Tag Archives: assistant
#437491 3.2 Billion Images and 720,000 Hours of ...
Twitter over the weekend “tagged” as manipulated a video showing US Democratic presidential candidate Joe Biden supposedly forgetting which state he’s in while addressing a crowd.
Biden’s “hello Minnesota” greeting contrasted with prominent signage reading “Tampa, Florida” and “Text FL to 30330.”
The Associated Press’s fact check confirmed the signs were added digitally and the original footage was indeed from a Minnesota rally. But by the time the misleading video was removed it already had more than one million views, The Guardian reports.
A FALSE video claiming Biden forgot what state he was in was viewed more than 1 million times on Twitter in the past 24 hours
In the video, Biden says “Hello, Minnesota.”
The event did indeed happen in MN — signs on stage read MN
But false video edited signs to read Florida pic.twitter.com/LdHQVaky8v
— Donie O'Sullivan (@donie) November 1, 2020
If you use social media, the chances are you see (and forward) some of the more than 3.2 billion images and 720,000 hours of video shared daily. When faced with such a glut of content, how can we know what’s real and what’s not?
While one part of the solution is an increased use of content verification tools, it’s equally important we all boost our digital media literacy. Ultimately, one of the best lines of defense—and the only one you can control—is you.
Seeing Shouldn’t Always Be Believing
Misinformation (when you accidentally share false content) and disinformation (when you intentionally share it) in any medium can erode trust in civil institutions such as news organizations, coalitions and social movements. However, fake photos and videos are often the most potent.
For those with a vested political interest, creating, sharing and/or editing false images can distract, confuse and manipulate viewers to sow discord and uncertainty (especially in already polarized environments). Posters and platforms can also make money from the sharing of fake, sensationalist content.
Only 11-25 percent of journalists globally use social media content verification tools, according to the International Centre for Journalists.
Could You Spot a Doctored Image?
Consider this photo of Martin Luther King Jr.
Dr. Martin Luther King Jr. Giving the middle finger #DopeHistoricPics pic.twitter.com/5W38DRaLHr
— Dope Historic Pics (@dopehistoricpic) December 20, 2013
This altered image clones part of the background over King Jr’s finger, so it looks like he’s flipping off the camera. It has been shared as genuine on Twitter, Reddit, and white supremacist websites.
In the original 1964 photo, King flashed the “V for victory” sign after learning the US Senate had passed the civil rights bill.
“Those who love peace must learn to organize as effectively as those who love war.”
Dr. Martin Luther King Jr.
This photo was taken on June 19th, 1964, showing Dr King giving a peace sign after hearing that the civil rights bill had passed the senate. @snopes pic.twitter.com/LXHmwMYZS5
— Willie's Reserve (@WilliesReserve) January 21, 2019
Beyond adding or removing elements, there’s a whole category of photo manipulation in which images are fused together.
Earlier this year, a photo of an armed man was photoshopped by Fox News, which overlaid the man onto other scenes without disclosing the edits, the Seattle Times reported.
You mean this guy who’s been photoshopped into three separate photos released by Fox News? pic.twitter.com/fAXpIKu77a
— Zander Yates ザンダーイェーツ (@ZanderYates) June 13, 2020
Similarly, the image below was shared thousands of times on social media in January, during Australia’s Black Summer bushfires. The AFP’s fact check confirmed it is not authentic and is actually a combination of several separate photos.
Image is more powerful than screams of Greta. A silent girl is holding a koala. She looks straight at you from the waters of the ocean where they found a refuge. She is wearing a breathing mask. A wall of fire is behind them. I do not know the name of the photographer #Australia pic.twitter.com/CrTX3lltdh
— EVC Music (@EVCMusicUK) January 6, 2020
Fully and Partially Synthetic Content
Online, you’ll also find sophisticated “deepfake” videos showing (usually famous) people saying or doing things they never did. Less advanced versions can be created using apps such as Zao and Reface.
Or, if you don’t want to use your photo for a profile picture, you can default to one of several websites offering hundreds of thousands of AI-generated, photorealistic images of people.
These people don’t exist, they’re just images generated by artificial intelligence. Generated Photos, CC BY
Editing Pixel Values and the (not so) Simple Crop
Cropping can greatly alter the context of a photo, too.
We saw this in 2017, when a US government employee edited official pictures of Donald Trump’s inauguration to make the crowd appear bigger, according to The Guardian. The staffer cropped out the empty space “where the crowd ended” for a set of pictures for Trump.
Views of the crowds at the inaugurations of former US President Barack Obama in 2009 (left) and President Donald Trump in 2017 (right). AP
But what about edits that only alter pixel values such as color, saturation, or contrast?
One historical example illustrates the consequences of this. In 1994, Time magazine’s cover of OJ Simpson considerably “darkened” Simpson in his police mugshot. This added fuel to a case already plagued by racial tension, to which the magazine responded, “No racial implication was intended, by Time or by the artist.”
Tools for Debunking Digital Fakery
For those of us who don’t want to be duped by visual mis/disinformation, there are tools available—although each comes with its own limitations (something we discuss in our recent paper).
Invisible digital watermarking has been proposed as a solution. However, it isn’t widespread and requires buy-in from both content publishers and distributors.
Reverse image search (such as Google’s) is often free and can be helpful for identifying earlier, potentially more authentic copies of images online. That said, it’s not foolproof because it:
Relies on unedited copies of the media already being online.
Doesn’t search the entire web.
Doesn’t always allow filtering by publication time. Some reverse image search services such as TinEye support this function, but Google’s doesn’t.
Returns only exact matches or near-matches, so it’s not thorough. For instance, editing an image and then flipping its orientation can fool Google into thinking it’s an entirely different one.
Most Reliable Tools Are Sophisticated
Meanwhile, manual forensic detection methods for visual mis/disinformation focus mostly on edits visible to the naked eye, or rely on examining features that aren’t included in every image (such as shadows). They’re also time-consuming, expensive, and need specialized expertise.
Still, you can access work in this field by visiting sites such as Snopes.com—which has a growing repository of “fauxtography.”
Computer vision and machine learning also offer relatively advanced detection capabilities for images and videos. But they too require technical expertise to operate and understand.
Moreover, improving them involves using large volumes of “training data,” but the image repositories used for this usually don’t contain the real-world images seen in the news.
If you use an image verification tool such as the REVEAL project’s image verification assistant, you might need an expert to help interpret the results.
The good news, however, is that before turning to any of the above tools, there are some simple questions you can ask yourself to potentially figure out whether a photo or video on social media is fake. Think:
Was it originally made for social media?
How widely and for how long was it circulated?
What responses did it receive?
Who were the intended audiences?
Quite often, the logical conclusions drawn from the answers will be enough to weed out inauthentic visuals. You can access the full list of questions, put together by Manchester Metropolitan University experts, here.
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Image Credit: Simon Steinberger from Pixabay Continue reading
#437265 This Russian Firm’s Star Designer Is ...
Imagine discovering a new artist or designer—whether visual art, fashion, music, or even writing—and becoming a big fan of her work. You follow her on social media, eagerly anticipate new releases, and chat about her talent with your friends. It’s not long before you want to know more about this creative, inspiring person, so you start doing some research. It’s strange, but there doesn’t seem to be any information about the artist’s past online; you can’t find out where she went to school or who her mentors were.
After some more digging, you find out something totally unexpected: your beloved artist is actually not a person at all—she’s an AI.
Would you be amused? Annoyed? Baffled? Impressed? Probably some combination of all these. If you wanted to ask someone who’s had this experience, you could talk to clients of the biggest multidisciplinary design company in Russia, Art.Lebedev Studio (I know, the period confused me at first too). The studio passed off an AI designer as human for more than a year, and no one caught on.
They gave the AI a human-sounding name—Nikolay Ironov—and it participated in more than 20 different projects that included designing brand logos and building brand identities. According to the studio’s website, several of the logos the AI made attracted “considerable public interest, media attention, and discussion in online communities” due to their unique style.
So how did an AI learn to create such buzz-worthy designs? It was trained using hand-drawn vector images each associated with one or more themes. To start a new design, someone enters a few words describing the client, such as what kind of goods or services they offer. The AI uses those words to find associated images and generate various starter designs, which then go through another series of algorithms that “touch them up.” A human designer then selects the best options to present to the client.
“These systems combined together provide users with the experience of instantly converting a client’s text brief into a corporate identity design pack archive. Within seconds,” said Sergey Kulinkovich, the studio’s art director. He added that clients liked Nikolay Ironov’s work before finding out he was an AI (and liked the media attention their brands got after Ironov’s identity was revealed even more).
Ironov joins a growing group of AI “artists” that are starting to raise questions about the nature of art and creativity. Where do creative ideas come from? What makes a work of art truly great? And when more than one person is involved in making art, who should own the copyright?
Art.Lebedev is far from the first design studio to employ artificial intelligence; Mailchimp is using AI to let businesses design multi-channel marketing campaigns without human designers, and Adobe is marketing its new Sensei product as an AI design assistant.
While art made by algorithms can be unique and impressive, though, there’s one caveat that’s important to keep in mind when we worry about human creativity being rendered obsolete. Here’s the thing: AIs still depend on people to not only program them, but feed them a set of training data on which their intelligence and output are based. Depending on the size and nature of an AI’s input data, its output will look pretty different from that of a similar system, and a big part of the difference will be due to the people that created and trained the AIs.
Admittedly, Nikolay Ironov does outshine his human counterparts in a handful of ways; as the studio’s website points out, he can handle real commercial tasks effectively, he doesn’t sleep, get sick, or have “crippling creative blocks,” and he can complete tasks in a matter of seconds.
Given these superhuman capabilities, then, why even keep human designers on staff? As detailed above, it will be a while before creative firms really need to consider this question on a large scale; for now, it still takes a hard-working creative human to make a fast-producing creative AI.
Image Credit: Art.Lebedev Continue reading
#437244 Ex-Google robotics head unveils ...
The former head of Google's robotics division has unveiled a new robot named Stretch that he hopes will prove to be an economical and handy assistant around the home. Continue reading