Tag Archives: bad

#436126 Quantum Computing Gets a Boost From AI ...

Illustration: Greg Mably

Anyone of a certain age who has even a passing interest in computers will remember the remarkable breakthrough that IBM made in 1997 when its Deep Blue chess-playing computer defeated Garry Kasparov, then the world chess champion. Computer scientists passed another such milestone in March 2016, when DeepMind (a subsidiary of Alphabet, Google’s parent company) announced that its AlphaGo program had defeated world-champion player Lee Sedol in the game of Go, a board game that had vexed AI researchers for decades. Recently, DeepMind’s algorithms have also bested human players in the computer games StarCraft IIand Quake Arena III.

Some believe that the cognitive capacities of machines will overtake those of human beings in many spheres within a few decades. Others are more cautious and point out that our inability to understand the source of our own cognitive powers presents a daunting hurdle. How can we make thinking machines if we don’t fully understand our own thought processes?

Citizen science, which enlists masses of people to tackle research problems, holds promise here, in no small part because it can be used effectively to explore the boundary between human and artificial intelligence.

Some citizen-science projects ask the public to collect data from their surroundings (as eButterfly does for butterflies) or to monitor delicate ecosystems (as Eye on the Reef does for Australia’s Great Barrier Reef). Other projects rely on online platforms on which people help to categorize obscure phenomena in the night sky (Zooniverse) or add to the understanding of the structure of proteins (Foldit). Typically, people can contribute to such projects without any prior knowledge of the subject. Their fundamental cognitive skills, like the ability to quickly recognize patterns, are sufficient.

In order to design and develop video games that can allow citizen scientists to tackle scientific problems in a variety of fields, professor and group leader Jacob Sherson founded ScienceAtHome (SAH), at Aarhus University, in Denmark. The group began by considering topics in quantum physics, but today SAH hosts games covering other areas of physics, math, psychology, cognitive science, and behavioral economics. We at SAH search for innovative solutions to real research challenges while providing insight into how people think, both alone and when working in groups.

It is computationally intractable to completely map out a higher-dimensional landscape: It is called the curse of high dimensionality, and it plagues many optimization problems.

We believe that the design of new AI algorithms would benefit greatly from a better understanding of how people solve problems. This surmise has led us to establish the Center for Hybrid Intelligence within SAH, which tries to combine human and artificial intelligence, taking advantage of the particular strengths of each. The center’s focus is on the gamification of scientific research problems and the development of interfaces that allow people to understand and work together with AI.

Our first game, Quantum Moves, was inspired by our group’s research into quantum computers. Such computers can in principle solve certain problems that would take a classical computer billions of years. Quantum computers could challenge current cryptographic protocols, aid in the design of new materials, and give insight into natural processes that require an exact solution of the equations of quantum mechanics—something normal computers are inherently bad at doing.

One candidate system for building such a computer would capture individual atoms by “freezing” them, as it were, in the interference pattern produced when a laser beam is reflected back on itself. The captured atoms can thus be organized like eggs in a carton, forming a periodic crystal of atoms and light. Using these atoms to perform quantum calculations requires that we use tightly focused laser beams, called optical tweezers, to transport the atoms from site to site in the light crystal. This is a tricky business because individual atoms do not behave like particles; instead, they resemble a wavelike liquid governed by the laws of quantum mechanics.

In Quantum Moves, a player manipulates a touch screen or mouse to move a simulated laser tweezer and pick up a trapped atom, represented by a liquidlike substance in a bowl. Then the player must bring the atom back to the tweezer’s initial position while trying to minimize the sloshing of the liquid. Such sloshing would increase the energy of the atom and ultimately introduce errors into the operations of the quantum computer. Therefore, at the end of a move, the liquid should be at a complete standstill.

To understand how people and computers might approach such a task differently, you need to know something about how computerized optimization algorithms work. The countless ways of moving a glass of water without spilling may be regarded as constituting a “solution landscape.” One solution is represented by a single point in that landscape, and the height of that point represents the quality of the solution—how smoothly and quickly the glass of water was moved. This landscape might resemble a mountain range, where the top of each mountain represents a local optimum and where the challenge is to find the highest peak in the range—the global optimum.

Illustration: Greg Mably

Researchers must compromise between searching the landscape for taller mountains (“exploration”) and climbing to the top of the nearest mountain (“exploitation”). Making such a trade-off may seem easy when exploring an actual physical landscape: Merely hike around a bit to get at least the general lay of the land before surveying in greater detail what seems to be the tallest peak. But because each possible way of changing the solution defines a new dimension, a realistic problem can have thousands of dimensions. It is computationally intractable to completely map out such a higher-dimensional landscape. We call this the curse of high dimensionality, and it plagues many optimization problems.

Although algorithms are wonderfully efficient at crawling to the top of a given mountain, finding good ways of searching through the broader landscape poses quite a challenge, one that is at the forefront of AI research into such control problems. The conventional approach is to come up with clever ways of reducing the search space, either through insights generated by researchers or with machine-learning algorithms trained on large data sets.

At SAH, we attacked certain quantum-optimization problems by turning them into a game. Our goal was not to show that people can beat computers in this arena but rather to understand the process of generating insights into such problems. We addressed two core questions: whether allowing players to explore the infinite space of possibilities will help them find good solutions and whether we can learn something by studying their behavior.

Today, more than 250,000 people have played Quantum Moves, and to our surprise, they did in fact search the space of possible moves differently from the algorithm we had put to the task. Specifically, we found that although players could not solve the optimization problem on their own, they were good at searching the broad landscape. The computer algorithms could then take those rough ideas and refine them.

Herbert A. Simon said that “solving a problem simply means representing it so as to make the solution transparent.” Apparently, that’s what our games can do with their novel user interfaces.

Perhaps even more interesting was our discovery that players had two distinct ways of solving the problem, each with a clear physical interpretation. One set of players started by placing the tweezer close to the atom while keeping a barrier between the atom trap and the tweezer. In classical physics, a barrier is an impenetrable obstacle, but because the atom liquid is a quantum-mechanical object, it can tunnel through the barrier into the tweezer, after which the player simply moved the tweezer to the target area. Another set of players moved the tweezer directly into the atom trap, picked up the atom liquid, and brought it back. We called these two strategies the “tunneling” and “shoveling” strategies, respectively.

Such clear strategies are extremely valuable because they are very difficult to obtain directly from an optimization algorithm. Involving humans in the optimization loop can thus help us gain insight into the underlying physical phenomena that are at play, knowledge that may then be transferred to other types of problems.

Quantum Moves raised several obvious issues. First, because generating an exceptional solution required further computer-based optimization, players were unable to get immediate feedback to help them improve their scores, and this often left them feeling frustrated. Second, we had tested this approach on only one scientific challenge with a clear classical analogue, that of the sloshing liquid. We wanted to know whether such gamification could be applied more generally, to a variety of scientific challenges that do not offer such immediately applicable visual analogies.

We address these two concerns in Quantum Moves 2. Here, the player first generates a number of candidate solutions by playing the original game. Then the player chooses which solutions to optimize using a built-in algorithm. As the algorithm improves a player’s solution, it modifies the solution path—the movement of the tweezer—to represent the optimized solution. Guided by this feedback, players can then improve their strategy, come up with a new solution, and iteratively feed it back into this process. This gameplay provides high-level heuristics and adds human intuition to the algorithm. The person and the machine work in tandem—a step toward true hybrid intelligence.

In parallel with the development of Quantum Moves 2, we also studied how people collaboratively solve complex problems. To that end, we opened our atomic physics laboratory to the general public—virtually. We let people from around the world dictate the experiments we would run to see if they would find ways to improve the results we were getting. What results? That’s a little tricky to explain, so we need to pause for a moment and provide a little background on the relevant physics.

One of the essential steps in building the quantum computer along the lines described above is to create the coldest state of matter in the universe, known as a Bose-Einstein condensate. Here millions of atoms oscillate in synchrony to form a wavelike substance, one of the largest purely quantum phenomena known. To create this ultracool state of matter, researchers typically use a combination of laser light and magnetic fields. There is no familiar physical analogy between such a strange state of matter and the phenomena of everyday life.

The result we were seeking in our lab was to create as much of this enigmatic substance as was possible given the equipment available. The sequence of steps to accomplish that was unknown. We hoped that gamification could help to solve this problem, even though it had no classical analogy to present to game players.

Images: ScienceAtHome

Fun and Games: The
Quantum Moves game evolved over time, from a relatively crude early version [top] to its current form [second from top] and then a major revision,
Quantum Moves 2 [third from top].
Skill Lab: Science Detective games [bottom] test players’ cognitive skills.

In October 2016, we released a game that, for two weeks, guided how we created Bose-Einstein condensates in our laboratory. By manipulating simple curves in the game interface, players generated experimental sequences for us to use in producing these condensates—and they did so without needing to know anything about the underlying physics. A player would generate such a solution, and a few minutes later we would run the sequence in our laboratory. The number of ultracold atoms in the resulting Bose-Einstein condensate was measured and fed back to the player as a score. Players could then decide either to try to improve their previous solution or to copy and modify other players’ solutions. About 600 people from all over the world participated, submitting 7,577 solutions in total. Many of them yielded bigger condensates than we had previously produced in the lab.

So this exercise succeeded in achieving our primary goal, but it also allowed us to learn something about human behavior. We learned, for example, that players behave differently based on where they sit on the leaderboard. High-performing players make small changes to their successful solutions (exploitation), while poorly performing players are willing to make more dramatic changes (exploration). As a collective, the players nicely balance exploration and exploitation. How they do so provides valuable inspiration to researchers trying to understand human problem solving in social science as well as to those designing new AI algorithms.

How could mere amateurs outperform experienced experimental physicists? The players certainly weren’t better at physics than the experts—but they could do better because of the way in which the problem was posed. By turning the research challenge into a game, we gave players the chance to explore solutions that had previously required complex programming to study. Indeed, even expert experimentalists improved their solutions dramatically by using this interface.

Insight into why that’s possible can probably be found in the words of the late economics Nobel laureate Herbert A. Simon: “Solving a problem simply means representing it so as to make the solution transparent [PDF].” Apparently, that’s what our games can do with their novel user interfaces. We believe that such interfaces might be a key to using human creativity to solve other complex research problems.

Eventually, we’d like to get a better understanding of why this kind of gamification works as well as it does. A first step would be to collect more data on what the players do while they are playing. But even with massive amounts of data, detecting the subtle patterns underlying human intuition is an overwhelming challenge. To advance, we need a deeper insight into the cognition of the individual players.

As a step forward toward this goal, ScienceAtHome created Skill Lab: Science Detective, a suite of minigames exploring visuospatial reasoning, response inhibition, reaction times, and other basic cognitive skills. Then we compare players’ performance in the games with how well these same people did on established psychological tests of those abilities. The point is to allow players to assess their own cognitive strengths and weaknesses while donating their data for further public research.

In the fall of 2018 we launched a prototype of this large-scale profiling in collaboration with the Danish Broadcasting Corp. Since then more than 20,000 people have participated, and in part because of the publicity granted by the public-service channel, participation has been very evenly distributed across ages and by gender. Such broad appeal is rare in social science, where the test population is typically drawn from a very narrow demographic, such as college students.

Never before has such a large academic experiment in human cognition been conducted. We expect to gain new insights into many things, among them how combinations of cognitive abilities sharpen or decline with age, what characteristics may be used to prescreen for mental illnesses, and how to optimize the building of teams in our work lives.

And so what started as a fun exercise in the weird world of quantum mechanics has now become an exercise in understanding the nuances of what makes us human. While we still seek to understand atoms, we can now aspire to understand people’s minds as well.

This article appears in the November 2019 print issue as “A Man-Machine Mind Meld for Quantum Computing.”

About the Authors
Ottó Elíasson, Carrie Weidner, Janet Rafner, and Shaeema Zaman Ahmed work with the ScienceAtHome project at Aarhus University in Denmark. Continue reading

Posted in Human Robots

#436079 Video Friday: This Humanoid Robot Will ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

Northeast Robotics Colloquium – October 12, 2019 – Philadelphia, Pa., USA
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

What’s better than a robotics paper with “dynamic” in the title? A robotics paper with “highly dynamic” in the title. From Sangbae Kim’s lab at MIT, the latest exploits of Mini Cheetah:

Yes I’d very much like one please. Full paper at the link below.

[ Paper ] via [ MIT ]

A humanoid robot serving you ice cream—on his own ice cream bike: What a delicious vision!

[ Roboy ]

The Roomba “i” series and “s” series vacuums have just gotten an update that lets you set “keep out” zones, which is super useful. Tell your robot where not to go!

I feel bad, that Roomba was probably just hungry 🙁

[ iRobot ]

We wrote about Voliro’s tilt-rotor hexcopter a couple years ago, and now it’s off doing practical things, like spray painting a building pretty much the same color that it was before.

[ Voliro ]

Thanks Mina!

Here’s a clever approach for bin-picking problematic objects, like shiny things: Just grab a whole bunch, and then sort out what you need on a nice robot-friendly table.

It might take a little bit longer, but what do you care, you’re probably off sipping a cocktail with a little umbrella in it on a beach somewhere.

[ Harada Lab ]

A unique combination of the IRB 1200 and YuMi industrial robots that use vision, AI and deep learning to recognize and categorize trash for recycling.

[ ABB ]

Measuring glacial movements in-situ is a challenging, but necessary task to model glaciers and predict their future evolution. However, installing GPS stations on ice can be dangerous and expensive when not impossible in the presence of large crevasses. In this project, the ASL develops UAVs for dropping and recovering lightweight GPS stations over inaccessible glaciers to record the ice flow motion. This video shows the results of first tests performed at Gorner glacier, Switzerland, in July 2019.

[ EPFL ]

Turns out Tertills actually do a pretty great job fighting weeds.

Plus, they leave all those cute lil’ Tertill tracks.

[ Franklin Robotics ]

The online autonomous navigation and semantic mapping experiment presented [below] is conducted with the Cassie Blue bipedal robot at the University of Michigan. The sensors attached to the robot include an IMU, a 32-beam LiDAR and an RGB-D camera. The whole online process runs in real-time on a Jetson Xavier and a laptop with an i7 processor.

The resulting map is so precise that it looks like we are doing real-time SLAM (simultaneous localization and mapping). In fact, the map is based on dead-reckoning via the InvEKF.

[ GTSAM ] via [ University of Michigan ]

UBTECH has announced an upgraded version of its Meebot, which is 30 percent bigger and comes with more sensors and programmable eyes.

[ UBTECH ]

ABB’s research team will be working with medical staff, scientist and engineers to develop non-surgical medical robotics systems, including logistics and next-generation automated laboratory technologies. The team will develop robotics solutions that will help eliminate bottlenecks in laboratory work and address the global shortage of skilled medical staff.

[ ABB ]

In this video, Ian and Chris go through Misty’s SDK, discussing the languages we’ve included, the tools that make it easy for you to get started quickly, a quick rundown of how to run the skills you build, plus what’s ahead on the Misty SDK roadmap.

[ Misty Robotics ]

My guess is that this was not one of iRobot’s testing environments for the Roomba.

You know, that’s actually super impressive. And maybe if they threw one of the self-emptying Roombas in there, it would be a viable solution to the entire problem.

[ How Farms Work ]

Part of WeRobotics’ Flying Labs network, Panama Flying Labs is a local knowledge hub catalyzing social good and empowering local experts. Through training and workshops, demonstrations and missions, the Panama Flying Labs team leverages the power of drones, data, and AI to promote entrepreneurship, build local capacity, and confront the pressing social challenges faced by communities in Panama and across Central America.

[ Panama Flying Labs ]

Go on a virtual flythrough of the NIOSH Experimental Mine, one of two courses used in the recent DARPA Subterranean Challenge Tunnel Circuit Event held 15-22 August, 2019. The data used for this partial flythrough tour were collected using 3D LIDAR sensors similar to the sensors commonly used on autonomous mobile robots.

[ SubT ]

Special thanks to PBS, Mark Knobil, Joe Seamans and Stan Brandorff and many others who produced this program in 1991.

It features Reid Simmons (and his 1 year old son), David Wettergreen, Red Whittaker, Mac Macdonald, Omead Amidi, and other Field Robotics Center alumni building the planetary walker prototype called Ambler. The team gets ready for an important demo for NASA.

[ CMU RI ]

As art and technology merge, roboticist Madeline Gannon explores the frontiers of human-robot interaction across the arts, sciences and society, and explores what this could mean for the future.

[ Sonar+D ] Continue reading

Posted in Human Robots

#435828 Video Friday: Boston Dynamics’ ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, Calif., USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

You’ve almost certainly seen the new Spot and Atlas videos from Boston Dynamics, if for no other reason than we posted about Spot’s commercial availability earlier this week. But what, are we supposed to NOT include them in Video Friday anyway? Psh! Here you go:

[ Boston Dynamics ]

Eight deadly-looking robots. One Giant Nut trophy. Tonight is the BattleBots season finale, airing on Discovery, 8 p.m. ET, or check your local channels.

[ BattleBots ]

Thanks Trey!

Speaking of battling robots… Having giant robots fight each other is one of those things that sounds really great in theory, but doesn’t work out so well in reality. And sadly, MegaBots is having to deal with reality, which means putting their giant fighting robot up on eBay.

As of Friday afternoon, the current bid is just over $100,000 with a week to go.

[ MegaBots ]

Michigan Engineering has figured out the secret formula to getting 150,000 views on YouTube: drone plus nail gun.

[ Michigan Engineering ]

Michael Burke from the University of Edinburgh writes:

We’ve been learning to scoop grapefruit segments using a PR2, by “feeling” the difference between peel and pulp. We use joint torque measurements to predict the probability that the knife is in the peel or pulp, and use this to apply feedback control to a nominal cutting trajectory learned from human demonstration, so that we remain in a position of maximum uncertainty about which medium we’re cutting. This means we slice along the boundary between the two mediums. It works pretty well!

[ Paper ] via [ Robust Autonomy and Decisions Group ]

Thanks Michael!

Hey look, it’s Jan with eight EMYS robot heads. Hi, Jan! Hi, EMYSes!

[ EMYS ]

We’re putting the KRAKEN Arm through its paces, demonstrating that it can unfold from an Express Rack locker on the International Space Station and access neighboring lockers in NASA’s FabLab system to enable transfer of materials and parts between manufacturing, inspection, and storage stations. The KRAKEN arm will be able to change between multiple ’end effector’ tools such as grippers and inspection sensors – those are in development so they’re not shown in this video.

[ Tethers Unlimited ]

UBTECH’s Alpha Mini Robot with Smart Robot’s “Maatje” software is offering healthcare service to children at Praktijk Intraverte Multidisciplinary Institution in Netherlands.

This institution is using Alpha Mini in counseling children’s behavior. Alpha Mini can move and talk to children and offers games and activities to stimulate and interact with them. Alpha Mini talks, helps and motivates children thereby becoming more flexible in society.

[ UBTECH ]

Some impressive work here from Anusha Nagabandi, Kurt Konoglie, Sergey Levine, Vikash Kumar at Google Brain, training a dexterous multi-fingered hand to do that thing with two balls that I’m really bad at.

Dexterous multi-fingered hands can provide robots with the ability to flexibly perform a wide range of manipulation skills. However, many of the more complex behaviors are also notoriously difficult to control: Performing in-hand object manipulation, executing finger gaits to move objects, and exhibiting precise fine motor skills such as writing, all require finely balancing contact forces, breaking and reestablishing contacts repeatedly, and maintaining control of unactuated objects. In this work, we demonstrate that our method of online planning with deep dynamics models (PDDM) addresses both of these limitations; we show that improvements in learned dynamics models, together with improvements in online model-predictive control, can indeed enable efficient and effective learning of flexible contact-rich dexterous manipulation skills — and that too, on a 24-DoF anthropomorphic hand in the real world, using just 2-4 hours of purely real-world data to learn to simultaneously coordinate multiple free-floating objects.

[ PDDM ]

Thanks Vikash!

CMU’s Ballbot has a deceptively light touch that’s ideal for leading people around.

A paper on this has been submitted to IROS 2019.

[ CMU ]

The Autonomous Robots Lab at the University of Nevada is sharing some of the work they’ve done on path planning and exploration for aerial robots during the DARPA SubT Challenge.

[ Autonomous Robots Lab ]

More proof that anything can be a drone if you staple some motors to it. Even 32 feet of styrofoam insulation.

[ YouTube ]

Whatever you think of military drones, we can all agree that they look cool.

[ Boeing ]

I appreciate the fact that iCub has eyelids, I really do, but sometimes, it ends up looking kinda sleepy in research videos.

[ EPFL LASA ]

Video shows autonomous flight of a lightweight aerial vehicle outdoors and indoors on the campus of Carnegie Mellon University. The vehicle is equipped with limited onboard sensing from a front-facing camera and a proximity sensor. The aerial autonomy is enabled by utilizing a 3D prior map built in Step 1.

[ CMU ]

The Stanford Space Robotics Facility allows researchers to test innovative guidance and navigation algorithms on a realistic frictionless, underactuated system.

[ Stanford ASL ]

In this video, Ian and CP discuss Misty’s many capabilities including robust locomotion, obstacle avoidance, 3D mapping/SLAM, face detection and recognition, sound localization, hardware extensibility, photo and video capture, and programmable personality. They also talk about some of the skills he’s built using these capabilities (and others) and how those skills can be expanded upon by you.

[ Misty Robotics ]

This week’s CMU RI Seminar comes from Aaron Parness at Caltech and NASA JPL, on “Robotic Grippers for Planetary Applications.”

The previous generation of NASA missions to the outer solar system discovered salt water oceans on Europa and Enceladus, each with more liquid water than Earth – compelling targets to look for extraterrestrial life. Closer to home, JAXA and NASA have imaged sky-light entrances to lava tube caves on the Moon more than 100 m in diameter and ESA has characterized the incredibly varied and complex terrain of Comet 67P. While JPL has successfully landed and operated four rovers on the surface of Mars using a 6-wheeled rocker-bogie architecture, future missions will require new mobility architectures for these extreme environments. Unfortunately, the highest value science targets often lie in the terrain that is hardest to access. This talk will explore robotic grippers that enable missions to these extreme terrains through their ability to grip a wide variety of surfaces (shapes, sizes, and geotechnical properties). To prepare for use in space where repair or replacement is not possible, we field-test these grippers and robots in analog extreme terrain on Earth. Many of these systems are enabled by advances in autonomy. The talk will present a rapid overview of my work and a detailed case study of an underactuated rock gripper for deflecting asteroids.

[ CMU ]

Rod Brooks gives some of the best robotics talks ever. He gave this one earlier this week at UC Berkeley, on “Steps Toward Super Intelligence and the Search for a New Path.”

[ UC Berkeley ] Continue reading

Posted in Human Robots

#435757 Robotic Animal Agility

An off-shore wind power platform, somewhere in the North Sea, on a freezing cold night, with howling winds and waves crashing against the impressive structure. An imperturbable ANYmal is quietly conducting its inspection.

ANYmal, a medium sized dog-like quadruped robot, walks down the stairs, lifts a “paw” to open doors or to call the elevator and trots along corridors. Darkness is no problem: it knows the place perfectly, having 3D-mapped it. Its laser sensors keep it informed about its precise path, location and potential obstacles. It conducts its inspection across several rooms. Its cameras zoom in on counters, recording the measurements displayed. Its thermal sensors record the temperature of machines and equipment and its ultrasound microphone checks for potential gas leaks. The robot also inspects lever positions as well as the correct positioning of regulatory fire extinguishers. As the electronic buzz of its engines resumes, it carries on working tirelessly.

After a little over two hours of inspection, the robot returns to its docking station for recharging. It will soon head back out to conduct its next solitary patrol. ANYmal played alongside Mulder and Scully in the “X-Files” TV series*, but it is in no way a Hollywood robot. It genuinely exists and surveillance missions are part of its very near future.

Off-shore oil platforms, the first test fields and probably the first actual application of ANYmal. ©ANYbotics

This quadruped robot was designed by ANYbotics, a spinoff of the Swiss Federal Institute of Technology in Zurich (ETH Zurich). Made of carbon fibre and aluminium, it weighs about thirty kilos. It is fully ruggedised, water- and dust-proof (IP-67). A kevlar belly protects its main body, carrying its powerful brain, batteries, network device, power management system and navigational systems.

ANYmal was designed for all types of terrain, including rubble, sand or snow. It has been field tested on industrial sites and is at ease with new obstacles to overcome (and it can even get up after a fall). Depending on its mission, its batteries last 2 to 4 hours.

On its jointed legs, protected by rubber pads, it can walk (at the speed of human steps), trot, climb, curl upon itself to crawl, carry a load or even jump and dance. It is the need to move on all surfaces that has driven its designers to choose a quadruped. “Biped robots are not easy to stabilise, especially on irregular terrain” explains Dr Péter Fankhauser, co-founder and chief business development officer of ANYbotics. “Wheeled or tracked robots can carry heavy loads, but they are bulky and less agile. Flying drones are highly mobile, but cannot carry load, handle objects or operate in bad weather conditions. We believe that quadrupeds combine the optimal characteristics, both in terms of mobility and versatility.”

What served as a source of inspiration for the team behind the project, the Robotic Systems Lab of the ETH Zurich, is a champion of agility on rugged terrain: the mountain goat. “We are of course still a long way” says Fankhauser. “However, it remains our objective on the longer term.

The first prototype, ALoF, was designed already back in 2009. It was still rather slow, very rigid and clumsy – more of a proof of concept than a robot ready for application. In 2012, StarlETH, fitted with spring joints, could hop, jump and climb. It was with this robot that the team started participating in 2014 in ARGOS, a full-scale challenge, launched by the Total oil group. The idea was to present a robot capable of inspecting an off-shore drilling station autonomously.

Up against dozens of competitors, the ETH Zurich team was the only team to enter the competition with such a quadrupedal robot. They didn’t win, but the multiple field tests were growing evermore convincing. Especially because, during the challenge, the team designed new joints with elastic actuators made in-house. These joints, inspired by tendons and muscles, are compact, sealed and include their own custom control electronics. They can regulate joint torque, position and impedance directly. Thanks to this innovation, the team could enter the same competition with a new version of its robot, ANYmal, fitted with three joints on each leg.

The ARGOS experience confirms the relevance of the selected means of locomotion. “Our robot is lighter, takes up less space on site and it is less noisy” says Fankhauser. “It also overcomes bigger obstacles than larger wheeled or tracked robots!” As ANYmal generated public interest and its transformation into a genuine product seemed more than possible, the startup ANYbotics was launched in 2016. It sold not only its robot, but also its revolutionary joints, called ANYdrive.

Today, ANYmal is not yet ready for sale to companies. However, ANYbotics has a growing number of partnerships with several industries, testing the robot for a few days or several weeks, for all types of tasks. Last October, for example, ANYmal navigated its way through the dark sewage system of the city of Zurich in order to test its capacity to help workers in similar difficult, repetitive and even dangerous tasks.

Why such an early interest among companies? “Because many companies want to integrate robots into their maintenance tasks” answers Fankhauser. “With ANYmal, they can actually evaluate its feasibility and plan their strategy. Eventually, both the architecture and the equipment of buildings could be rethought to be adapted to these maintenance robots”.

ANYmal requires ruggedised, sealed and extremely reliable interconnection solutions, such as LEMO. ©ANYbotics

Through field demonstrations and testing, ANYbotics can gather masses of information (up to 50,000 measurements are recorded every second during each test!) “It helps us to shape the product.” In due time, the startup will be ready to deliver a commercial product which really caters for companies’ needs.

Inspection and surveillance tasks on industrial sites are not the only applications considered. The startup is also thinking of agricultural inspections – with its onboard sensors, ANYmal is capable of mapping its environment, measuring bio mass and even taking soil samples. In the longer term, it could also be used for search and rescue operations. By the way, the robot can already be switched to “remote control” mode at any time and can be easily tele-operated. It is also capable of live audio and video transmission.

The transition from the prototype to the marketed product stage will involve a number of further developments. These include increasing ANYmal’s agility and speed, extending its capacity to map large-scale environments, improving safety, security, user handling and integrating the system with the customer’s data management software. It will also be necessary to enhance the robot’s reliability “so that it can work for days, weeks, or even months without human supervision.” All required certifications will have to be obtained. The locomotion system, which had triggered the whole business, is only one of a number of considerations of ANYbotics.

Designed for extreme environments, for ANYmal smoke is not a problem and it can walk in the snow, through rubble or in water. ©ANYbotics

The startup is not all alone. In fact, it has sold ANYmal robots to a dozen major universities who use them to develop their know-how in robotics. The startup has also founded ANYmal Research, a community including members such as Toyota Research Institute, the German Aerospace Center and the computer company Nvidia. Members have full access to ANYmal’s control software, simulations and documentation. Sharing has boosted both software and hardware ideas and developments (built on ROS, the open-source Robot Operating System). In particular, payload variations, providing for expandability and scalability. For instance, one of the universities uses a robotic arm which enables ANYmal to grasp or handle objects and open doors.

Among possible applications, ANYbotics mentions entertainment. It is not only about playing in more films or TV series, but rather about participating in various attractions (trade shows, museums, etc.). “ANYmal is so novel that it attracts a great amount of interest” confirms Fankhauser with a smile. “Whenever we present it somewhere, people gather around.”

Videos of these events show a fascinated and sometimes slightly fearful audience, when ANYmal gets too close to them. Is it fear of the “bad robot”? “This fear exists indeed and we are happy to be able to use ANYmal also to promote public awareness towards robotics and robots.” Reminiscent of a young dog, ANYmal is truly adapted for the purpose.

However, Péter Fankhauser softens the image of humans and sophisticated robots living together. “These coming years, robots will continue to work in the background, like they have for a long time in factories. Then, they will be used in public places in a selective and targeted way, for instance for dangerous missions. We will need to wait another ten years before animal-like robots, such as ANYmal will share our everyday lives!”

At the Consumer Electronics Show (CES) in Las Vegas in January, Continental, the German automotive manufacturing company, used robots to demonstrate a last-mile delivery. It showed ANYmal getting out of an autonomous vehicle with a parcel, climbing onto the front porch, lifting a paw to ring the doorbell, depositing the parcel before getting back into the vehicle. This futuristic image seems very close indeed.

*X-Files, season 11, episode 7, aired in February 2018 Continue reading

Posted in Human Robots

#435731 Video Friday: NASA Is Sending This ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, UK
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, PA, USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

The big news today is that NASA is sending a robot to Saturn’s moon Titan. A flying robot. The Dragonfly mission will launch in 2026 and arrive in 2034, but you knew that already, because last January, we posted a detailed article about the concept from the Applied Physics Lab at Johns Hopkins University. And now it’s not a concept anymore, yay!

Again, read all the details plus an interview in 2018 article.

[ NASA ]

A robotic gripping arm that uses engineered bacteria to “taste” for a specific chemical has been developed by engineers at the University of California, Davis, and Carnegie Mellon University. The gripper is a proof-of-concept for biologically-based soft robotics.

The new device uses a biosensing module based on E. coli bacteria engineered to respond to the chemical IPTG by producing a fluorescent protein. The bacterial cells reside in wells with a flexible, porous membrane that allows chemicals to enter but keeps the cells inside. This biosensing module is built into the surface of a flexible gripper on a robotic arm, so the gripper can “taste” the environment through its fingers.

When IPTG crosses the membrane into the chamber, the cells fluoresce and electronic circuits inside the module detect the light. The electrical signal travels to the gripper’s control unit, which can decide whether to pick something up or release it.

[ UC Davis ]

The Toyota Research Institute (TRI) is taking on the hard problems in manipulation research toward making human-assist robots reliable and robust. Dr. Russ Tedrake, TRI Vice President of Robotics Research, explains how we are exploring the challenges and addressing the reliability gap by using a robot loading dishes in a dishwasher as an example task.

[ TRI ]

The Tactile Telerobot is the world’s first haptic telerobotic system that transmits realistic touch feedback to an operator located anywhere in the world. It is the product of joint collaboration between Shadow Robot Company, HaptX, and SynTouch. All Nippon Airways funded the project’s initial research and development.

What’s really unique about this is the HaptX tactile feedback system, which is something we’ve been following for several years now. It’s one of the most magical tech experiences I’ve ever had, and you can read about it here and here.

[ HaptX ]

Thanks Andrew!

I love how snake robots can emulate some of the fanciest moves of real snakes, and then also do bonkers things that real snakes never do.

[ Matsuno Lab ]

Here are a couple interesting videos from the Human-Robot Interaction Lab at Tufts.

A robot is instructed to perform an action and cannot do it due to lack of sensors. But when another robot is placed nearby, it can execute the instruction by tacitly tapping into the other robot’s mind and using that robot’s sensors for its own actions. Yes, it’s automatic, and yes, it’s the BORG!

Two Nao robots are instructed to perform a dance and are able to do it right after instruction. Moreover, they can switch roles immediately, and even a third different PR2 robot can perform the dance right away, demonstrating the ability of our DIARC architecture to learn quickly and share the knowledge with any type of robot running the architecture.

Compared to Nao, PR2 just sounds… depressed.

[ HRI Lab ]

This work explores the problem of robot tool construction – creating tools from parts available in the environment. We advance the state-of-the-art in robotic tool construction by introducing an approach that enables the robot to construct a wider range of tools with greater computational efficiency. Specifically, given an action that the robot wishes to accomplish and a set of building parts available to the robot, our approach reasons about the shape of the parts and potential ways of attaching them, generating a ranking of part combinations that the robot then uses to construct and test the target tool. We validate our approach on the construction of five tools using a physical 7-DOF robot arm.

[ RAIL Lab ] via [ RSS ]

We like Magazino’s approach to warehouse picking- constrain the problem to something you can reliably solve, like shoeboxes.

Magazino has announced a new pricing model for their robots. You pay 55k euros for the robot itself, and then after that, all you pay to keep the robot working is 6 cents per pick, so the robot is only costing you money for the work that it actually does.

[ Magazino ]

Thanks Florin!

Human-Robot Collaborations are happening across factories worldwide, yet very few are using it for smaller businesses, due to high costs or the difficulty of customization. Elephant Robotics, a new player from Shenzhen, the Silicon Valley of Asia, has set its sight on helping smaller businesses gain access to smart robotics. They created a Catbot (a collaborative robotic arm) that will offer high efficiency and flexibility to various industries.

The Catbot is set to help from education projects, photography, massaging, to being a personal barista or co-playing a table game. The customizations are endless. To increase the flexibility of usage, the Catbot is extremely easy to program from a high precision task up to covering hefty ground projects.

[ Elephant Robotics ]

Thanks Johnson!

Dronistics, an EPFL spin-off, has been testing out their enclosed delivery drone in the Dominican Republic through a partnership with WeRobotics.

[ WeRobotics ]

QTrobot is an expressive humanoid robot designed to help children with autism spectrum disorder and children with special educational needs in learning new skills. QTrobot uses simple and exaggerated facial expressions combined by interactive games and stories, to help children improve their emotional skills. QTrobot helps children to learn about and better understand the emotions and teach them strategies to handle their emotions more effectively.

[ LuxAI ]

Here’s a typical day in the life of a Tertill solar-powered autonomous weed-destroying robot.

$300, now shipping from Franklin Robotics.

[ Tertill ]

PAL Robotics is excited to announce a new TIAGo with two arms, TIAGo++! After carefully listening to the robotics community needs, we used TIAGo’s modularity to integrate two 7-DoF arms to our mobile manipulator. TIAGo++ can help you swiftly accomplish your research goals, opening endless possibilities in mobile manipulation.

[ PAL Robotics ]

Thanks Jack!

You’ve definitely already met the Cobalt security robot, but Toyota AI Ventures just threw a pile of money at them and would therefore like you to experience this re-introduction:

[ Cobalt Robotics ] via [ Toyota AI ]

ROSIE is a mobile manipulator kit from HEBI Robotics. And if you don’t like ROSIE, the modular nature of HEBI’s hardware means that you can take her apart and make something more interesting.

[ HEBI Robotics ]

Learn about Kawasaki Robotics’ second addition to their line of duAro dual-arm collaborative robots, duAro2. This model offers an extended vertical reach (550 mm) and an increased payload capacity (3 kg/arm).

[ Kawasaki Robotics ]

Drone Delivery Canada has partnered with Peel Region Paramedics to pilot its proprietary drone delivery platform to enable rapid first responder technology via drone with the goal to reduce response time and potentially save lives.

[ Drone Delivery Canada ]

In this week’s episode of Robots in Depth, Per speaks with Harri Ketamo, from Headai.

Harri Ketamo talks about AI and how he aims to mimic human decision making with algorithms. Harri has done a lot of AI for computer games to create opponents that are entertaining to play against. It is easy to develop a very bad or a very good opponent, but designing an opponent that behaves like a human, is entertaining to play against and that you can beat is quite hard. He talks about how AI in computer games is a very important story telling tool and an important part of making a game entertaining to play.

This work led him into other parts of the AI field. Harri thinks that we sometimes have a problem separating what is real from what is the type of story telling he knows from gaming AI. He calls for critical analysis of AI and says that data has to be used to verify AI decisions and results.

[ Robots in Depth ]

Thanks Per! Continue reading

Posted in Human Robots