Tag Archives: baby
#436190 What Is the Uncanny Valley?
Have you ever encountered a lifelike humanoid robot or a realistic computer-generated face that seem a bit off or unsettling, though you can’t quite explain why?
Take for instance AVA, one of the “digital humans” created by New Zealand tech startup Soul Machines as an on-screen avatar for Autodesk. Watching a lifelike digital being such as AVA can be both fascinating and disconcerting. AVA expresses empathy through her demeanor and movements: slightly raised brows, a tilt of the head, a nod.
By meticulously rendering every lash and line in its avatars, Soul Machines aimed to create a digital human that is virtually undistinguishable from a real one. But to many, rather than looking natural, AVA actually looks creepy. There’s something about it being almost human but not quite that can make people uneasy.
Like AVA, many other ultra-realistic avatars, androids, and animated characters appear stuck in a disturbing in-between world: They are so lifelike and yet they are not “right.” This void of strangeness is known as the uncanny valley.
Uncanny Valley: Definition and History
The uncanny valley is a concept first introduced in the 1970s by Masahiro Mori, then a professor at the Tokyo Institute of Technology. The term describes Mori’s observation that as robots appear more humanlike, they become more appealing—but only up to a certain point. Upon reaching the uncanny valley, our affinity descends into a feeling of strangeness, a sense of unease, and a tendency to be scared or freaked out.
Image: Masahiro Mori
The uncanny valley as depicted in Masahiro Mori’s original graph: As a robot’s human likeness [horizontal axis] increases, our affinity towards the robot [vertical axis] increases too, but only up to a certain point. For some lifelike robots, our response to them plunges, and they appear repulsive or creepy. That’s the uncanny valley.
In his seminal essay for Japanese journal Energy, Mori wrote:
I have noticed that, in climbing toward the goal of making robots appear human, our affinity for them increases until we come to a valley, which I call the uncanny valley.
Later in the essay, Mori describes the uncanny valley by using an example—the first prosthetic hands:
One might say that the prosthetic hand has achieved a degree of resemblance to the human form, perhaps on a par with false teeth. However, when we realize the hand, which at first site looked real, is in fact artificial, we experience an eerie sensation. For example, we could be startled during a handshake by its limp boneless grip together with its texture and coldness. When this happens, we lose our sense of affinity, and the hand becomes uncanny.
In an interview with IEEE Spectrum, Mori explained how he came up with the idea for the uncanny valley:
“Since I was a child, I have never liked looking at wax figures. They looked somewhat creepy to me. At that time, electronic prosthetic hands were being developed, and they triggered in me the same kind of sensation. These experiences had made me start thinking about robots in general, which led me to write that essay. The uncanny valley was my intuition. It was one of my ideas.”
Uncanny Valley Examples
To better illustrate how the uncanny valley works, here are some examples of the phenomenon. Prepare to be freaked out.
1. Telenoid
Photo: Hiroshi Ishiguro/Osaka University/ATR
Taking the top spot in the “creepiest” rankings of IEEE Spectrum’s Robots Guide, Telenoid is a robotic communication device designed by Japanese roboticist Hiroshi Ishiguro. Its bald head, lifeless face, and lack of limbs make it seem more alien than human.
2. Diego-san
Photo: Andrew Oh/Javier Movellan/Calit2
Engineers and roboticists at the University of California San Diego’s Machine Perception Lab developed this robot baby to help parents better communicate with their infants. At 1.2 meters (4 feet) tall and weighing 30 kilograms (66 pounds), Diego-san is a big baby—bigger than an average 1-year-old child.
“Even though the facial expression is sophisticated and intuitive in this infant robot, I still perceive a false smile when I’m expecting the baby to appear happy,” says Angela Tinwell, a senior lecturer at the University of Bolton in the U.K. and author of The Uncanny Valley in Games and Animation. “This, along with a lack of detail in the eyes and forehead, can make the baby appear vacant and creepy, so I would want to avoid those ‘dead eyes’ rather than interacting with Diego-san.”
3. Geminoid HI
Photo: Osaka University/ATR/Kokoro
Another one of Ishiguro’s creations, Geminoid HI is his android replica. He even took hair from his own scalp to put onto his robot twin. Ishiguro says he created Geminoid HI to better understand what it means to be human.
4. Sophia
Photo: Mikhail Tereshchenko/TASS/Getty Images
Designed by David Hanson of Hanson Robotics, Sophia is one of the most famous humanoid robots. Like Soul Machines’ AVA, Sophia displays a range of emotional expressions and is equipped with natural language processing capabilities.
5. Anthropomorphized felines
The uncanny valley doesn’t only happen with robots that adopt a human form. The 2019 live-action versions of the animated film The Lion King and the musical Cats brought the uncanny valley to the forefront of pop culture. To some fans, the photorealistic computer animations of talking lions and singing cats that mimic human movements were just creepy.
Are you feeling that eerie sensation yet?
Uncanny Valley: Science or Pseudoscience?
Despite our continued fascination with the uncanny valley, its validity as a scientific concept is highly debated. The uncanny valley wasn’t actually proposed as a scientific concept, yet has often been criticized in that light.
Mori himself said in his IEEE Spectrum interview that he didn’t explore the concept from a rigorous scientific perspective but as more of a guideline for robot designers:
Pointing out the existence of the uncanny valley was more of a piece of advice from me to people who design robots rather than a scientific statement.
Karl MacDorman, an associate professor of human-computer interaction at Indiana University who has long studied the uncanny valley, interprets the classic graph not as expressing Mori’s theory but as a heuristic for learning the concept and organizing observations.
“I believe his theory is instead expressed by his examples, which show that a mismatch in the human likeness of appearance and touch or appearance and motion can elicit a feeling of eeriness,” MacDorman says. “In my own experiments, I have consistently reproduced this effect within and across sense modalities. For example, a mismatch in the human realism of the features of a face heightens eeriness; a robot with a human voice or a human with a robotic voice is eerie.”
How to Avoid the Uncanny Valley
Unless you intend to create creepy characters or evoke a feeling of unease, you can follow certain design principles to avoid the uncanny valley. “The effect can be reduced by not creating robots or computer-animated characters that combine features on different sides of a boundary—for example, human and nonhuman, living and nonliving, or real and artificial,” MacDorman says.
To make a robot or avatar more realistic and move it beyond the valley, Tinwell says to ensure that a character’s facial expressions match its emotive tones of speech, and that its body movements are responsive and reflect its hypothetical emotional state. Special attention must also be paid to facial elements such as the forehead, eyes, and mouth, which depict the complexities of emotion and thought. “The mouth must be modeled and animated correctly so the character doesn’t appear aggressive or portray a ‘false smile’ when they should be genuinely happy,” she says.
For Christoph Bartneck, an associate professor at the University of Canterbury in New Zealand, the goal is not to avoid the uncanny valley, but to avoid bad character animations or behaviors, stressing the importance of matching the appearance of a robot with its ability. “We’re trained to spot even the slightest divergence from ‘normal’ human movements or behavior,” he says. “Hence, we often fail in creating highly realistic, humanlike characters.”
But he warns that the uncanny valley appears to be more of an uncanny cliff. “We find the likability to increase and then crash once robots become humanlike,” he says. “But we have never observed them ever coming out of the valley. You fall off and that’s it.” Continue reading
#436140 Let’s Build Robots That Are as Smart ...
Illustration: Nicholas Little
Let’s face it: Robots are dumb. At best they are idiot savants, capable of doing one thing really well. In general, even those robots require specialized environments in which to do their one thing really well. This is why autonomous cars or robots for home health care are so difficult to build. They’ll need to react to an uncountable number of situations, and they’ll need a generalized understanding of the world in order to navigate them all.
Babies as young as two months already understand that an unsupported object will fall, while five-month-old babies know materials like sand and water will pour from a container rather than plop out as a single chunk. Robots lack these understandings, which hinders them as they try to navigate the world without a prescribed task and movement.
But we could see robots with a generalized understanding of the world (and the processing power required to wield it) thanks to the video-game industry. Researchers are bringing physics engines—the software that provides real-time physical interactions in complex video-game worlds—to robotics. The goal is to develop robots’ understanding in order to learn about the world in the same way babies do.
Giving robots a baby’s sense of physics helps them navigate the real world and can even save on computing power, according to Lochlainn Wilson, the CEO of SE4, a Japanese company building robots that could operate on Mars. SE4 plans to avoid the problems of latency caused by distance from Earth to Mars by building robots that can operate independently for a few hours before receiving more instructions from Earth.
Wilson says that his company uses simple physics engines such as PhysX to help build more-independent robots. He adds that if you can tie a physics engine to a coprocessor on the robot, the real-time basic physics intuitions won’t take compute cycles away from the robot’s primary processor, which will often be focused on a more complicated task.
Wilson’s firm occasionally still turns to a traditional graphics engine, such as Unity or the Unreal Engine, to handle the demands of a robot’s movement. In certain cases, however, such as a robot accounting for friction or understanding force, you really need a robust physics engine, Wilson says, not a graphics engine that simply simulates a virtual environment. For his projects, he often turns to the open-source Bullet Physics engine built by Erwin Coumans, who is now an employee at Google.
Bullet is a popular physics-engine option, but it isn’t the only one out there. Nvidia Corp., for example, has realized that its gaming and physics engines are well-placed to handle the computing demands required by robots. In a lab in Seattle, Nvidia is working with teams from the University of Washington to build kitchen robots, fully articulated robot hands and more, all equipped with Nvidia’s tech.
When I visited the lab, I watched a robot arm move boxes of food from counters to cabinets. That’s fairly straightforward, but that same robot arm could avoid my body if I got in its way, and it could adapt if I moved a box of food or dropped it onto the floor.
The robot could also understand that less pressure is needed to grasp something like a cardboard box of Cheez-It crackers versus something more durable like an aluminum can of tomato soup.
Nvidia’s silicon has already helped advance the fields of artificial intelligence and computer vision by making it possible to process multiple decisions in parallel. It’s possible that the company’s new focus on virtual worlds will help advance the field of robotics and teach robots to think like babies.
This article appears in the November 2019 print issue as “Robots as Smart as Babies.” Continue reading
#435775 Jaco Is a Low-Power Robot Arm That Hooks ...
We usually think of robots as taking the place of humans in various tasks, but robots of all kinds can also enhance human capabilities. This may be especially true for people with disabilities. And while the Cybathlon competition showed what's possible when cutting-edge research robotics is paired with expert humans, that competition isn't necessarily reflective of the kind of robotics available to most people today.
Kinova Robotics's Jaco arm is an assistive robotic arm designed to be mounted on an electric wheelchair. With six degrees of freedom plus a three-fingered gripper, the lightweight carbon fiber arm is frequently used in research because it's rugged and versatile. But from the start, Kinova created it to add autonomy to the lives of people with mobility constraints.
Earlier this year, Kinova shared the story of Mary Nelson, an 11-year-old girl with spinal muscular atrophy, who uses her Jaco arm to show her horse in competition. Spinal muscular atrophy is a neuromuscular disorder that impairs voluntary muscle movement, including muscles that help with respiration, and Mary depends on a power chair for mobility.
We wanted to learn more about how Kinova designs its Jaco arm, and what that means for folks like Mary, so we spoke with both Kinova and Mary's parents to find out how much of a difference a robot arm can make.
IEEE Spectrum: How did Mary interact with the world before having her arm, and what was involved in the decision to try a robot arm in general? And why then Kinova's arm specifically?
Ryan Nelson: Mary interacts with the world much like you and I do, she just uses different tools to do so. For example, she is 100 percent independent using her computer, iPad, and phone, and she prefers to use a mouse. However, she cannot move a standard mouse, so she connects her wheelchair to each device with Bluetooth to move the mouse pointer/cursor using her wheelchair joystick.
For years, we had a Manfrotto magic arm and super clamp attached to her wheelchair and she used that much like the robotic arm. We could put a baseball bat, paint brush, toys, etc. in the super clamp so that Mary could hold the object and interact as physically able children do. Mary has always wanted to be more independent, so we knew the robotic arm was something she must try. We had seen videos of the Kinova arm on YouTube and on their website, so we reached out to them to get a trial.
Can you tell us about the Jaco arm, and how the process of designing an assistive robot arm is different from the process of designing a conventional robot arm?
Nathaniel Swenson, Director of U.S. Operations — Assistive Technologies at Kinova: Jaco is our flagship robotic arm. Inspired by our CEO's uncle and its namesake, Jacques “Jaco” Forest, it was designed as assistive technology with power wheelchair users in mind.
The primary differences between Jaco and our other robots, such as the new Gen3, which was designed to meet the needs of academic and industry research teams, are speed and power consumption. Other robots such as the Gen3 can move faster and draw slightly more power because they aren't limited by the battery size of power wheelchairs. Depending on the use case, they might not interact directly with a human being in the research setting and can safely move more quickly. Jaco is designed to move at safe speeds and make direct contact with the end user and draw very little power directly from their wheelchair.
The most important consideration in the design process of an assistive robot is the safety of the end user. Jaco users operate their robots through their existing drive controls to assist them in daily activities such as eating, drinking, and opening doors and they don't have to worry about the robot draining their chair's batteries throughout the day. The elegant design that results from meeting the needs of our power chair users has benefited subsequent iterations, [of products] such as the Gen3, as well: Kinova's robots are lightweight, extremely efficient in their power consumption, and safe for direct human-robot interaction. This is not true of conventional industrial robots.
What was the learning process like for Mary? Does she feel like she's mastered the arm, or is it a continuous learning process?
Ryan Nelson: The learning process was super quick for Mary. However, she amazes us every day with the new things that she can do with the arm. Literally within minutes of installing the arm on her chair, Mary had it figured out and was shaking hands with the Kinova rep. The control of the arm is super intuitive and the Kinova reps say that SMA (Spinal Muscular Atrophy) children are perfect users because they are so smart—they pick it up right away. Mary has learned to do many fine motor tasks with the arm, from picking up small objects like a pencil or a ruler, to adjusting her glasses on her face, to doing science experiments.
Photo: The Nelson Family
Mary uses a headset microphone to amplify her voice, and she will use the arm and finger to adjust the microphone in front of her mouth after she is done eating (also a task she mastered quickly with the arm). Additionally, Mary will use the arms to reach down and adjust her feet or leg by grabbing them with the arm and moving them to a more comfortable position. All of these examples are things she never really asked us to do, but something she needed and just did on her own, with the help of the arm.
What is the most common feedback that you get from new users of the arm? How about from experienced users who have been using the arm for a while?
Nathaniel Swenson: New users always tell us how excited they are to see what they can accomplish with their new Jaco. From day one, they are able to do things that they have longed to do without assistance from a caregiver: take a drink of water or coffee, scratch an itch, push the button to open an “accessible” door or elevator, or even feed their baby with a bottle.
The most common feedback I hear from experienced users is that Jaco has changed their life. Our experienced users like Mary are rock stars: everywhere they go, people get excited to see what they'll do next. The difference between a new user and an experienced user could be as little as two weeks. People who operate power wheelchairs every day are already expert drivers and we just add a new “gear” to their chair: robot mode. It's fun to see how quickly new users master the intuitive Jaco control modes.
What changes would you like to see in the next generation of Jaco arm?
Ryan Nelson: Titanium fingers! Make it lift heavier objects, hold heavier items like a baseball bat, machine gun, flame thrower, etc., and Mary literally said this last night: “I wish the arm moved fast enough to play the piano.”
Nathaniel Swenson: I love the idea of titanium fingers! Jaco's fingers are made from a flexible polymer and designed to avoid harm. This allows the fingers to bend or dislocate, rather than break, but it also means they are not as durable as a material like titanium. Increased payload, the ability to manipulate heavier objects, requires increased power consumption. We've struck a careful balance between providing enough strength to accomplish most medically necessary Activities of Daily Living and efficient use of the power chair's batteries.
We take Isaac Asimov's Laws of Robotics pretty seriously. When we start to combine machine guns, flame throwers, and artificial intelligence with robots, I get very nervous!
I wish the arm moved fast enough to play the piano, too! I am also a musician and I share Mary's dream of an assistive robot that would enable her to make music. In the meantime, while we work on that, please enjoy this beautiful violin piece by Manami Ito and her one-of-a-kind violin prosthesis:
To what extent could more autonomy for the arm be helpful for users? What would be involved in implementing that?
Nathaniel Swenson: Artificial intelligence, machine learning, and deep learning will introduce greater autonomy in future iterations of assistive robots. This will enable them to perform more complex tasks that aren't currently possible, and enable them to accomplish routine tasks more quickly and with less input than the current manual control requires.
For assistive robots, implementation of greater autonomy involves a focus on end-user safety and improvements in the robot's awareness of its environment. Autonomous robots that work in close proximity with humans need vision. They must be able to see to avoid collisions and they use haptic feedback to tell the robot how much force is being exerted on objects. All of these technologies exist, but the largest obstacle to bringing them to the assistive technology market is to prove to the health insurance companies who will fund them that they are both safe and medically necessary. Continue reading
#435601 New Double 3 Robot Makes Telepresence ...
Today, Double Robotics is announcing Double 3, the latest major upgrade to its line of consumer(ish) telepresence robots. We had a (mostly) fantastic time testing out Double 2 back in 2016. One of the things that we found out back then was that it takes a lot of practice to remotely drive the robot around. Double 3 solves this problem by leveraging the substantial advances in 3D sensing and computing that have taken place over the past few years, giving their new robot a level of intelligence that promises to make telepresence more accessible for everyone.
Double 2’s iPad has been replaced by “a fully integrated solution”—which is a fancy way of saying a dedicated 9.7-inch touchscreen and a whole bunch of other stuff. That other stuff includes an NVIDIA Jetson TX2 AI computing module, a beamforming six-microphone array, an 8-watt speaker, a pair of 13-megapixel cameras (wide angle and zoom) on a tilting mount, five ultrasonic rangefinders, and most excitingly, a pair of Intel RealSense D430 depth sensors.
It’s those new depth sensors that really make Double 3 special. The D430 modules each uses a pair of stereo cameras with a pattern projector to generate 1280 x 720 depth data with a range of between 0.2 and 10 meters away. The Double 3 robot uses all of this high quality depth data to locate obstacles, but at this point, it still doesn’t drive completely autonomously. Instead, it presents the remote operator with a slick, augmented reality view of drivable areas in the form of a grid of dots. You just click where you want the robot to go, and it will skillfully take itself there while avoiding obstacles (including dynamic obstacles) and related mishaps along the way.
This effectively offloads the most stressful part of telepresence—not running into stuff—from the remote user to the robot itself, which is the way it should be. That makes it that much easier to encourage people to utilize telepresence for the first time. The way the system is implemented through augmented reality is particularly impressive, I think. It looks like it’s intuitive enough for an inexperienced user without being restrictive, and is a clever way of mitigating even significant amounts of lag.
Otherwise, Double 3’s mobility system is exactly the same as the one featured on Double 2. In fact, that you can stick a Double 3 head on a Double 2 body and it instantly becomes a Double 3. Double Robotics is thoughtfully offering this to current Double 2 owners as a significantly more affordable upgrade option than buying a whole new robot.
For more details on all of Double 3's new features, we spoke with the co-founders of Double Robotics, Marc DeVidts and David Cann.
IEEE Spectrum: Why use this augmented reality system instead of just letting the user click on a regular camera image? Why make things more visually complicated, especially for new users?
Marc DeVidts and David Cann: One of the things that we realized about nine months ago when we got this whole thing working was that without the mixed reality for driving, it was really too magical of an experience for the customer. Even us—we had a hard time understanding whether the robot could really see obstacles and understand where the floor is and that kind of thing. So, we said “What would be the best way of communicating this information to the user?” And the right way to do it ended up drawing the graphics directly onto the scene. It’s really awesome—we have a full, real time 3D scene with the depth information drawn on top of it. We’re starting with some relatively simple graphics, and we’ll be adding more graphics in the future to help the user understand what the robot is seeing.
How robust is the vision system when it comes to obstacle detection and avoidance? Does it work with featureless surfaces, IR absorbent surfaces, in low light, in direct sunlight, etc?
We’ve looked at all of those cases, and one of the reasons that we’re going with the RealSense is the projector that helps us to see blank walls. We also found that having two sensors—one facing the floor and one facing forward—gives us a great coverage area. Having ultrasonic sensors in there as well helps us to detect anything that we can't see with the cameras. They're sort of a last safety measure, especially useful for detecting glass.
It seems like there’s a lot more that you could do with this sensing and mapping capability. What else are you working on?
We're starting with this semi-autonomous driving variant, and we're doing a private beta of full mapping. So, we’re going to do full SLAM of your environment that will be mapped by multiple robots at the same time while you're driving, and then you'll be able to zoom out to a map and click anywhere and it will drive there. That's where we're going with it, but we want to take baby steps to get there. It's the obvious next step, I think, and there are a lot more possibilities there.
Do you expect developers to be excited for this new mapping capability?
We're using a very powerful computer in the robot, a NVIDIA Jetson TX2 running Ubuntu. There's room to grow. It’s actually really exciting to be able to see, in real time, the 3D pose of the robot along with all of the depth data that gets transformed in real time into one view that gives you a full map. Having all of that data and just putting those pieces together and getting everything to work has been a huge feat in of itself.
We have an extensive API for developers to do custom implementations, either for telepresence or other kinds of robotics research. Our system isn't running ROS, but we're going to be adding ROS adapters for all of our hardware components.
Telepresence robots depend heavily on wireless connectivity, which is usually not something that telepresence robotics companies like Double have direct control over. Have you found that connectivity has been getting significantly better since you first introduced Double?
When we started in 2013, we had a lot of customers that didn’t have WiFi in their hallways, just in the conference rooms. We very rarely hear about customers having WiFi connectivity issues these days. The bigger issue we see is when people are calling into the robot from home, where they don't have proper traffic management on their home network. The robot doesn't need a ton of bandwidth, but it does need consistent, low latency bandwidth. And so, if someone else in the house is watching Netflix or something like that, it’s going to saturate your connection. But for the most part, it’s gotten a lot better over the last few years, and it’s no longer a big problem for us.
Do you think 5G will make a significant difference to telepresence robots?
We’ll see. We like the low latency possibilities and the better bandwidth, but it's all going to be a matter of what kind of reception you get. LTE can be great, if you have good reception; it’s all about where the tower is. I’m pretty sure that WiFi is going to be the primary thing for at least the next few years.
DeVidts also mentioned that an unfortunate side effect of the new depth sensors is that hanging a t-shirt on your Double to give it some personality will likely render it partially blind, so that's just something to keep in mind. To make up for this, you can switch around the colorful trim surrounding the screen, which is nowhere near as fun.
When the Double 3 is ready for shipping in late September, US $2,000 will get you the new head with all the sensors and stuff, which seamlessly integrates with your Double 2 base. Buying Double 3 straight up (with the included charging dock) will run you $4,ooo. This is by no means an inexpensive robot, and my impression is that it’s not really designed for individual consumers. But for commercial, corporate, healthcare, or education applications, $4k for a robot as capable as the Double 3 is really quite a good deal—especially considering the kinds of use cases for which it’s ideal.
[ Double Robotics ] Continue reading