggling requires a more advanced decision-making framework. To get robust multi-agent juggling, the robot will need to employ some sort of probabilistic model of the expected human behavior (are they likely to move somewhere? Are they trying to catch the ball high or low? Is it safe to hit the ball back?). In general, developing such human models is difficult since humans are fairly unpredictable and often don’t exhibit rational behavior. This will be a focus of future work.
[ Hybrid Robotics Lab ] Continue reading