Tag Archives: away

#435119 Are These Robots Better Than You at ...

Robot technology is evolving at breakneck speed. SoftBank’s Pepper is found in companies across the globe and is rapidly improving its conversation skills. Telepresence robots open up new opportunities for remote working, while Boston Dynamics’ Handle robot could soon (literally) take a load off human colleagues in warehouses.

But warehouses and offices aren’t the only places where robots are lining up next to humans.

Toyota’s Cue 3 robot recently showed off its basketball skills, putting up better numbers than the NBA’s most accurate three-point shooter, the Golden State Warriors’ Steph Curry.

Cue 3 is still some way from being ready to take on Curry, or even amateur basketball players, in a real game. However, it is the latest member of a growing cast of robots challenging human dominance in sports.

As these robots continue to develop, they not only exemplify the speed of exponential technology development, but also how those technologies are improving human capabilities.

Meet the Contestants
The list of robots in sports is surprisingly long and diverse. There are robot skiers, tumblers, soccer players, sumos, and even robot game jockeys. Introductions to a few of them are in order.

Robot: Forpheus
Sport: Table tennis
Intro: Looks like something out of War of the Worlds equipped with a ping pong bat instead of a death ray.
Ability level: Capable of counteracting spin shots and good enough to beat many beginners.

Robot: Sumo bot
Sport: Sumo wrestling
Intro: Hyper-fast, hyper-aggressive. Think robot equivalent to an angry wasp on six cans of Red Bull crossed with a very small tank.
Ability level: Flies around the ring way faster than any human sumo. Tend to drive straight out of the ring at times.

Robot: Cue 3
Sport: Basketball
Intro: Stands at an imposing 6 foot and 10 inches, so pretty much built for the NBA. Looks a bit like something that belongs in a video game.
Ability level: A 62.5 percent three-pointer percentage, which is better than Steph Curry’s; is less mobile than Charles Barkley – in his current form.

Robot: Robo Cup Robots
Intro: The future of soccer. If everything goes to plan, a team of robots will take on the Lionel Messis and Cristiano Ronaldos of 2050 and beat them in a full 11 vs. 11 game.
Ability level: Currently plays soccer more like the six-year-olds I used to coach than Lionel Messi.

The Limiting Factor
The skill level of all the robots above is impressive, and they are doing things that no human contestant can. The sumo bots’ inhuman speed is self-evident. Forpheus’ ability to track the ball with two cameras while simultaneously tracking its opponent with two other cameras requires a look at the spec sheet, but is similarly beyond human capability. While Cue 3 can’t move, it makes shots from the mid-court logo look easy.

Robots are performing at a level that was confined to the realm of science fiction at the start of the millennium. The speed of development indicates that in the near future, my national team soccer coach would likely call up a robot instead of me (he must have lost my number since he hasn’t done so yet. It’s the only logical explanation), and he’d be right to do so.

It is also worth considering that many current sports robots have a humanoid form, which limits their ability. If engineers were to optimize robot design to outperform humans in specific categories, many world champions would likely already be metallic.

Swimming is perhaps one of the most obvious. Even Michael Phelps would struggle to keep up with a torpedo-shaped robot, and if you beefed up a sumo robot to human size, human sumos might impress you by running away from them with a 100-meter speed close to Usain Bolt’s.

In other areas, the playing field for humans and robots is rapidly leveling. One likely candidate for the first head-to-head competitions is racing, where self-driving cars from the Roborace League could perhaps soon be ready to race the likes of Lewis Hamilton.

Tech Pushing Humans
Perhaps one of the biggest reasons why it may still take some time for robots to surpass us is that they, along with other exponential technologies, are already making us better at sports.

In Japan, elite volleyball players use a robot to practice their attacks. Some American football players also practice against robot opponents and hone their skills using VR.

On the sidelines, AI is being used to analyze and improve athletes’ performance, and we may soon see the first AI coaches, not to mention referees.

We may even compete in games dreamt up by our electronic cousins. SpeedGate, a new game created by an AI by studying 400 different sports, is a prime example of that quickly becoming a possibility.

However, we will likely still need to make the final call on what constitutes a good game. The AI that created SpeedGate reportedly also suggested less suitable pastimes, like underwater parkour and a game that featured exploding frisbees. Both of these could be fun…but only if you’re as sturdy as a robot.

Image Credit: RoboCup Standard Platform League 2018, ©The Robocup Federation. Published with permission of reproduction granted by the RoboCup Federation. Continue reading

Posted in Human Robots

#435080 12 Ways Big Tech Can Take Big Action on ...

Bill Gates and Mark Zuckerberg have invested $1 billion in Breakthrough Energy to fund next-generation solutions to tackle climate. But there is a huge risk that any successful innovation will only reach the market as the world approaches 2030 at the earliest.

We now know that reducing the risk of dangerous climate change means halving global greenhouse gas emissions by that date—in just 11 years. Perhaps Gates, Zuckerberg, and all the tech giants should invest equally in innovations to do with how their own platforms —search, social media, eCommerce—can support societal behavior changes to drive down emissions.

After all, the tech giants influence the decisions of four billion consumers every day. It is time for a social contract between tech and society.

Recently myself and collaborator Johan Falk published a report during the World Economic Forum in Davos outlining 12 ways the tech sector can contribute to supporting societal goals to stabilize Earth’s climate.

Become genuine climate guardians

Tech giants go to great lengths to show how serious they are about reducing their emissions. But I smell cognitive dissonance. Google and Microsoft are working in partnership with oil companies to develop AI tools to help maximize oil recovery. This is not the behavior of companies working flat-out to stabilize Earth’s climate. Indeed, few major tech firms have visions that indicate a stable and resilient planet might be a good goal, yet AI alone has the potential to slash greenhouse gas emissions by four percent by 2030—equivalent to the emissions of Australia, Canada, and Japan combined.

We are now developing a playbook, which we plan to publish later this year at the UN climate summit, about making it as simple as possible for a CEO to become a climate guardian.

Hey Alexa, do you care about the stability of Earth’s climate?

Increasingly, consumers are delegating their decisions to narrow artificial intelligence like Alexa and Siri. Welcome to a world of zero-click purchases.

Should algorithms and information architecture be designed to nudge consumer behavior towards low-carbon choices, for example by making these options the default? We think so. People don’t mind being nudged; in fact, they welcome efforts to make their lives better. For instance, if I want to lose weight, I know I will need all the help I can get. Let’s ‘nudge for good’ and experiment with supporting societal goals.

Use social media for good

Facebook’s goal is to bring the world closer together. With 2.2 billion users on the platform, CEO Mark Zuckerberg can reasonably claim this goal is possible. But social media has changed the flow of information in the world, creating a lucrative industry around a toxic brown-cloud of confusion and anger, with frankly terrifying implications for democracy. This has been linked to the rise of nationalism and populism, and to the election of leaders who shun international cooperation, dismiss scientific knowledge, and reverse climate action at a moment when we need it more than ever.

Social media tools need re-engineering to help people make sense of the world, support democratic processes, and build communities around societal goals. Make this your mission.

Design for a future on Earth

Almost everything is designed with computer software, from buildings to mobile phones to consumer packaging. It is time to make zero-carbon design the new default and design products for sharing, re-use and disassembly.

The future is circular

Halving emissions in a decade will require all companies to adopt circular business models to reduce material use. Some tech companies are leading the charge. Apple has committed to becoming 100 percent circular as soon as possible. Great.

While big tech companies strive to be market leaders here, many other companies lack essential knowledge. Tech companies can support rapid adoption in different economic sectors, not least because they have the know-how to scale innovations exponentially. It makes business sense. If economies of scale drive the price of recycled steel and aluminium down, everyone wins.

Reward low-carbon consumption

eCommerce platforms can create incentives for low-carbon consumption. The world’s largest experiment in greening consumer behavior is Ant Forest, set up by Chinese fintech giant Ant Financial.

An estimated 300 million customers—similar to the population of the United States—gain points for making low-carbon choices such as walking to work, using public transport, or paying bills online. Virtual points are eventually converted into real trees. Sure, big questions remain about its true influence on emissions, but this is a space for rapid experimentation for big impact.

Make information more useful

Science is our tool for defining reality. Scientific consensus is how we attain reliable knowledge. Even after the information revolution, reliable knowledge about the world remains fragmented and unstructured. Build the next generation of search engines to genuinely make the world’s knowledge useful for supporting societal goals.

We need to put these tools towards supporting shared world views of the state of the planet based on the best science. New AI tools being developed by startups like Iris.ai can help see through the fog. From Alexa to Google Home and Siri, the future is “Voice”, but who chooses the information source? The highest bidder? Again, the implications for climate are huge.

Create new standards for digital advertising and marketing

Half of global ad revenue will soon be online, and largely going to a small handful of companies. How about creating a novel ethical standard on what is advertised and where? Companies could consider promoting sustainable choices and healthy lifestyles and limiting advertising of high-emissions products such as cheap flights.

We are what we eat

It is no secret that tech is about to disrupt grocery. The supermarkets of the future will be built on personal consumer data. With about two billion people either obese or overweight, revolutions in choice architecture could support positive diet choices, reduce meat consumption, halve food waste and, into the bargain, slash greenhouse gas emissions.

The future of transport is not cars, it’s data

The 2020s look set to be the biggest disruption of the automobile industry since Henry Ford unveiled the Model T. Two seismic shifts are on their way.

First, electric cars now compete favorably with petrol engines on range. Growth will reach an inflection point within a year or two once prices reach parity. The death of the internal combustion engine in Europe and Asia is assured with end dates announced by China, India, France, the UK, and most of Scandinavia. Dates range from 2025 (Norway) to 2040 (UK and China).

Tech giants can accelerate the demise. Uber recently announced a passenger surcharge to help London drivers save around $1,500 a year towards the cost of an electric car.

Second, driverless cars can shift the transport economic model from ownership to service and ride sharing. A complete shift away from privately-owned vehicles is around the corner, with large implications for emissions.

Clean-energy living and working

Most buildings are barely used and inefficiently heated and cooled. Digitization can slash this waste and its corresponding emissions through measurement, monitoring, and new business models to use office space. While, just a few unicorns are currently in this space, the potential is enormous. Buildings are one of the five biggest sources of emissions, yet have the potential to become clean energy producers in a distributed energy network.

Creating liveable cities

More cities are setting ambitious climate targets to halve emissions in a decade or even less. Tech companies can support this transition by driving demand for low-carbon services for their workforces and offices, but also by providing tools to help monitor emissions and act to reduce them. Google, for example, is collecting travel and other data from across cities to estimate emissions in real time. This is possible through technologies like artificial intelligence and the internet of things. But beware of smart cities that turn out to be not so smart. Efficiencies can reduce resilience when cities face crises.

It’s a Start
Of course, it will take more than tech to solve the climate crisis. But tech is a wildcard. The actions of the current tech giants and their acolytes could serve to destabilize the climate further or bring it under control.

We need a new social contract between tech companies and society to achieve societal goals. The alternative is unthinkable. Without drastic action now, climate chaos threatens to engulf us all. As this future approaches, regulators will be forced to take ever more draconian action to rein in the problem. Acting now will reduce that risk.

Note: A version of this article was originally published on World Economic Forum

Image Credit: Bruce Rolff / Shutterstock.com Continue reading

Posted in Human Robots

#435046 The Challenge of Abundance: Boredom, ...

As technology continues to progress, the possibility of an abundant future seems more likely. Artificial intelligence is expected to drive down the cost of labor, infrastructure, and transport. Alternative energy systems are reducing the cost of a wide variety of goods. Poverty rates are falling around the world as more people are able to make a living, and resources that were once inaccessible to millions are becoming widely available.

But such a life presents fuel for the most common complaint against abundance: if robots take all the jobs, basic income provides us livable welfare for doing nothing, and healthcare is a guarantee free of charge, then what is the point of our lives? What would motivate us to work and excel if there are no real risks or rewards? If everything is simply given to us, how would we feel like we’ve ever earned anything?

Time has proven that humans inherently yearn to overcome challenges—in fact, this very desire likely exists as the root of most technological innovation. And the idea that struggling makes us stronger isn’t just anecdotal, it’s scientifically validated.

For instance, kids who use anti-bacterial soaps and sanitizers too often tend to develop weak immune systems, causing them to get sick more frequently and more severely. People who work out purposely suffer through torn muscles so that after a few days of healing their muscles are stronger. And when patients visit a psychologist to handle a fear that is derailing their lives, one of the most common treatments is exposure therapy: a slow increase of exposure to the suffering so that the patient gets stronger and braver each time, able to take on an incrementally more potent manifestation of their fears.

Different Kinds of Struggle
It’s not hard to understand why people might fear an abundant future as a terribly mundane one. But there is one crucial mistake made in this assumption, and it was well summarized by Indian mystic and author Sadhguru, who said during a recent talk at Google:

Stomach empty, only one problem. Stomach full—one hundred problems; because what we refer to as human really begins only after survival is taken care of.

This idea is backed up by Maslow’s hierarchy of needs, which was first presented in his 1943 paper “A Theory of Human Motivation.” Maslow shows the steps required to build to higher and higher levels of the human experience. Not surprisingly, the first two levels deal with physiological needs and the need for safety—in other words, with the body. You need to have food, water, and sleep, or you die. After that, you need to be protected from threats, from the elements, from dangerous people, and from disease and pain.

Maslow’s Hierarchy of Needs. Photo by Wikimedia User:Factoryjoe / CC BY-SA 3.0
The beauty of these first two levels is that they’re clear-cut problems with clear-cut solutions: if you’re hungry, then you eat; if you’re thirsty, then you drink; if you’re tired, then you sleep.

But what about the next tiers of the hierarchy? What of love and belonging, of self-esteem and self-actualization? If we’re lonely, can we just summon up an authentic friend or lover? If we feel neglected by society, can we demand it validate us? If we feel discouraged and disappointed in ourselves, can we simply dial up some confidence and self-esteem?

Of course not, and that’s because these psychological needs are nebulous; they don’t contain clear problems with clear solutions. They involve the external world and other people, and are complicated by the infinite flavors of nuance and compromise that are required to navigate human relationships and personal meaning.

These psychological difficulties are where we grow our personalities, outlooks, and beliefs. The truly defining characteristics of a person are dictated not by the physical situations they were forced into—like birth, socioeconomic class, or physical ailment—but instead by the things they choose. So a future of abundance helps to free us from the physical limitations so that we can truly commit to a life of purpose and meaning, rather than just feel like survival is our purpose.

The Greatest Challenge
And that’s the plot twist. This challenge to come to grips with our own individuality and freedom could actually be the greatest challenge our species has ever faced. Can you imagine waking up every day with infinite possibility? Every choice you make says no to the rest of reality, and so every decision carries with it truly life-defining purpose and meaning. That sounds overwhelming. And that’s probably because in our current socio-economic systems, it is.

Studies have shown that people in wealthier nations tend to experience more anxiety and depression. Ron Kessler, professor of health care policy at Harvard and World Health Organization (WHO) researcher, summarized his findings of global mental health by saying, “When you’re literally trying to survive, who has time for depression? Americans, on the other hand, many of whom lead relatively comfortable lives, blow other nations away in the depression factor, leading some to suggest that depression is a ‘luxury disorder.’”

This might explain why America scores in the top rankings for the most depressed and anxious country on the planet. We surpassed our survival needs, and instead became depressed because our jobs and relationships don’t fulfill our expectations for the next three levels of Maslow’s hierarchy (belonging, esteem, and self-actualization).

But a future of abundance would mean we’d have to deal with these levels. This is the challenge for the future; this is what keeps things from being mundane.

As a society, we would be forced to come to grips with our emotional intelligence, to reckon with philosophy rather than simply contemplate it. Nearly every person you meet will be passionately on their own customized life journey, not following a routine simply because of financial limitations. Such a world seems far more vibrant and interesting than one where most wander sleep-deprived and numb while attempting to survive the rat race.

We can already see the forceful hand of this paradigm shift as self-driving cars become ubiquitous. For example, consider the famous psychological and philosophical “trolley problem.” In this thought experiment, a person sees a trolley car heading towards five people on the train tracks; they see a lever that will allow them to switch the trolley car to a track that instead only has one person on it. Do you switch the lever and have a hand in killing one person, or do you let fate continue and kill five people instead?

For the longest time, this was just an interesting quandary to consider. But now, massive corporations have to have an answer, so they can program their self-driving cars with the ability to choose between hitting a kid who runs into the road or swerving into an oncoming car carrying a family of five. When companies need philosophers to make business decisions, it’s a good sign of what’s to come.

Luckily, it’s possible this forceful reckoning with philosophy and our own consciousness may be exactly what humanity needs. Perhaps our great failure as a species has been a result of advanced cognition still trapped in the first two levels of Maslow’s hierarchy due to a long history of scarcity.

As suggested in the opening scenes in 2001: A Space Odyssey, our ape-like proclivity for violence has long stayed the same while the technology we fight with and live amongst has progressed. So while well-off Americans may have comfortable lives, they still know they live in a system where there is no safety net, where a single tragic failure could still mean hunger and homelessness. And because of this, that evolutionarily hard-wired neurotic part of our brain that fears for our survival has never been able to fully relax, and so that anxiety and depression that come with too much freedom but not enough security stays ever present.

Not only might this shift in consciousness help liberate humanity, but it may be vital if we’re to survive our future creations as well. Whatever values we hold dear as a species are the ones we will imbue into the sentient robots we create. If machine learning is going to take its guidance from humanity, we need to level up humanity’s emotional maturity.

While the physical struggles of the future may indeed fall to the wayside amongst abundance, it’s unlikely to become a mundane world; instead, it will become a vibrant culture where each individual is striving against the most important struggle that affects all of us: the challenge to find inner peace, to find fulfillment, to build meaningful relationships, and ultimately, the challenge to find ourselves.

Image Credit: goffkein.pro / Shutterstock.com Continue reading

Posted in Human Robots

#435023 Inflatable Robot Astronauts and How to ...

The typical cultural image of a robot—as a steel, chrome, humanoid bucket of bolts—is often far from the reality of cutting-edge robotics research. There are difficulties, both social and technological, in realizing the image of a robot from science fiction—let alone one that can actually help around the house. Often, it’s simply the case that great expense in producing a humanoid robot that can perform dozens of tasks quite badly is less appropriate than producing some other design that’s optimized to a specific situation.

A team of scientists from Brigham Young University has received funding from NASA to investigate an inflatable robot called, improbably, King Louie. The robot was developed by Pneubotics, who have a long track record in the world of soft robotics.

In space, weight is at a premium. The world watched in awe and amusement when Commander Chris Hadfield sang “Space Oddity” from the International Space Station—but launching that guitar into space likely cost around $100,000. A good price for launching payload into outer space is on the order of $10,000 per pound ($22,000/kg).

For that price, it would cost a cool $1.7 million to launch Boston Dynamics’ famous ATLAS robot to the International Space Station, and its bulk would be inconvenient in the cramped living quarters available. By contrast, an inflatable robot like King Louie is substantially lighter and can simply be deflated and folded away when not in use. The robot can be manufactured from cheap, lightweight, and flexible materials, and minor damage is easy to repair.

Inflatable Robots Under Pressure
The concept of inflatable robots is not new: indeed, earlier prototypes of King Louie were exhibited back in 2013 at Google I/O’s After Hours, flailing away at each other in a boxing ring. Sparks might fly in fights between traditional robots, but the aim here was to demonstrate that the robots are passively safe: the soft, inflatable figures won’t accidentally smash delicate items when moving around.

Health and safety regulations form part of the reason why robots don’t work alongside humans more often, but soft robots would be far safer to use in healthcare or around children (whose first instinct, according to BYU’s promotional video, is either to hug or punch King Louie.) It’s also much harder to have nightmarish fantasies about robotic domination with these friendlier softbots: Terminator would’ve been a much shorter franchise if Skynet’s droids were inflatable.

Robotic exoskeletons are increasingly used for physical rehabilitation therapies, as well as for industrial purposes. As countries like Japan seek to care for their aging populations with robots and alleviate the burden on nurses, who suffer from some of the highest rates of back injuries of any profession, soft robots will become increasingly attractive for use in healthcare.

Precision and Proprioception
The main issue is one of control. Rigid, metallic robots may be more expensive and more dangerous, but the simple fact of their rigidity makes it easier to map out and control the precise motions of each of the robot’s limbs, digits, and actuators. Individual motors attached to these rigid robots can allow for a great many degrees of freedom—individual directions in which parts of the robot can move—and precision control.

For example, ATLAS has 28 degrees of freedom, while Shadow’s dexterous robot hand alone has 20. This is much harder to do with an inflatable robot, for precisely the same reasons that make it safer. Without hard and rigid bones, other methods of control must be used.

In the case of King Louie, the robot is made up of many expandable air chambers. An air-compressor changes the pressure levels in these air chambers, allowing them to expand and contract. This harks back to some of the earliest pneumatic automata. Pairs of chambers act antagonistically, like muscles, such that when one chamber “tenses,” another relaxes—allowing King Louie to have, for example, four degrees of freedom in each of its arms.

The robot is also surprisingly strong. Professor Killpack, who works at BYU on the project, estimates that its payload is comparable to other humanoid robots on the market, like Rethink Robotics’ Baxter (RIP).

Proprioception, that sixth sense that allows us to map out and control our own bodies and muscles in fine detail, is being enhanced for a wider range of soft, flexible robots with the use of machine learning algorithms connected to input from a whole host of sensors on the robot’s body.

Part of the reason this is so complicated with soft, flexible robots is that the shape and “map” of the robot’s body can change; that’s the whole point. But this means that every time King Louie is inflated, its body is a slightly different shape; when it becomes deformed, for example due to picking up objects, the shape changes again, and the complex ways in which the fabric can twist and bend are far more difficult to model and sense than the behavior of the rigid metal of King Louie’s hard counterparts. When you’re looking for precision, seemingly-small changes can be the difference between successfully holding an object or dropping it.

Learning to Move
Researchers at BYU are therefore spending a great deal of time on how to control the soft-bot enough to make it comparably useful. One method involves the commercial tracking technology used in the Vive VR system: by moving the game controller, which provides a constant feedback to the robot’s arm, you can control its position. Since the tracking software provides an estimate of the robot’s joint angles and continues to provide feedback until the arm is correctly aligned, this type of feedback method is likely to work regardless of small changes to the robot’s shape.

The other technologies the researchers are looking into for their softbot include arrays of flexible, tactile sensors to place on the softbot’s skin, and minimizing the complex cross-talk between these arrays to get coherent information about the robot’s environment. As with some of the new proprioception research, the project is looking into neural networks as a means of modeling the complicated dynamics—the motion and response to forces—of the softbot. This method relies on large amounts of observational data, mapping how the robot is inflated and how it moves, rather than explicitly understanding and solving the equations that govern its motion—which hopefully means the methods can work even as the robot changes.

There’s still a long way to go before soft and inflatable robots can be controlled sufficiently well to perform all the tasks they might be used for. Ultimately, no one robotic design is likely to be perfect for any situation.

Nevertheless, research like this gives us hope that one day, inflatable robots could be useful tools, or even companions, at which point the advertising slogans write themselves: Don’t let them down, and they won’t let you down!

Image Credit: Brigham Young University. Continue reading

Posted in Human Robots

#434772 Traditional Higher Education Is Losing ...

Should you go to graduate school? If so, why? If not, what are your alternatives? Millions of young adults across the globe—and their parents and mentors—find themselves asking these questions every year.

Earlier this month, I explored how exponential technologies are rising to meet the needs of the rapidly changing workforce.

In this blog, I’ll dive into a highly effective way to build the business acumen and skills needed to make the most significant impact in these exponential times.

To start, let’s dive into the value of graduate school versus apprenticeship—especially during this time of extraordinarily rapid growth, and the micro-diversification of careers.

The True Value of an MBA
All graduate schools are not created equal.

For complex technical trades like medicine, engineering, and law, formal graduate-level training provides a critical foundation for safe, ethical practice (until these trades are fully augmented by artificial intelligence and automation…).

For the purposes of today’s blog, let’s focus on the value of a Master in Business Administration (MBA) degree, compared to acquiring your business acumen through various forms of apprenticeship.

The Waning of Business Degrees
Ironically, business schools are facing a tough business problem. The rapid rate of technological change, a booming job market, and the digitization of education are chipping away at the traditional graduate-level business program.

The data speaks for itself.

The Decline of Graduate School Admissions
Enrollment in two-year, full-time MBA programs in the US fell by more than one-third from 2010 to 2016.

While in previous years, top business schools (e.g. Stanford, Harvard, and Wharton) were safe from the decrease in applications, this year, they also felt the waning interest in MBA programs.

Harvard Business School: 4.5 percent decrease in applications, the school’s biggest drop since 2005.
Wharton: 6.7 percent decrease in applications.
Stanford Graduate School: 4.6 percent decrease in applications.

Another signal of change began unfolding over the past week. You may have read news headlines about an emerging college admissions scam, which implicates highly selective US universities, sports coaches, parents, and students in a conspiracy to game the undergraduate admissions process.

Already, students are filing multibillion-dollar civil lawsuits arguing that the scheme has devalued their degrees or denied them a fair admissions opportunity.

MBA Graduates in the Workforce
To meet today’s business needs, startups and massive companies alike are increasingly hiring technologists, developers, and engineers in place of the MBA graduates they may have preferentially hired in the past.

While 85 percent of US employers expect to hire MBA graduates this year (a decrease from 91 percent in 2017), 52 percent of employers worldwide expect to hire graduates with a master’s in data analytics (an increase from 35 percent last year).

We’re also seeing the waning of MBA degree holders at the CEO level.

For decades, an MBA was the hallmark of upward mobility towards the C-suite of top companies.

But as exponential technologies permeate not only products but every part of the supply chain—from manufacturing and shipping to sales, marketing and customer service—that trend is changing by necessity.

Looking at the Harvard Business Review’s Top 100 CEOs in 2018 list, more CEOs on the list held engineering degrees than MBAs (34 held engineering degrees, while 32 held MBAs).

There’s much more to leading innovative companies than an advanced business degree.

How Are Schools Responding?
With disruption to the advanced business education system already here, some business schools are applying notes from their own innovation classes to brace for change.

Over the past half-decade, we’ve seen schools with smaller MBA programs shut their doors in favor of advanced degrees with more specialization. This directly responds to market demand for skills in data science, supply chain, and manufacturing.

Some degrees resemble the precise skills training of technical trades. Others are very much in line with the apprenticeship models we’ll explore next.

Regardless, this new specialization strategy is working and attracting more new students. Over the past decade (2006 to 2016), enrollment in specialized graduate business programs doubled.

Higher education is also seeing a preference shift toward for-profit trade schools, like coding boot camps. This shift is one of several forces pushing universities to adopt skill-specific advanced degrees.

But some schools are slow to adapt, raising the question: how and when will these legacy programs be disrupted? A survey of over 170 business school deans around the world showed that many programs are operating at a loss.

But if these schools are world-class business institutions, as advertised, why do they keep the doors open even while they lose money? The surveyed deans revealed an important insight: they keep the degree program open because of the program’s prestige.

Why Go to Business School?
Shorthand Credibility, Cognitive Biases, and Prestige
Regardless of what knowledge a person takes away from graduate school, attending one of the world’s most rigorous and elite programs gives grads external validation.

With over 55 percent of MBA applicants applying to just 6 percent of graduate business schools, we have a clear cognitive bias toward the perceived elite status of certain universities.

To the outside world, thanks to the power of cognitive biases, an advanced degree is credibility shorthand for your capabilities.

Simply passing through a top school’s filtration system means that you had some level of abilities and merits.

And startup success statistics tend to back up that perceived enhanced capability. Let’s take, for example, universities with the most startup unicorn founders (see the figure below).

When you consider the 320+ unicorn startups around the world today, these numbers become even more impressive. Stanford’s 18 unicorn companies account for over 5 percent of global unicorns, and Harvard is responsible for producing just under 5 percent.

Combined, just these two universities (out of over 5,000 in the US, and thousands more around the world) account for 1 in 10 of the billion-dollar private companies in the world.

By the numbers, the prestigious reputation of these elite business programs has a firm basis in current innovation success.

While prestige may be inherent to the degree earned by graduates from these business programs, the credibility boost from holding one of these degrees is not a guaranteed path to success in the business world.

For example, you might expect that the Harvard School of Business or Stanford Graduate School of Business would come out on top when tallying up the alma maters of Fortune 500 CEOs.

It turns out that the University of Wisconsin-Madison leads the business school pack with 14 CEOs to Harvard’s 12. Beyond prestige, the success these elite business programs see translates directly into cultivating unmatched networks and relationships.

Relationships
Graduate schools—particularly at the upper echelon—are excellent at attracting sharp students.

At an elite business school, if you meet just five to ten people with extraordinary skill sets, personalities, ideas, or networks, then you have returned your $200,000 education investment.

It’s no coincidence that some 40 percent of Silicon Valley venture capitalists are alumni of either Harvard or Stanford.

From future investors to advisors, friends, and potential business partners, relationships are critical to an entrepreneur’s success.

Apprenticeships
As we saw above, graduate business degree programs are melting away in the current wave of exponential change.

With an increasing $1.5 trillion in student debt, there must be a more impactful alternative to attending graduate school for those starting their careers.

When I think about the most important skills I use today as an entrepreneur, writer, and strategic thinker, they didn’t come from my decade of graduate school at Harvard or MIT… they came from my experiences building real technologies and companies, and working with mentors.

Apprenticeship comes in a variety of forms; here, I’ll cover three top-of-mind approaches:

Real-world business acumen via startup accelerators
A direct apprenticeship model
The 6 D’s of mentorship

Startup Accelerators and Business Practicum
Let’s contrast the shrinking interest in MBA programs with applications to a relatively new model of business education: startup accelerators.

Startup accelerators are short-term (typically three to six months), cohort-based programs focusing on providing startup founders with the resources (capital, mentorship, relationships, and education) needed to refine their entrepreneurial acumen.

While graduate business programs have been condensing, startup accelerators are alive, well, and expanding rapidly.

In the 10 years from 2005 (when Paul Graham founded Y Combinator) through 2015, the number of startup accelerators in the US increased by more than tenfold.

The increase in startup accelerator activity hints at a larger trend: our best and brightest business minds are opting to invest their time and efforts in obtaining hands-on experience, creating tangible value for themselves and others, rather than diving into the theory often taught in business school classrooms.

The “Strike Force” Model
The Strike Force is my elite team of young entrepreneurs who work directly with me across all of my companies, travel by my side, sit in on every meeting with me, and help build businesses that change the world.

Previous Strike Force members have gone on to launch successful companies, including Bold Capital Partners, my $250 million venture capital firm.

Strike Force is an apprenticeship for the next generation of exponential entrepreneurs.

To paraphrase my good friend Tony Robbins: If you want to short-circuit the video game, find someone who’s been there and done that and is now doing something you want to one day do.

Every year, over 500,000 apprentices in the US follow this precise template. These apprentices are learning a craft they wish to master, under the mentorship of experts (skilled metal workers, bricklayers, medical technicians, electricians, and more) who have already achieved the desired result.

What if we more readily applied this model to young adults with aspirations of creating massive value through the vehicles of entrepreneurship and innovation?

For the established entrepreneur: How can you bring young entrepreneurs into your organization to create more value for your company, while also passing on your ethos and lessons learned to the next generation?

For the young, driven millennial: How can you find your mentor and convince him or her to take you on as an apprentice? What value can you create for this person in exchange for their guidance and investment in your professional development?

The 6 D’s of Mentorship
In my last blog on education, I shared how mobile device and internet penetration will transform adult literacy and basic education. Mobile phones and connectivity already create extraordinary value for entrepreneurs and young professionals looking to take their business acumen and skill set to the next level.

For all of human history up until the last decade or so, if you wanted to learn from the best and brightest in business, leadership, or strategy, you either needed to search for a dated book that they wrote at the local library or bookstore, or you had to be lucky enough to meet that person for a live conversation.

Now you can access the mentorship of just about any thought leader on the planet, at any time, for free.

Thanks to the power of the internet, mentorship has digitized, demonetized, dematerialized, and democratized.

What do you want to learn about?

Investing? Leadership? Technology? Marketing? Project management?

You can access a near-infinite stream of cutting-edge tools, tactics, and lessons from thousands of top performers from nearly every field—instantaneously, and for free.

For example, every one of Warren Buffett’s letters to his Berkshire Hathaway investors over the past 40 years is available for free on a device that fits in your pocket.

The rise of audio—particularly podcasts and audiobooks—is another underestimated driving force away from traditional graduate business programs and toward apprenticeships.

Over 28 million podcast episodes are available for free. Once you identify the strong signals in the noise, you’re still left with thousands of hours of long-form podcast conversation from which to learn valuable lessons.

Whenever and wherever you want, you can learn from the world’s best. In the future, mentorship and apprenticeship will only become more personalized. Imagine accessing a high-fidelity, AI-powered avatar of Bill Gates, Richard Branson, or Arthur C. Clarke (one of my early mentors) to help guide you through your career.

Virtual mentorship and coaching are powerful education forces that are here to stay.

Bringing It All Together
The education system is rapidly changing. Traditional master’s programs for business are ebbing away in the tides of exponential technologies. Apprenticeship models are reemerging as an effective way to train tomorrow’s leaders.

In a future blog, I’ll revisit the concept of apprenticeships and other effective business school alternatives.

If you are a young, ambitious entrepreneur (or the parent of one), remember that you live in the most abundant time ever in human history to refine your craft.

Right now, you have access to world-class mentorship and cutting-edge best-practices—literally in the palm of your hand. What will you do with this extraordinary power?

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: fongbeerredhot / Shutterstock.com Continue reading

Posted in Human Robots