Tag Archives: automation

#437236 Why We Need Mass Automation to ...

The scale of goods moving around the planet at any moment is staggering. Raw materials are dug up in one country, spun into parts and pieces in another, and assembled into products in a third. Crossing oceans and continents, they find their way to a local store or direct to your door.

Magically, a roll of toilet paper, power tool, or tube of toothpaste is there just when you need it.

Even more staggering is that this whole system, the global supply chain, works so well that it’s effectively invisible most of the time. Until now, that is. The pandemic has thrown a floodlight on the inner workings of this modern wonder—and it’s exposed massive vulnerabilities.

The e-commerce supply chain is an instructive example. As the world went into lockdown, and everything non-essential went online, demand for digital fulfillment skyrocketed.

Even under “normal” conditions, most e-commerce warehouses were struggling to meet demand. But Covid-19 has further strained the ability to cope with shifting supply, an unprecedented tidal wave of orders, and labor shortages. Local stores are running out of key products. Online grocers and e-commerce platforms are suspending some home deliveries, restricting online purchases of certain items, and limiting new customers. The whole system is being severely tested.

Why? Despite an abundance of 21st century technology, we’re stuck in the 20th century.

Today’s supply chain consists of fleets of ships, trucks, warehouses, and importantly, people scattered around the world. While there are some notable instances of advanced automation, the overwhelming majority of work is still manual, resembling a sort of human-powered bucket brigade, with people wandering around warehouses or standing alongside conveyor belts. Each package of diapers or bottle of detergent ordered by an online customer might be touched dozens of times by warehouse workers before finding its way into a box delivered to a home.

The pandemic has proven the critical need for innovation due to increased demand, concerns about the health and safety of workers, and traceability and safety of products and services.

At the 2020 World Economic Forum, there was much discussion about the ongoing societal transformation in which humans and machines work in tandem, automating and augmenting the way we get things done. At the time, pre-pandemic, debate trended toward skepticism and fear of job losses, with some even questioning the ethics and need for these technologies.

Now, we see things differently. To make the global supply chain more resilient to shocks like Covid-19, we must look to technology.

Perfecting the Global Supply Chain: The Massive ‘Matter Router’
Technology has faced and overcome similar challenges in the past.

World War II, for example, drove innovation in techniques for rapid production of many products on a large scale, including penicillin. We went from the availability of one dose of the drug in 1941, to four million sterile packages of the drug every month four years later.

Similarly, today’s companies, big and small, are looking to automation, robotics, and AI to meet the pandemic head on. These technologies are crucial to scaling the infrastructure that will fulfill most of the world’s e-commerce and food distribution needs.

You can think of this new infrastructure as a rapidly evolving “matter router” that will employ increasingly complex robotic systems to move products more freely and efficiently.

Robots powered by specialized AI software, for example, are already learning to adapt to changes in the environment, using the most recent advances in industrial robotics and machine learning. When customers suddenly need to order dramatically new items, these robots don’t need to stop or be reprogrammed. They can perform new tasks by learning from experience using low-cost camera systems and deep learning for visual and image recognition.

These more flexible robots can work around the clock, helping make facilities less sensitive to sudden changes in workforce and customer demand and strengthening the supply chain.

Today, e-commerce is roughly 12% of retail sales in the US and is expected to rise well beyond 25% within the decade, fueled by changes in buying habits. However, analysts have begun to consider whether the current crisis might cause permanent jumps in those numbers, as it has in the past (for instance with the SARS epidemic in China in 2003). Whatever happens, the larger supply chain will benefit from greater, more flexible automation, especially during global crises.

We must create what Hamza Mudassire of the University of Cambridge calls a “resilient ecosystem that links multiple buyers with multiple vendors, across a mesh of supply chains.” This ecosystem must be backed by robust, efficient, and scalable automation that uses robotics, autonomous vehicles, and the Internet of Things to help track the flow of goods through the supply chain.

The good news? We can accomplish this with technologies we have today.

Image credit: Guillaume Bolduc / Unsplash Continue reading

Posted in Human Robots

#437230 How Drones and Aerial Vehicles Could ...

Drones, personal flying vehicles, and air taxis may be part of our everyday life in the very near future. Drones and air taxis will create new means of mobility and transport routes. Drones will be used for surveillance, delivery, and in the construction sector as it moves towards automation.

The introduction of these aerial craft into cities will require the built environment to change dramatically. Drones and other new aerial vehicles will require landing pads, charging points, and drone ports. They could usher in new styles of building, and lead to more sustainable design.

My research explores the impact of aerial vehicles on urban design, mapping out possible future trajectories.

An Aerial Age
Already, civilian drones can vary widely in size and complexity. They can carry a range of items from high-resolution cameras, delivery mechanisms, and thermal image technology to speakers and scanners. In the public sector, drones are used in disaster response and by the fire service to tackle fires which could endanger firefighters.

During the coronavirus pandemic, drones have been used by the police to enforce lockdown. Drones normally used in agriculture have sprayed disinfectant over cities. In the UK, drone delivery trials are taking place to carry medical items to the Isle of Wight.

Alongside drones, our future cities could also be populated by vertical takeoff and landing craft (VTOL), used as private vehicles and air taxis.

These vehicles are familiar to sci-fi fans. The late Syd Mead’s illustrations of the Spinner VTOL craft in the film Blade Runner captured the popular imagination, and the screens for the Spinners in Blade Runner 2049 created by Territory Studio provided a careful design fiction of the experience of piloting these types of vehicle.

Now, though, these flying vehicles are reality. A number of companies are developing eVTOL with electric multi-rotor jets, and a whole new motorsport is being established around them.

These aircraft have the potential to change our cities. However, they need to be tested extensively in urban airspace. A study conducted by Airbus found that public concerns about VTOL use focused on the safety of those on the ground and noise emissions.

New Cities
The widespread adoption of drones and VTOL will lead to new architecture and infrastructure. Existing buildings will require adaptations: landing pads, solar photovoltaic panels for energy efficiency, charging points for delivery drones, and landscaping to mitigate noise emissions.

A number of companies are already trialing drone delivery services. Existing buildings will need to be adapted to accommodate these new networks, and new design principles will have to be implemented in future ones.

The architect Saúl Ajuria Fernández has developed a design for a delivery drone port hub. This drone port acts like a beehive where drones recharge and collect parcels for distribution. Architectural firm Humphreys & Partners’ Pier 2, a design for a modular apartment building of the future, includes a cantilevered drone port for delivery services.

The Norman Foster Foundation has designed a drone port for delivery of medical supplies and other items for rural communities in Rwanda. The structure is also intended to function as a space for the public to congregate, as well as to receive training in robotics.

Drones may also help the urban environment become more sustainable. Researchers at the University of Stuttgart have developed a re-configurable architectural roof canopy system deployed by drones. By adjusting to follow the direction of the sun, the canopy provides shade and reduces reliance on ventilation systems.

Demand for air taxis and personal flying vehicles will develop where failures in other transport systems take place. The Airbus research found that of the cities surveyed, highest demand for VTOLs was in Los Angeles and Mexico City, urban areas famous for traffic pollution. To accommodate these aerial vehicles, urban space will need to transform to include landing pads, airport-like infrastructure, and recharge points.

Furthermore, this whole logistics system in lower airspace (below 500 feet), or what I term “hover space,” will need an urban traffic management system. One great example of how this hover space could work can be seen in a speculative project from design studio Superflux in their Drone Aviary project. A number of drones with different functions move around an urban area in a network, following different paths at varying heights.

We are at a critical period in urban history, faced by climatic breakdown and pandemic. Drones and aerial vehicles can be part of a profound rethink of the urban environment.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: NASA Continue reading

Posted in Human Robots

#437224 This Week’s Awesome Tech Stories From ...

VIRTUAL REALITY
How Holographic Tech Is Shrinking VR Displays to the Size of Sunglasses
Kyle Orland | Ars Technica
“…researchers at Facebook Reality Labs are using holographic film to create a prototype VR display that looks less like ski goggles and more like lightweight sunglasses. With a total thickness less than 9mm—and without significant compromises on field of view or resolution—these displays could one day make today’s bulky VR headset designs completely obsolete.”

TRANSPORTATION
Stock Surge Makes Tesla the World’s Most Valuable Automaker
Timothy B. Lee | Ars Technica
“It’s a remarkable milestone for a company that sells far fewer cars than its leading rivals. …But Wall Street is apparently very optimistic about Tesla’s prospects for future growth and profits. Many experts expect a global shift to battery electric vehicles over the next decade or two, and Tesla is leading that revolution.”

FUTURE OF FOOD
These Plant-Based Steaks Come Out of a 3D Printer
Adele Peters | Fast Company
“The startup, launched by cofounders who met while developing digital printers at HP, created custom 3D printers that aim to replicate meat by printing layers of what they call ‘alt-muscle,’ ‘alt-fat,’ and ‘alt-blood,’ forming a complex 3D model.”

AUTOMATION
The US Air Force Is Turning Old F-16s Into AI-Powered Fighters
Amit Katwala | Wired UK
“Maverick’s days are numbered. The long-awaited sequel to Top Gun is due to hit cinemas in December, but the virtuoso fighter pilots at its heart could soon be a thing of the past. The trustworthy wingman will soon be replaced by artificial intelligence, built into a drone, or an existing fighter jet with no one in the cockpit.”

ROBOTICS
NASA Wants to Build a Steam-Powered Hopping Robot to Explore Icy Worlds
Georgina Torbet | Digital Trends
“A bouncing, ball-like robot that’s powered by steam sounds like something out of a steampunk fantasy, but it could be the ideal way to explore some of the distant, icy environments of our solar system. …This round robot would be the size of a soccer ball, with instruments held in the center of a metal cage, and it would use steam-powered thrusters to make jumps from one area of terrain to the next.”

FUTURE
Could Teleporting Ever Work?
Daniel Kolitz | Gizmodo
“Have the major airlines spent decades suppressing teleportation research? Have a number of renowned scientists in the field of teleportation studies disappeared under mysterious circumstances? Is there a cork board at the FBI linking Delta Airlines, shady foreign security firms, and dozens of murdered research professors? …No. None of that is the case. Which begs the question: why doesn’t teleportation exist yet?”

ENERGY
Nuclear ‘Power Balls’ Could Make Meltdowns a Thing of the Past
Daniel Oberhaus | Wired
“Not only will these reactors be smaller and more efficient than current nuclear power plants, but their designers claim they’ll be virtually meltdown-proof. Their secret? Millions of submillimeter-size grains of uranium individually wrapped in protective shells. It’s called triso fuel, and it’s like a radioactive gobstopper.”

TECHNOLOGY
A Plan to Redesign the Internet Could Make Apps That No One Controls
Will Douglas Heaven | MIT Techology Review
“[John Perry] Barlow’s ‘home of Mind’ is ruled today by the likes of Google, Facebook, Amazon, Alibaba, Tencent, and Baidu—a small handful of the biggest companies on earth. Yet listening to the mix of computer scientists and tech investors speak at an online event on June 30 hosted by the Dfinity Foundation…it is clear that a desire for revolution is brewing.”

IMPACT
To Save the World, the UN Is Turning It Into a Computer Simulation
Will Bedingfield | Wired
“The UN has now announced its new secret recipe to achieve [its 17 sustainable development goals or SDGs]: a computer simulation called Policy Priority Inference (PPI). …PPI is a budgeting software—it simulates a government and its bureaucrats as they allocate money on projects that might move a country closer to an SDG.”

Image credit: Benjamin Suter / Unsplash Continue reading

Posted in Human Robots

#437157 A Human-Centric World of Work: Why It ...

Long before coronavirus appeared and shattered our pre-existing “normal,” the future of work was a widely discussed and debated topic. We’ve watched automation slowly but surely expand its capabilities and take over more jobs, and we’ve wondered what artificial intelligence will eventually be capable of.

The pandemic swiftly turned the working world on its head, putting millions of people out of a job and forcing millions more to work remotely. But essential questions remain largely unchanged: we still want to make sure we’re not replaced, we want to add value, and we want an equitable society where different types of work are valued fairly.

To address these issues—as well as how the pandemic has impacted them—this week Singularity University held a digital summit on the future of work. Forty-three speakers from multiple backgrounds, countries, and sectors of the economy shared their expertise on everything from work in developing markets to why we shouldn’t want to go back to the old normal.

Gary Bolles, SU’s chair for the Future of Work, kicked off the discussion with his thoughts on a future of work that’s human-centric, including why it matters and how to build it.

What Is Work?
“Work” seems like a straightforward concept to define, but since it’s constantly shifting shape over time, let’s make sure we’re on the same page. Bolles defined work, very basically, as human skills applied to problems.

“It doesn’t matter if it’s a dirty floor or a complex market entry strategy or a major challenge in the world,” he said. “We as humans create value by applying our skills to solve problems in the world.” You can think of the problems that need solving as the demand and human skills as the supply, and the two are in constant oscillation, including, every few decades or centuries, a massive shift.

We’re in the midst of one of those shifts right now (and we already were, long before the pandemic). Skills that have long been in demand are declining. The World Economic Forum’s 2018 Future of Jobs report listed things like manual dexterity, management of financial and material resources, and quality control and safety awareness as declining skills. Meanwhile, skills the next generation will need include analytical thinking and innovation, emotional intelligence, creativity, and systems analysis.

Along Came a Pandemic
With the outbreak of coronavirus and its spread around the world, the demand side of work shrunk; all the problems that needed solving gave way to the much bigger, more immediate problem of keeping people alive. But as a result, tens of millions of people around the world are out of work—and those are just the ones that are being counted, and they’re a fraction of the true total. There are additional millions in seasonal or gig jobs or who work in informal economies now without work, too.

“This is our opportunity to focus,” Bolles said. “How do we help people re-engage with work? And make it better work, a better economy, and a better set of design heuristics for a world that we all want?”

Bolles posed five key questions—some spurred by impact of the pandemic—on which future of work conversations should focus to make sure it’s a human-centric future.

1. What does an inclusive world of work look like? Rather than seeing our current systems of work as immutable, we need to actually understand those systems and how we want to change them.

2. How can we increase the value of human work? We know that robots and software are going to be fine in the future—but for humans to be fine, we need to design for that very intentionally.

3. How can entrepreneurship help create a better world of work? In many economies the new value that’s created often comes from younger companies; how do we nurture entrepreneurship?

4. What will the intersection of workplace and geography look like? A large percentage of the global workforce is now working from home; what could some of the outcomes of that be? How does gig work fit in?

5. How can we ensure a healthy evolution of work and life? The health and the protection of those at risk is why we shut down our economies, but we need to find a balance that allows people to work while keeping them safe.

Problem-Solving Doesn’t End
The end result these questions are driving towards, and our overarching goal, is maximizing human potential. “If we come up with ways we can continue to do that, we’ll have a much more beneficial future of work,” Bolles said. “We should all be talking about where we can have an impact.”

One small silver lining? We had plenty of problems to solve in the world before ever hearing about coronavirus, and now we have even more. Is the pace of automation accelerating due to the virus? Yes. Are companies finding more ways to automate their processes in order to keep people from getting sick? They are.

But we have a slew of new problems on our hands, and we’re not going to stop needing human skills to solve them (not to mention the new problems that will surely emerge as second- and third-order effects of the shutdowns). If Bolles’ definition of work holds up, we’ve got ours cut out for us.

In an article from April titled The Great Reset, Bolles outlined three phases of the unemployment slump (we’re currently still in the first phase) and what we should be doing to minimize the damage. “The evolution of work is not about what will happen 10 to 20 years from now,” he said. “It’s about what we could be doing differently today.”

Watch Bolles’ talk and those of dozens of other experts for more insights into building a human-centric future of work here.

Image Credit: www_slon_pics from Pixabay Continue reading

Posted in Human Robots

#437154 Using deep learning to give robotic ...

Researchers at the University of Bristol have recently trained a deep-neural-network-based model to gather tactile information about 3-D objects. In their paper, published in IEEE Robotics & Automation Magazine, they applied the deep learning technique to a robotic fingertip with sensing capabilities and found that it allowed it to infer more information about its surrounding environment. Continue reading

Posted in Human Robots