Tag Archives: automated

#437791 Is the Pandemic Spurring a Robot ...

“Are robots really destined to take over restaurant kitchens?” This was the headline of an article published by Eater four years ago. One of the experts interviewed was Siddhartha Srinivasa, at the time professor of the Robotics Institute at Carnegie Mellon University and currently director of Robotics and AI for Amazon. He said, “I’d love to make robots unsexy. It’s weird to say this, but when something becomes unsexy, it means that it works so well that you don’t have to think about it. You don’t stare at your dishwasher as it washes your dishes in fascination, because you know it’s gonna work every time… I want to get robots to that stage of reliability.”

Have we managed to get there over the last four years? Are robots unsexy yet? And how has the pandemic changed the trajectory of automation across industries?

The Covid Effect
The pandemic has had a massive economic impact all over the world, and one of the problems faced by many companies has been keeping their businesses running without putting employees at risk of infection. Many organizations are seeking to remain operational in the short term by automating tasks that would otherwise be carried out by humans. According to Digital Trends, since the start of the pandemic we have seen a significant increase in automation efforts in manufacturing, meat packing, grocery stores and more. In a June survey, 44 percent of corporate financial officers said they were considering more automation in response to coronavirus.

MIT economist David Autor described the economic crisis and the Covid-19 pandemic as “an event that forces automation.” But he added that Covid-19 created a kind of disruption that has forced automation in sectors and activities with a shortage of workers, while at the same time there has been no reduction in demand. This hasn’t taken place in hospitality, where demand has practically disappeared, but it is still present in agriculture and distribution. The latter is being altered by the rapid growth of e-commerce, with more efficient and automated warehouses that can provide better service.

China Leads the Way
China is currently in a unique position to lead the world’s automation economy. Although the country boasts a huge workforce, labor costs have multiplied by 10 over the past 20 years. As the world’s factory, China has a strong incentive to automate its manufacturing sector, which enjoys a solid leadership in high quality products. China is currently the largest and fastest-growing market in the world for industrial robotics, with a 21 percent increase up to $5.4 billion in 2019. This represents one third of global sales. As a result, Chinese companies are developing a significant advantage in terms of learning to work with metallic colleagues.

The reasons behind this Asian dominance are evident: the population has a greater capacity and need for tech adoption. A large percentage of the population will soon be of retirement age, without an equivalent younger demographic to replace it, leading to a pressing need to adopt automation in the short term.

China is well ahead of other countries in restaurant automation. As reported in Bloomberg, in early 2020 UBS Group AG conducted a survey of over 13,000 consumers in different countries and found that 64 percent of Chinese participants had ordered meals through their phones at least once a week, compared to a mere 17 percent in the US. As digital ordering gains ground, robot waiters and chefs are likely not far behind. The West harbors a mistrust towards non-humans that the East does not.

The Robot Evolution
The pandemic was a perfect excuse for robots to replace us. But despite the hype around this idea, robots have mostly disappointed during the pandemic.

Just over 66 different kinds of “social” robots have been piloted in hospitals, health centers, airports, office buildings, and other public and private spaces in response to the pandemic, according to a study from researchers at Pompeu Fabra University (Barcelona, Spain). Their survey looked at 195 robot deployments across 35 countries including China, the US, Thailand, and Hong Kong.

But if the “robot revolution” is a movement in which automation, robotics, and artificial intelligence proliferate through the value chain of various industries, bringing a paradigm shift in how we produce, consume, and distribute products—it hasn’t happened yet.

But there’s a more nuanced answer: rather than a revolution, we’re seeing an incremental robot evolution. It’s a trend that will likely accelerate over the next five years, particularly when 5G takes center stage and robotics as a field leaves behind imitation and evolves independently.

Automation Anxiety
Why don’t we finally welcome the long-promised robotic takeover? Despite progress in AI and increased adoption of industrial robots, consumer-facing robotic products are not nearly as ubiquitous as popular culture predicted decades ago. As Amara’s Law says: “We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run.” It seems we are living through the Gartner hype cycle.

People have a complicated relationship with robots, torn between admiring them, fearing them, rejecting them, and even boycotting them, as has happened in the automobile industry.

Retail robot in a Walmart store. Credit: Bossa Nova Robotics
Walmart terminated its contract with Bossa Nova and withdrew its 1,000 inventory robots from its stores because the company was concerned about how shoppers were reacting to seeing the six-foot robots in the aisles.

With road blocks like this, will the World Economic Forum’s prediction of almost half of tasks being carried out by machines by 2025 come to pass?

At the rate we’re going, it seems unlikely, even with the boost in automation caused by the pandemic. Robotics will continue to advance its capabilities, and will take over more human jobs as it does so, but it’s unlikely we’ll hit a dramatic inflection point that could be described as a “revolution.” Instead, the robot evolution will happen the way most societal change does: incrementally, with time for people to adapt both practically and psychologically.

For now though, robots are still pretty sexy.

Image Credit: charles taylor / Shutterstock.com Continue reading

Posted in Human Robots

#437769 Q&A: Facebook’s CTO Is at War With ...

Photo: Patricia de Melo Moreira/AFP/Getty Images

Facebook chief technology officer Mike Schroepfer leads the company’s AI and integrity efforts.

Facebook’s challenge is huge. Billions of pieces of content—short and long posts, images, and combinations of the two—are uploaded to the site daily from around the world. And any tiny piece of that—any phrase, image, or video—could contain so-called bad content.

In its early days, Facebook relied on simple computer filters to identify potentially problematic posts by their words, such as those containing profanity. These automatically filtered posts, as well as posts flagged by users as offensive, went to humans for adjudication.

In 2015, Facebook started using artificial intelligence to cull images that contained nudity, illegal goods, and other prohibited content; those images identified as possibly problematic were sent to humans for further review.

By 2016, more offensive photos were reported by Facebook’s AI systems than by Facebook users (and that is still the case).

In 2018, Facebook CEO Mark Zuckerberg made a bold proclamation: He predicted that within five or ten years, Facebook’s AI would not only look for profanity, nudity, and other obvious violations of Facebook’s policies. The tools would also be able to spot bullying, hate speech, and other misuse of the platform, and put an immediate end to them.

Today, automated systems using algorithms developed with AI scan every piece of content between the time when a user completes a post and when it is visible to others on the site—just fractions of a second. In most cases, a violation of Facebook’s standards is clear, and the AI system automatically blocks the post. In other cases, the post goes to human reviewers for a final decision, a workforce that includes 15,000 content reviewers and another 20,000 employees focused on safety and security, operating out of more than 20 facilities around the world.

In the first quarter of this year, Facebook removed or took other action (like appending a warning label) on more than 9.6 million posts involving hate speech, 8.6 million involving child nudity or exploitation, almost 8 million posts involving the sale of drugs, 2.3 million posts involving bullying and harassment, and tens of millions of posts violating other Facebook rules.

Right now, Facebook has more than 1,000 engineers working on further developing and implementing what the company calls “integrity” tools. Using these systems to screen every post that goes up on Facebook, and doing so in milliseconds, is sucking up computing resources. Facebook chief technology officer Mike Schroepfer, who is heading up Facebook’s AI and integrity efforts, spoke with IEEE Spectrum about the team’s progress on building an AI system that detects bad content.

Since that discussion, Facebook’s policies around hate speech have come under increasing scrutiny, with particular attention on divisive posts by political figures. A group of major advertisers in June announced that they would stop advertising on the platform while reviewing the situation, and civil rights groups are putting pressure on others to follow suit until Facebook makes policy changes related to hate speech and groups that promote hate, misinformation, and conspiracies.

Facebook CEO Mark Zuckerberg responded with news that Facebook will widen the category of what it considers hateful content in ads. Now the company prohibits claims that people from a specific race, ethnicity, national origin, religious affiliation, caste, sexual orientation, gender identity, or immigration status are a threat to the physical safety, health, or survival of others. The policy change also aims to better protect immigrants, migrants, refugees, and asylum seekers from ads suggesting these groups are inferior or expressing contempt. Finally, Zuckerberg announced that the company will label some problematic posts by politicians and government officials as content that violates Facebook’s policies.

However, civil rights groups say that’s not enough. And an independent audit released in July also said that Facebook needs to go much further in addressing civil rights concerns and disinformation.

Schroepfer indicated that Facebook’s AI systems are designed to quickly adapt to changes in policy. “I don’t expect considerable technical changes are needed to adjust,” he told Spectrum.

This interview has been edited and condensed for clarity.

IEEE Spectrum: What are the stakes of content moderation? Is this an existential threat to Facebook? And is it critical that you deal well with the issue of election interference this year?

Schroepfer: It’s probably existential; it’s certainly massive. We are devoting a tremendous amount of our attention to it.

The idea that anyone could meddle in an election is deeply disturbing and offensive to all of us here, just as people and citizens of democracies. We don’t want to see that happen anywhere, and certainly not on our watch. So whether it’s important to the company or not, it’s important to us as people. And I feel a similar way on the content-moderation side.

There are not a lot of easy choices here. The only way to prevent people, with certainty, from posting bad things is to not let them post anything. We can take away all voice and just say, “Sorry, the Internet’s too dangerous. No one can use it.” That will certainly get rid of all hate speech online. But I don’t want to end up in that world. And there are variants of that world that various governments are trying to implement, where they get to decide what’s true or not, and you as a person don’t. I don’t want to get there either.

My hope is that we can build a set of tools that make it practical for us to do a good enough job, so that everyone is still excited about the idea that anyone can share what they want, and so that Facebook is a safe and reasonable place for people to operate in.

Spectrum: You joined Facebook in 2008, before AI was part of the company’s toolbox. When did that change? When did you begin to think that AI tools would be useful to Facebook?

Schroepfer: Ten years ago, AI wasn’t commercially practical; the technology just didn’t work very well. In 2012, there was one of those moments that a lot of people point to as the beginning of the current revolution in deep learning and AI. A computer-vision model—a neural network—was trained using what we call supervised training, and it turned out to be better than all the existing models.

Spectrum: How is that training done, and how did computer-vision models come to Facebook?

Image: Facebook

Just Broccoli? Facebook’s image analysis algorithms can tell the difference between marijuana [left] and tempura broccoli [right] better than some humans.

Schroepfer: Say I take a bunch of photos and I have people look at them. If they see a photo of a cat, they put a text label that says cat; if it’s one of a dog, the text label says dog. If you build a big enough data set and feed that to the neural net, it learns how to tell the difference between cats and dogs.

Prior to 2012, it didn’t work very well. And then in 2012, there was this moment where it seemed like, “Oh wow, this technique might work.” And a few years later we were deploying that form of technology to help us detect problematic imagery.

Spectrum: Do your AI systems work equally well on all types of prohibited content?

Schroepfer: Nudity was technically easiest. I don’t need to understand language or culture to understand that this is either a naked human or not. Violence is a much more nuanced problem, so it was harder technically to get it right. And with hate speech, not only do you have to understand the language, it may be very contextual, even tied to recent events. A week before the Christchurch shooting [New Zealand, 2019], saying “I wish you were in the mosque” probably doesn’t mean anything. A week after, that might be a terrible thing to say.

Spectrum: How much progress have you made on hate speech?

Schroepfer: AI, in the first quarter of 2020, proactively detected 88.8 percent of the hate-speech content we removed, up from 80.2 percent in the previous quarter. In the first quarter of 2020, we took action on 9.6 million pieces of content for violating our hate-speech policies.

Image: Facebook

Off Label: Sometimes image analysis isn’t enough to determine whether a picture posted violates the company’s policies. In considering these candy-colored vials of marijuana, for example, the algorithms can look at any accompanying text and, if necessary, comments on the post.

Spectrum: It sounds like you’ve expanded beyond tools that analyze images and are also using AI tools that analyze text.

Schroepfer: AI started off as very siloed. People worked on language, people worked on computer vision, people worked on video. We’ve put these things together—in production, not just as research—into multimodal classifiers.

[Schroepfer shows a photo of a pan of Rice Krispies treats, with text referring to it as a “potent batch”] This is a case in which you have an image, and then you have the text on the post. This looks like Rice Krispies. On its own, this image is fine. You put the text together with it in a bigger model; that can then understand what’s going on. That didn’t work five years ago.

Spectrum: Today, every post that goes up on Facebook is immediately checked by automated systems. Can you explain that process?

Image: Facebook

Bigger Picture: Identifying hate speech is often a matter of context. Either the text or the photo in this post isn’t hateful standing alone, but putting them together tells a different story.

Schroepfer: You upload an image and you write some text underneath it, and the systems look at both the image and the text to try to see which, if any, policies it violates. Those decisions are based on our Community Standards. It will also look at other signals on the posts, like the comments people make.

It happens relatively instantly, though there may be times things happen after the fact. Maybe you uploaded a post that had misinformation in it, and at the time you uploaded it, we didn’t know it was misinformation. The next day we fact-check something and scan again; we may find your post and take it down. As we learn new things, we’re going to go back through and look for violations of what we now know to be a problem. Or, as people comment on your post, we might update our understanding of it. If people are saying, “That’s terrible,” or “That’s mean,” or “That looks fake,” those comments may be an interesting signal.

Spectrum: How is Facebook applying its AI tools to the problem of election interference?

Schroepfer: I would split election interference into two categories. There are times when you’re going after the content, and there are times you’re going after the behavior or the authenticity of the person.

On content, if you’re sharing misinformation, saying, “It’s super Wednesday, not super Tuesday, come vote on Wednesday,” that’s a problem whether you’re an American sitting in California or a foreign actor.

Other times, people create a series of Facebook pages pretending they’re Americans, but they’re really a foreign entity. That is a problem on its own, even if all the content they’re sharing completely meets our Community Standards. The problem there is that you have a foreign government running an information operation.

There, you need different tools. What you’re trying to do is put pieces together, to say, “Wait a second. All of these pages—Martians for Justice, Moonlings for Justice, and Venusians for Justice”—are all run by an administrator with an IP address that’s outside the United States. So they’re all connected, even though they’re pretending to not be connected. That’s a very different problem than me sitting in my office in Menlo Park [Calif.] sharing misinformation.

I’m not going to go into lots of technical detail, because this is an area of adversarial nature. The fundamental problem you’re trying to solve is that there’s one entity coordinating the activity of a bunch of things that look like they’re not all one thing. So this is a series of Instagram accounts, or a series of Facebook pages, or a series of WhatsApp accounts, and they’re pretending to be totally different things. We’re looking for signals that these things are related in some way. And we’re looking through the graph [what Facebook calls its map of relationships between users] to understand the properties of this network.

Spectrum: What cutting-edge AI tools and methods have you been working on lately?

Schroepfer: Supervised learning, with humans setting up the instruction process for the AI systems, is amazingly effective. But it has a very obvious flaw: the speed at which you can develop these things is limited by how fast you can curate the data sets. If you’re dealing in a problem domain where things change rapidly, you have to rebuild a new data set and retrain the whole thing.

Self-supervision is inspired by the way people learn, by the way kids explore the world around them. To get computers to do it themselves, we take a bunch of raw data and build a way for the computer to construct its own tests. For language, you scan a bunch of Web pages, and the computer builds a test where it takes a sentence, eliminates one of the words, and figures out how to predict what word belongs there. And because it created the test, it actually knows the answer. I can use as much raw text as I can find and store because it’s processing everything itself and doesn’t require us to sit down and build the information set. In the last two years there has been a revolution in language understanding as a result of AI self-supervised learning.

Spectrum: What else are you excited about?

Schroepfer: What we’ve been working on over the last few years is multilingual understanding. Usually, when I’m trying to figure out, say, whether something is hate speech or not I have to go through the whole process of training the model in every language. I have to do that one time for every language. When you make a post, the first thing we have to figure out is what language your post is in. “Ah, that’s Spanish. So send it to the Spanish hate-speech model.”

We’ve started to build a multilingual model—one box where you can feed in text in 40 different languages and it determines whether it’s hate speech or not. This is way more effective and easier to deploy.

To geek out for a second, just the idea that you can build a model that understands a concept in multiple languages at once is crazy cool. And it not only works for hate speech, it works for a variety of things.

When we started working on this multilingual model years ago, it performed worse than every single individual model. Now, it not only works as well as the English model, but when you get to the languages where you don’t have enough data, it’s so much better. This rapid progress is very exciting.

Spectrum: How do you move new AI tools from your research labs into operational use?

Schroepfer: Engineers trying to make the next breakthrough will often say, “Cool, I’ve got a new thing and it achieved state-of-the-art results on machine translation.” And we say, “Great. How long does it take to run in production?” They say, “Well, it takes 10 seconds for every sentence to run on a CPU.” And we say, “It’ll eat our whole data center if we deploy that.” So we take that state-of-the-art model and we make it 10 or a hundred or a thousand times more efficient, maybe at the cost of a little bit of accuracy. So it’s not as good as the state-of-the-art version, but it’s something we can actually put into our data centers and run in production.

Spectrum: What’s the role of the humans in the loop? Is it true that Facebook currently employs 35,000 moderators?

Schroepfer: Yes. Right now our goal is not to reduce that. Our goal is to do a better job catching bad content. People often think that the end state will be a fully automated system. I don’t see that world coming anytime soon.

As automated systems get more sophisticated, they take more and more of the grunt work away, freeing up the humans to work on the really gnarly stuff where you have to spend an hour researching.

We also use AI to give our human moderators power tools. Say I spot this new meme that is telling everyone to vote on Wednesday rather than Tuesday. I have a tool in front of me that says, “Find variants of that throughout the system. Find every photo with the same text, find every video that mentions this thing and kill it in one shot.” Rather than, I found this one picture, but then a bunch of other people upload that misinformation in different forms.

Another important aspect of AI is that anything I can do to prevent a person from having to look at terrible things is time well spent. Whether it’s a person employed by us as a moderator or a user of our services, looking at these things is a terrible experience. If I can build systems that take the worst of the worst, the really graphic violence, and deal with that in an automated fashion, that’s worth a lot to me. Continue reading

Posted in Human Robots

#437701 Robotics, AI, and Cloud Computing ...

IBM must be brimming with confidence about its new automated system for performing chemical synthesis because Big Blue just had twenty or so journalists demo the complex technology live in a virtual room.

IBM even had one of the journalists choose the molecule for the demo: a molecule in a potential Covid-19 treatment. And then we watched as the system synthesized and tested the molecule and provided its analysis in a PDF document that we all saw in the other journalist’s computer. It all worked; again, that’s confidence.

The complex system is based upon technology IBM started developing three years ago that uses artificial intelligence (AI) to predict chemical reactions. In August 2018, IBM made this service available via the Cloud and dubbed it RXN for Chemistry.

Now, the company has added a new wrinkle to its Cloud-based AI: robotics. This new and improved system is no longer named simply RXN for Chemistry, but RoboRXN for Chemistry.

All of the journalists assembled for this live demo of RoboRXN could watch as the robotic system executed various steps, such as moving the reactor to a small reagent and then moving the solvent to a small reagent. The robotic system carried out the entire set of procedures—completing the synthesis and analysis of the molecule—in eight steps.

Image: IBM Research

IBM RXN helps predict chemical reaction outcomes or design retrosynthesis in seconds.

In regular practice, a user will be able to suggest a combination of molecules they would like to test. The AI will pick up the order and task a robotic system to run the reactions necessary to produce and test the molecule. Users will be provided analyses of how well their molecules performed.

Back in March of this year, Silicon Valley-based startup Strateos demonstrated something similar that they had developed. That system also employed a robotic system to help researchers working from the Cloud create new chemical compounds. However, what distinguishes IBM’s system is its incorporation of a third element: the AI.

The backbone of IBM’s AI model is a machine learning translation method that treats chemistry like language translation. It translates the language of chemistry by converting reactants and reagents to products through the use of Statistical Machine Intelligence and Learning Engine (SMILE) representation to describe chemical entities.

IBM has also leveraged an automatic data driven strategy to ensure the quality of its data. Researchers there used millions of chemical reactions to teach the AI system chemistry, but contained within that data set were errors. So, how did IBM clean this so-called noisy data to eliminate the potential for bad models?

According to Alessandra Toniato, a researcher at IBM Zurichh, the team implemented what they dubbed the “forgetting experiment.”

Toniato explains that, in this approach, they asked the AI model how sure it was that the chemical examples it was given were examples of correct chemistry. When faced with this choice, the AI identified chemistry that it had “never learnt,” “forgotten six times,” or “never forgotten.” Those that were “never forgotten” were examples that were clean, and in this way they were able to clean the data that AI had been presented.

While the AI has always been part of the RXN for Chemistry, the robotics is the newest element. The main benefit that turning over the carrying out of the reactions to a robotic system is expected to yield is to free up chemists from doing the often tedious process of having to design a synthesis from scratch, says Matteo Manica, a research staff member in Cognitive Health Care and Life Sciences at IBM Research Zürich.

“In this demo, you could see how the system is synergistic between a human and AI,” said Manica. “Combine that with the fact that we can run all these processes with a robotic system 24/7 from anywhere in the world, and you can see how it will really help up to speed up the whole process.”

There appear to be two business models that IBM is pursuing with its latest technology. One is to deploy the entire system on the premises of a company. The other is to offer licenses to private Cloud installations.

Photo: Michael Buholzer

Teodoro Laino of IBM Research Europe.

“From a business perspective you can think of having a system like we demonstrated being replicated on the premise within companies or research groups that would like to have the technology available at their disposal,” says Teodoro Laino, distinguished RSM, manager at IBM Research Europe. “On the other hand, we are also pushing at bringing the entire system to a service level.”

Just as IBM is brimming with confidence about its new technology, the company also has grand aspirations for it.

Laino adds: “Our aim is to provide chemical services across the world, a sort of Amazon of chemistry, where instead of looking for chemistry already in stock, you are asking for chemistry on demand.”

< Back to IEEE COVID-19 Resources Continue reading

Posted in Human Robots

#437687 Video Friday: Bittle Is a Palm-Sized ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online]
IROS 2020 – October 25-29, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Rongzhong Li, who is responsible for the adorable robotic cat Nybble, has an updated and even more adorable quadruped that's more robust and agile but only costs around US $200 in kit form on Kickstarter.

Looks like the early bird options are sold out, but a full kit is a $225 pledge, for delivery in December.

[ Kickstarter ]

Thanks Rz!

I still maintain that Stickybot was one of the most elegantly designed robots ever.

[ Stanford ]

With the unpredictable health crisis of COVID-19 continuing to place high demands on hospitals, PAL Robotics have successfully completed testing of their delivery robots in Barcelona hospitals this summer. The TIAGo Delivery and TIAGo Conveyor robots were deployed in Hospital Municipal of Badalona and Hospital Clínic Barcelona following a winning proposal submitted to the European DIH-Hero project. Accerion sensors were integrated onto the TIAGo Delivery Robot and TIAGo Conveyor Robot for use in this project.

[ PAL Robotics ]

Energy Robotics, a leading developer of software solutions for mobile robots used in industrial applications, announced that its remote sensing and inspection solution for Boston Dynamics’s agile mobile robot Spot was successfully deployed at Merck’s thermal exhaust treatment plant at its headquarters in Darmstadt, Germany. Energy Robotics equipped Spot with sensor technology and remote supervision functions to support the inspection mission.

Combining Boston Dynamics’ intuitive controls, robotic intelligence and open interface with Energy Robotics’ control and autonomy software, user interface and encrypted cloud connection, Spot can be taught to autonomously perform a specific inspection round while being supervised remotely from anywhere with internet connectivity. Multiple cameras and industrial sensors enable the robot to find its way around while recording and transmitting information about the facility’s onsite equipment operations.

Spot reads the displays of gauges in its immediate vicinity and can also zoom in on distant objects using an externally-mounted optical zoom lens. In the thermal exhaust treatment facility, for instance, it monitors cooling water levels and notes whether condensation water has accumulated. Outside the facility, Spot monitors pipe bridges for anomalies.

Among the robot’s many abilities, it can detect defects of wires or the temperature of pump components using thermal imaging. The robot was put through its paces on a comprehensive course that tested its ability to handle special challenges such as climbing stairs, scaling embankments and walking over grating.

[ Energy Robotics ]

Thanks Stefan!

Boston Dynamics really should give Dr. Guero an Atlas just to see what he can do with it.

[ DrGuero ]

World's First Socially Distanced Birthday Party: Located in London, the robotic arm was piloted in real time to light the candles on the cake by the founder of Extend Robotics, Chang Liu, who was sat 50 miles away in Reading. Other team members in Manchester and Reading were also able to join in the celebration as the robot was used to accurately light the candles on the birthday cake.

[ Extend Robotics ]

The Robocon in-person competition was canceled this year, but check out Tokyo University's robots in action:

[ Robocon ]

Sphero has managed to pack an entire Sphero into a much smaller sphere.

[ Sphero ]

Squishy Robotics, a small business funded by the National Science Foundation (NSF), is developing mobile sensor robots for use in disaster rescue, remote monitoring, and space exploration. The shape-shifting, mobile, senor robots from UC-Berkeley spin-off Squishy Robotics can be dropped from airplanes or drones and can provide first responders with ground-based situational awareness during fires, hazardous materials (HazMat) release, and natural and man-made disasters.

[ Squishy Robotics ]

Meet Jasper, the small girl with big dreams to FLY. Created by UTS Animal Logic Academy in partnership with the Royal Australian Air Force to encourage girls to soar above the clouds. Jasper was created using a hybrid of traditional animation techniques and technology such as robotics and 3D printing. A KUKA QUANTEC robot is used during the film making to help the Australian Royal Airforce tell their story in a unique way. UTS adapted their High Accurate robot to film consistent paths, creating a video with physical sets and digital characters.

[ AU AF ]

Impressive what the Ghost Robotics V60 can do without any vision sensors on it.

[ Ghost Robotics ]

Is your job moving tiny amounts of liquid around? Would you rather be doing something else? ABB’s YuMi got you.

[ Yumi ]

For his PhD work at the Media Lab, Biomechatronics researcher Roman Stolyarov developed a terrain-adaptive control system for robotic leg prostheses. as a way to help people with amputations feel as able-bodied and mobile as possible, by allowing them to walk seamlessly regardless of the ground terrain.

[ MIT ]

This robot collects data on each cow when she enters to be milked. Milk samples and 3D photos can be taken to monitor the cow’s health status. The Ontario Dairy Research Centre in Elora, Ontario, is leading dairy innovation through education and collaboration. It is a state-of-the-art 175,000 square foot facility for discovery, learning and outreach. This centre is a partnership between the Agricultural Research Institute of Ontario, OMAFRA, the University of Guelph and the Ontario dairy industry.

[ University of Guleph ]

Australia has one of these now, should the rest of us panic?

[ Boeing ]

Daimler and Torc are developing Level 4 automated trucks for the real world. Here is a glimpse into our closed-course testing, routes on public highways in Virginia, and self-driving capabilities development. Our year of collaborating on the future of transportation culminated in the announcement of our new truck testing center in New Mexico.

[ Torc Robotics ] Continue reading

Posted in Human Robots

#437673 Can AI and Automation Deliver a COVID-19 ...

Illustration: Marysia Machulska

Within moments of meeting each other at a conference last year, Nathan Collins and Yann Gaston-Mathé began devising a plan to work together. Gaston-Mathé runs a startup that applies automated software to the design of new drug candidates. Collins leads a team that uses an automated chemistry platform to synthesize new drug candidates.

“There was an obvious synergy between their technology and ours,” recalls Gaston-Mathé, CEO and cofounder of Paris-based Iktos.

In late 2019, the pair launched a project to create a brand-new antiviral drug that would block a specific protein exploited by influenza viruses. Then the COVID-19 pandemic erupted across the world stage, and Gaston-Mathé and Collins learned that the viral culprit, SARS-CoV-2, relied on a protein that was 97 percent similar to their influenza protein. The partners pivoted.

Their companies are just two of hundreds of biotech firms eager to overhaul the drug-discovery process, often with the aid of artificial intelligence (AI) tools. The first set of antiviral drugs to treat COVID-19 will likely come from sifting through existing drugs. Remdesivir, for example, was originally developed to treat Ebola, and it has been shown to speed the recovery of hospitalized COVID-19 patients. But a drug made for one condition often has side effects and limited potency when applied to another. If researchers can produce an ­antiviral that specifically targets SARS-CoV-2, the drug would likely be safer and more effective than a repurposed drug.

There’s one big problem: Traditional drug discovery is far too slow to react to a pandemic. Designing a drug from scratch typically takes three to five years—and that’s before human clinical trials. “Our goal, with the combination of AI and automation, is to reduce that down to six months or less,” says Collins, who is chief strategy officer at SRI Biosciences, a division of the Silicon Valley research nonprofit SRI International. “We want to get this to be very, very fast.”

That sentiment is shared by small biotech firms and big pharmaceutical companies alike, many of which are now ramping up automated technologies backed by supercomputing power to predict, design, and test new antivirals—for this pandemic as well as the next—with unprecedented speed and scope.

“The entire industry is embracing these tools,” says Kara Carter, president of the International Society for Antiviral Research and executive vice president of infectious disease at Evotec, a drug-discovery company in Hamburg. “Not only do we need [new antivirals] to treat the SARS-CoV-2 infection in the population, which is probably here to stay, but we’ll also need them to treat future agents that arrive.”

There are currentlyabout 200 known viruses that infect humans. Although viruses represent less than 14 percent of all known human pathogens, they make up two-thirds of all new human pathogens discovered since 1980.

Antiviral drugs are fundamentally different from vaccines, which teach a person’s immune system to mount a defense against a viral invader, and antibody treatments, which enhance the body’s immune response. By contrast, anti­virals are chemical compounds that directly block a virus after a person has become infected. They do this by binding to specific proteins and preventing them from functioning, so that the virus cannot copy itself or enter or exit a cell.

The SARS-CoV-2 virus has an estimated 25 to 29 proteins, but not all of them are suitable drug targets. Researchers are investigating, among other targets, the virus’s exterior spike protein, which binds to a receptor on a human cell; two scissorlike enzymes, called proteases, that cut up long strings of viral proteins into functional pieces inside the cell; and a polymerase complex that makes the cell churn out copies of the virus’s genetic material, in the form of single-stranded RNA.

But it’s not enough for a drug candidate to simply attach to a target protein. Chemists also consider how tightly the compound binds to its target, whether it binds to other things as well, how quickly it metabolizes in the body, and so on. A drug candidate may have 10 to 20 such objectives. “Very often those objectives can appear to be anticorrelated or contradictory with each other,” says Gaston-Mathé.

Compared with antibiotics, antiviral drug discovery has proceeded at a snail’s pace. Scientists advanced from isolating the first antibacterial molecules in 1910 to developing an arsenal of powerful antibiotics by 1944. By contrast, it took until 1951 for researchers to be able to routinely grow large amounts of virus particles in cells in a dish, a breakthrough that earned the inventors a Nobel Prize in Medicine in 1954.

And the lag between the discovery of a virus and the creation of a treatment can be heartbreaking. According to the World Health Organization, 71 million people worldwide have chronic hepatitis C, a major cause of liver cancer. The virus that causes the infection was discovered in 1989, but effective antiviral drugs didn’t hit the market until 2014.

While many antibiotics work on a range of microbes, most antivirals are highly specific to a single virus—what those in the business call “one bug, one drug.” It takes a detailed understanding of a virus to develop an antiviral against it, says Che Colpitts, a virologist at Queen’s University, in Canada, who works on antivirals against RNA viruses. “When a new virus emerges, like SARS-CoV-2, we’re at a big disadvantage.”

Making drugs to stop viruses is hard for three main reasons. First, viruses are the Spartans of the pathogen world: They’re frugal, brutal, and expert at evading the human immune system. About 20 to 250 nanometers in diameter, viruses rely on just a few parts to operate, hijacking host cells to reproduce and often destroying those cells upon departure. They employ tricks to camouflage their presence from the host’s immune system, including preventing infected cells from sending out molecular distress beacons. “Viruses are really small, so they only have a few components, so there’s not that many drug targets available to start with,” says Colpitts.

Second, viruses replicate quickly, typically doubling in number in hours or days. This constant copying of their genetic material enables viruses to evolve quickly, producing mutations able to sidestep drug effects. The virus that causes AIDS soon develops resistance when exposed to a single drug. That’s why a cocktail of antiviral drugs is used to treat HIV infection.

Finally, unlike bacteria, which can exist independently outside human cells, viruses invade human cells to propagate, so any drug designed to eliminate a virus needs to spare the host cell. A drug that fails to distinguish between a virus and a cell can cause serious side effects. “Discriminating between the two is really quite difficult,” says Evotec’s Carter, who has worked in antiviral drug discovery for over three decades.

And then there’s the money barrier. Developing antivirals is rarely profitable. Health-policy researchers at the London School of Economics recently estimated that the average cost of developing a new drug is US $1 billion, and up to $2.8 billion for cancer and other specialty drugs. Because antivirals are usually taken for only short periods of time or during short outbreaks of disease, companies rarely recoup what they spent developing the drug, much less turn a profit, says Carter.

To change the status quo, drug discovery needs fresh approaches that leverage new technologies, rather than incremental improvements, says Christian Tidona, managing director of BioMed X, an independent research institute in Heidelberg, Germany. “We need breakthroughs.”

Putting Drug Development on Autopilot
Earlier this year, SRI Biosciences and Iktos began collaborating on a way to use artificial intelligence and automated chemistry to rapidly identify new drugs to target the COVID-19 virus. Within four months, they had designed and synthesized a first round of antiviral candidates. Here’s how they’re doing it.

1/5

STEP 1: Iktos’s AI platform uses deep-learning algorithms in an iterative process to come up with new molecular structures likely to bind to and disable a specific coronavirus protein. Illustrations: Chris Philpot

2/5

STEP 2: SRI Biosciences’s SynFini system is a three-part automated chemistry suite for producing new compounds. Starting with a target compound from Iktos, SynRoute uses machine learning to analyze and optimize routes for creating that compound, with results in about 10 seconds. It prioritizes routes based on cost, likelihood of success, and ease of implementation.

3/5

STEP 3: SynJet, an automated inkjet printer platform, tests the routes by printing out tiny quantities of chemical ingredients to see how they react. If the right compound is produced, the platform tests it.

4/5

STEP 4: AutoSyn, an automated tabletop chemical plant, synthesizes milligrams to grams of the desired compound for further testing. Computer-selected “maps” dictate paths through the plant’s modular components.

5/5

STEP 5: The most promising compounds are tested against live virus samples.

Previous
Next

Iktos’s AI platform was created by a medicinal chemist and an AI expert. To tackle SARS-CoV-2, the company used generative models—deep-learning algorithms that generate new data—to “imagine” molecular structures with a good chance of disabling a key coronavirus protein.

For a new drug target, the software proposes and evaluates roughly 1 million compounds, says Gaston-Mathé. It’s an iterative process: At each step, the system generates 100 virtual compounds, which are tested in silico with predictive models to see how closely they meet the objectives. The test results are then used to design the next batch of compounds. “It’s like we have a very, very fast chemist who is designing compounds, testing compounds, getting back the data, then designing another batch of compounds,” he says.

The computer isn’t as smart as a human chemist, Gaston-Mathé notes, but it’s much faster, so it can explore far more of what people in the field call “chemical space”—the set of all possible organic compounds. Unexplored chemical space is huge: Biochemists estimate that there are at least 1063 possible druglike molecules, and that 99.9 percent of all possible small molecules or compounds have never been synthesized.

Still, designing a chemical compound isn’t the hardest part of creating a new drug. After a drug candidate is designed, it must be synthesized, and the highly manual process for synthesizing a new chemical hasn’t changed much in 200 years. It can take days to plan a synthesis process and then months to years to optimize it for manufacture.

That’s why Gaston-Mathé was eager to send Iktos’s AI-generated designs to Collins’s team at SRI Biosciences. With $13.8 million from the Defense Advanced Research Projects Agency, SRI Biosciences spent the last four years automating the synthesis process. The company’s automated suite of three technologies, called SynFini, can produce new chemical compounds in just hours or days, says Collins.

First, machine-learning software devises possible routes for making a desired molecule. Next, an inkjet printer platform tests the routes by printing out and mixing tiny quantities of chemical ingredients to see how they react with one another; if the right compound is produced, the platform runs tests on it. Finally, a tabletop chemical plant synthesizes milligrams to grams of the desired compound.

Less than four months after Iktos and SRI Biosciences announced their collaboration, they had designed and synthesized a first round of antiviral candidates for SARS-CoV-2. Now they’re testing how well the compounds work on actual samples of the virus.

Out of 10
63 possible druglike molecules, 99.9 percent have never been synthesized.

Theirs isn’t the only collaborationapplying new tools to drug discovery. In late March, Alex Zhavoronkov, CEO of Hong Kong–based Insilico Medicine, came across a YouTube video showing three virtual-reality avatars positioning colorful, sticklike fragments in the side of a bulbous blue protein. The three researchers were using VR to explore how compounds might bind to a SARS-CoV-2 enzyme. Zhavoronkov contacted the startup that created the simulation—Nanome, in San Diego—and invited it to examine Insilico’s ­AI-generated molecules in virtual reality.

Insilico runs an AI platform that uses biological data to train deep-learning algorithms, then uses those algorithms to identify molecules with druglike features that will likely bind to a protein target. A four-day training sprint in late January yielded 100 molecules that appear to bind to an important SARS-CoV-2 protease. The company recently began synthesizing some of those molecules for laboratory testing.

Nanome’s VR software, meanwhile, allows researchers to import a molecular structure, then view and manipulate it on the scale of individual atoms. Like human chess players who use computer programs to explore potential moves, chemists can use VR to predict how to make molecules more druglike, says Nanome CEO Steve McCloskey. “The tighter the interface between the human and the computer, the more information goes both ways,” he says.

Zhavoronkov sent data about several of Insilico’s compounds to Nanome, which re-created them in VR. Nanome’s chemist demonstrated chemical tweaks to potentially improve each compound. “It was a very good experience,” says Zhavoronkov.

Meanwhile, in March, Takeda Pharmaceutical Co., of Japan, invited Schrödinger, a New York–based company that develops chemical-simulation software, to join an alliance working on antivirals. Schrödinger’s AI focuses on the physics of how proteins interact with small molecules and one another.

The software sifts through billions of molecules per week to predict a compound’s properties, and it optimizes for multiple desired properties simultaneously, says Karen Akinsanya, chief biomedical scientist and head of discovery R&D at Schrödinger. “There’s a huge sense of urgency here to come up with a potent molecule, but also to come up with molecules that are going to be well tolerated” by the body, she says. Drug developers are seeking compounds that can be broadly used and easily administered, such as an oral drug rather than an intravenous drug, she adds.

Schrödinger evaluated four protein targets and performed virtual screens for two of them, a computing-intensive process. In June, Google Cloud donated the equivalent of 16 million hours of Nvidia GPU time for the company’s calculations. Next, the alliance’s drug companies will synthesize and test the most promising compounds identified by the virtual screens.

Other companies, including Amazon Web Services, IBM, and Intel, as well as several U.S. national labs are also donating time and resources to the Covid-19 High Performance Computing Consortium. The consortium is supporting 87 projects, which now have access to 6.8 million CPU cores, 50,000 GPUs, and 600 petaflops of computational resources.

While advanced technologies could transform early drug discovery, any new drug candidate still has a long road after that. It must be tested in animals, manufactured in large batches for clinical trials, then tested in a series of trials that, for antivirals, lasts an average of seven years.

In May, the BioMed X Institute in Germany launched a five-year project to build a Rapid Antiviral Response Platform, which would speed drug discovery all the way through manufacturing for clinical trials. The €40 million ($47 million) project, backed by drug companies, will identify ­outside-the-box proposals from young scientists, then provide space and funding to develop their ideas.

“We’ll focus on technologies that allow us to go from identification of a new virus to 10,000 doses of a novel potential therapeutic ready for trials in less than six months,” says BioMed X’s Tidona, who leads the project.

While a vaccine will likely arrive long before a bespoke antiviral does, experts expect COVID-19 to be with us for a long time, so the effort to develop a direct-acting, potent antiviral continues. Plus, having new antivirals—and tools to rapidly create more—can only help us prepare for the next pandemic, whether it comes next month or in another 102 years.

“We’ve got to start thinking differently about how to be more responsive to these kinds of threats,” says Collins. “It’s pushing us out of our comfort zones.”

This article appears in the October 2020 print issue as “Automating Antivirals.” Continue reading

Posted in Human Robots