Tag Archives: autonomous
#439012 Video Friday: Man-Machine Synergy ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today's videos.
Man-Machine Synergy Effectors, Inc. is a Japanese company working on an absolutely massive “human machine synergistic effect device,” which is a huge robot controlled by a nearby human using a haptic rig.
From the look of things, the next generation will be able to move around. Whoa.
[ MMSE ]
This method of loading and unloading AMRs without having them ever stop moving is so obvious that there must be some equally obvious reason why I've never seen it done in practice.
The LoadRunner is able to transport and sort parcels weighing up to 30 kilograms. This makes it the perfect luggage carrier for airports. These AI-driven go-carts can also work in concert as larger collectives to carry large, heavy and bulky objects. Every LoadRunner can also haul up to four passive trailers. Powered by four electric motors, the LoadRunner sharply brakes at just the right moment right in front of its destination and the payload slides from the robot onto the delivery platform.
[ Fraunhofer ] via [ Gizmodo ]
Ayato Kanada at Kyushu University wrote in to share this clever “dislocatable joint,” a way of combining continuum and rigid robots.
[ Paper ]
Thanks Ayato!
The DodgeDrone challenge revisits the popular dodgeball game in the context of autonomous drones. Specifically, participants will have to code navigation policies to fly drones between waypoints while avoiding dynamic obstacles. Drones are fast but fragile systems: as soon as something hits them, they will crash! Since objects will move towards the drone with different speeds and acceleration, smart algorithms are required to avoid them!
This could totally happen in real life, and we need to be prepared for it!
[ DodgeDrone Challenge ]
In addition to winning the Best Student Design Competition CREATIVITY Award at HRI 2021, this paper would also have won the Best Paper Title award, if that award existed.
[ Paper ]
Robots are traditionally bound by a fixed morphology during their operational lifetime, which is limited to adapting only their control strategies. Here we present the first quadrupedal robot that can morphologically adapt to different environmental conditions in outdoor, unstructured environments.
We show that the robot exploits its training to effectively transition between different morphological configurations, exhibiting substantial performance improvements over a non-adaptive approach. The demonstrated benefits of real-world morphological adaptation demonstrate the potential for a new embodied way of incorporating adaptation into future robotic designs.
[ Nature ]
A drone video shot in a Minneapolis bowling alley was hailed as an instant classic. One Hollywood veteran said it “adds to the language and vocabulary of cinema.” One IEEE Spectrum editor said “hey that's pretty cool.”
[ Bryant Lake Bowl ]
It doesn't take a robot to convince me to buy candy, but I think if I buy candy from Relay it's a business expense, right?
[ RIS ]
DARPA is making progress on its AI dogfighting program, with physical flight tests expected this year.
[ DARPA ACE ]
Unitree Robotics has realized that the Empire needs to be overthrown!
[ Unitree ]
Windhover Labs, an emerging leader in open and reliable flight software and hardware, announces the upcoming availability of its first hardware product, a low cost modular flight computer for commercial drones and small satellites.
[ Windhover ]
As robots and autonomous systems are poised to become part of our everyday lives, the University of Michigan and Ford are opening a one-of-a-kind facility where they’ll develop robots and roboticists that help make lives better, keep people safer and build a more equitable society.
[ U Michigan ]
The adaptive robot Rizon combined with a new hybrid electrostatic and gecko-inspired gripping pad developed by Stanford BDML can manipulate bulky, non-smooth items in the most effort-saving way, which broadens the applications in retail and household environments.
[ Flexiv ]
Thanks Yunfan!
I don't know why anyone would want things to get MORE icy, but if you do for some reason, you can make it happen with a Husky.
Is winter over yet?
[ Clearpath ]
Skip ahead to about 1:20 to see a pair of Gita robots following a Spot following a human like a chain of lil’ robot duckings.
[ PFF ]
Here are a couple of retro robotics videos, one showing teleoperated humanoids from 2000, and the other showing a robotic guide dog from 1976 (!)
[ Tachi Lab ]
Thanks Fan!
If you missed Chad Jenkins' talk “That Ain’t Right: AI Mistakes and Black Lives” last time, here's another opportunity to watch from Robotics Today, and it includes a top notch panel discussion at the end.
[ Robotics Today ]
Since its founding in 1979, the Robotics Institute (RI) at Carnegie Mellon University has been leading the world in robotics research and education. In the mid 1990s, RI created NREC as the applied R&D center within the Institute with a specific mission to apply robotics technology in an impactful way on real-world applications. In this talk, I will go over numerous R&D programs that I have led at NREC in the past 25 years.
[ CMU ] Continue reading
#438807 Visible Touch: How Cameras Can Help ...
The dawn of the robot revolution is already here, and it is not the dystopian nightmare we imagined. Instead, it comes in the form of social robots: Autonomous robots in homes and schools, offices and public spaces, able to interact with humans and other robots in a socially acceptable, human-perceptible way to resolve tasks related to core human needs.
To design social robots that “understand” humans, robotics scientists are delving into the psychology of human communication. Researchers from Cornell University posit that embedding the sense of touch in social robots could teach them to detect physical interactions and gestures. They describe a way of doing so by relying not on touch but on vision.
A USB camera inside the robot captures shadows of hand gestures on the robot’s surface and classifies them with machine-learning software. They call this method ShadowSense, which they define as a modality between vision and touch, bringing “the high resolution and low cost of vision-sensing to the close-up sensory experience of touch.”
Touch-sensing in social or interactive robots is usually achieved with force sensors or capacitive sensors, says study co-author Guy Hoffman of the Sibley School of Mechanical and Aerospace Engineering at Cornell University. The drawback to his group’s approach has been that, even to achieve coarse spatial resolution, many sensors are needed in a small area.
However, working with non-rigid, inflatable robots, Hoffman and his co-researchers installed a consumer-grade USB camera to which they attached a fisheye lens for a wider field of vision.
“Given that the robot is already hollow, and has a soft and translucent skin, we could do touch interaction by looking at the shadows created by people touching the robot,” says Hoffman. They used deep neural networks to interpret the shadows. “And we were able to do it with very high accuracy,” he says. The robot was able to interpret six different gestures, including one- or two-handed touch, pointing, hugging and punching, with an accuracy of 87.5 to 96 percent, depending on the lighting.
This is not the first time that computer vision has been used for tactile sensing, though the scale and application of ShadowSense is unique. “Photography has been used for touch mainly in robotic grasping,” says Hoffman. By contrast, Hoffman and collaborators wanted to develop a sense that could be “felt” across the whole of the device.
The potential applications for ShadowSense include mobile robot guidance using touch, and interactive screens on soft robots. A third concerns privacy, especially in home-based social robots. “We have another paper currently under review that looks specifically at the ability to detect gestures that are further away [from the robot’s skin],” says Hoffman. This way, users would be able to cover their robot’s camera with a translucent material and still allow it to interpret actions and gestures from shadows. Thus, even though it’s prevented from capturing a high-resolution image of the user or their surrounding environment, using the right kind of training datasets, the robot can continue to monitor some kinds of non-tactile activities.
In its current iteration, Hoffman says, ShadowSense doesn’t do well in low-light conditions. Environmental noise, or shadows from surrounding objects, also interfere with image classification. Relying on one camera also means a single point of failure. “I think if this were to become a commercial product, we would probably [have to] work a little bit better on image detection,” says Hoffman.
As it was, the researchers used transfer learning—reusing a pre-trained deep-learning model in a new problem—for image analysis. “One of the problems with multi-layered neural networks is that you need a lot of training data to make accurate predictions,” says Hoffman. “Obviously, we don’t have millions of examples of people touching a hollow, inflatable robot. But we can use pre-trained networks trained on general images, which we have billions of, and we only retrain the last layers of the network using our own dataset.” Continue reading