Tag Archives: artificial

#431399 How Is Technology Evolving Over Time?

What was humanity’s first invention? Some say it was the wheel, while others say it was fire. But perhaps it was our invention of communication. Without this, no tool can be conceptualized, built, replicated, and improved upon by others over time.
Over the years, how we communicate has evolved immensely. Today, many of our inventions are focused on creating faster ways of communicating with each other, and in the process, we’re creating more data than humans can comprehend. Now, a new tool, artificial intelligence, is emerging at the nexus of all this.
How will AI aid and even accelerate technological progress?
Watch this episode of Tech-x-planations and learn more about the evolution of technology and the incredible potential of AI.

Image Credit: leungchopan / Shuttterstock.com Continue reading

Posted in Human Robots

#431392 What AI Can Now Do Is Remarkable—But ...

Major websites all over the world use a system called CAPTCHA to verify that someone is indeed a human and not a bot when entering data or signing into an account. CAPTCHA stands for the “Completely Automated Public Turing test to tell Computers and Humans Apart.” The squiggly letters and numbers, often posted against photographs or textured backgrounds, have been a good way to foil hackers. They are annoying but effective.
The days of CAPTCHA as a viable line of defense may, however, be numbered.
Researchers at Vicarious, a Californian artificial intelligence firm funded by Amazon founder Jeff Bezos and Facebook’s Mark Zuckerberg, have just published a paper documenting how they were able to defeat CAPTCHA using new artificial intelligence techniques. Whereas today’s most advanced artificial intelligence (AI) technologies use neural networks that require massive amounts of data to learn from, sometimes millions of examples, the researchers said their system needed just five training steps to crack Google’s reCAPTCHA technology. With this, they achieved a 67 percent success rate per character—reasonably close to the human accuracy rate of 87 percent. In answering PayPal and Yahoo CAPTCHAs, the system achieved an accuracy rate of greater than 50 percent.
The CAPTCHA breakthrough came hard on the heels of another major milestone from Google’s DeepMind team, the people who built the world’s best Go-playing system. DeepMind built a new artificial-intelligence system called AlphaGo Zero that taught itself to play the game at a world-beating level with minimal training data, mainly using trial and error—in a fashion similar to how humans learn.
Both playing Go and deciphering CAPTCHAs are clear examples of what we call narrow AI, which is different from artificial general intelligence (AGI)—the stuff of science fiction. Remember R2-D2 of Star Wars, Ava from Ex Machina, and Samantha from Her? They could do many things and learned everything they needed on their own.
Narrow AI technologies are systems that can only perform one specific type of task. For example, if you asked AlphaGo Zero to learn to play Monopoly, it could not, even though that is a far less sophisticated game than Go. If you asked the CAPTCHA cracker to learn to understand a spoken phrase, it would not even know where to start.
To date, though, even narrow AI has been difficult to build and perfect. To perform very elementary tasks such as determining whether an image is of a cat or a dog, the system requires the development of a model that details exactly what is being analyzed and massive amounts of data with labeled examples of both. The examples are used to train the AI systems, which are modeled on the neural networks in the brain, in which the connections between layers of neurons are adjusted based on what is observed. To put it simply, you tell an AI system exactly what to learn, and the more data you give it, the more accurate it becomes.
The methods that Vicarious and Google used were different; they allowed the systems to learn on their own, albeit in a narrow field. By making their own assumptions about what the training model should be and trying different permutations until they got the right results, they were able to teach themselves how to read the letters in a CAPTCHA or to play a game.
This blurs the line between narrow AI and AGI and has broader implications in robotics and virtually any other field in which machine learning in complex environments may be relevant.
Beyond visual recognition, the Vicarious breakthrough and AlphaGo Zero success are encouraging scientists to think about how AIs can learn to do things from scratch. And this brings us one step closer to coexisting with classes of AIs and robots that can learn to perform new tasks that are slight variants on their previous tasks—and ultimately the AGI of science fiction.
So R2-D2 may be here sooner than we expected.
This article was originally published by The Washington Post. Read the original article here.
Image Credit: Zapp2Photo / Shutterstock.com Continue reading

Posted in Human Robots

#431389 Tech Is Becoming Emotionally ...

Many people get frustrated with technology when it malfunctions or is counterintuitive. The last thing people might expect is for that same technology to pick up on their emotions and engage with them differently as a result.
All of that is now changing. Computers are increasingly able to figure out what we’re feeling—and it’s big business.
A recent report predicts that the global affective computing market will grow from $12.2 billion in 2016 to $53.98 billion by 2021. The report by research and consultancy firm MarketsandMarkets observed that enabling technologies have already been adopted in a wide range of industries and noted a rising demand for facial feature extraction software.
Affective computing is also referred to as emotion AI or artificial emotional intelligence. Although many people are still unfamiliar with the category, researchers in academia have already discovered a multitude of uses for it.
At the University of Tokyo, Professor Toshihiko Yamasaki decided to develop a machine learning system that evaluates the quality of TED Talk videos. Of course, a TED Talk is only considered to be good if it resonates with a human audience. On the surface, this would seem too qualitatively abstract for computer analysis. But Yamasaki wanted his system to watch videos of presentations and predict user impressions. Could a machine learning system accurately evaluate the emotional persuasiveness of a speaker?
Yamasaki and his colleagues came up with a method that analyzed correlations and “multimodal features including linguistic as well as acoustic features” in a dataset of 1,646 TED Talk videos. The experiment was successful. The method obtained “a statistically significant macro-average accuracy of 93.3 percent, outperforming several competitive baseline methods.”
A machine was able to predict whether or not a person would emotionally connect with other people. In their report, the authors noted that these findings could be used for recommendation purposes and also as feedback to the presenters, in order to improve the quality of their public presentation. However, the usefulness of affective computing goes far beyond the way people present content. It may also transform the way they learn it.
Researchers from North Carolina State University explored the connection between students’ affective states and their ability to learn. Their software was able to accurately predict the effectiveness of online tutoring sessions by analyzing the facial expressions of participating students. The software tracked fine-grained facial movements such as eyebrow raising, eyelid tightening, and mouth dimpling to determine engagement, frustration, and learning. The authors concluded that “analysis of facial expressions has great potential for educational data mining.”
This type of technology is increasingly being used within the private sector. Affectiva is a Boston-based company that makes emotion recognition software. When asked to comment on this emerging technology, Gabi Zijderveld, chief marketing officer at Affectiva, explained in an interview for this article, “Our software measures facial expressions of emotion. So basically all you need is our software running and then access to a camera so you can basically record a face and analyze it. We can do that in real time or we can do this by looking at a video and then analyzing data and sending it back to folks.”
The technology has particular relevance for the advertising industry.
Zijderveld said, “We have products that allow you to measure how consumers or viewers respond to digital content…you could have a number of people looking at an ad, you measure their emotional response so you aggregate the data and it gives you insight into how well your content is performing. And then you can adapt and adjust accordingly.”
Zijderveld explained that this is the first market where the company got traction. However, they have since packaged up their core technology in software development kits or SDKs. This allows other companies to integrate emotion detection into whatever they are building.
By licensing its technology to others, Affectiva is now rapidly expanding into a wide variety of markets, including gaming, education, robotics, and healthcare. The core technology is also used in human resources for the purposes of video recruitment. The software analyzes the emotional responses of interviewees, and that data is factored into hiring decisions.
Richard Yonck is founder and president of Intelligent Future Consulting and the author of a book about our relationship with technology. “One area I discuss in Heart of the Machine is the idea of an emotional economy that will arise as an ecosystem of emotionally aware businesses, systems, and services are developed. This will rapidly expand into a multi-billion-dollar industry, leading to an infrastructure that will be both emotionally responsive and potentially exploitive at personal, commercial, and political levels,” said Yonck, in an interview for this article.
According to Yonck, these emotionally-aware systems will “better anticipate needs, improve efficiency, and reduce stress and misunderstandings.”
Affectiva is uniquely positioned to profit from this “emotional economy.” The company has already created the world’s largest emotion database. “We’ve analyzed a little bit over 4.7 million faces in 75 countries,” said Zijderveld. “This is data first and foremost, it’s data gathered with consent. So everyone has opted in to have their faces analyzed.”
The vastness of that database is essential for deep learning approaches. The software would be inaccurate if the data was inadequate. According to Zijderveld, “If you don’t have massive amounts of data of people of all ages, genders, and ethnicities, then your algorithms are going to be pretty biased.”
This massive database has already revealed cultural insights into how people express emotion. Zijderveld explained, “Obviously everyone knows that women are more expressive than men. But our data confirms that, but not only that, it can also show that women smile longer. They tend to smile more often. There’s also regional differences.”
Yonck believes that affective computing will inspire unimaginable forms of innovation and that change will happen at a fast pace.
He explained, “As businesses, software, systems, and services develop, they’ll support and make possible all sorts of other emotionally aware technologies that couldn’t previously exist. This leads to a spiral of increasingly sophisticated products, just as happened in the early days of computing.”
Those who are curious about affective technology will soon be able to interact with it.
Hubble Connected unveiled the Hubble Hugo at multiple trade shows this year. Hugo is billed as “the world’s first smart camera,” with emotion AI video analytics powered by Affectiva. The product can identify individuals, figure out how they’re feeling, receive voice commands, video monitor your home, and act as a photographer and videographer of events. Media can then be transmitted to the cloud. The company’s website describes Hugo as “a fun pal to have in the house.”
Although he sees the potential for improved efficiencies and expanding markets, Richard Yonck cautions that AI technology is not without its pitfalls.
“It’s critical that we understand we are headed into very unknown territory as we develop these systems, creating problems unlike any we’ve faced before,” said Yonck. “We should put our focus on ensuring AI develops in a way that represents our human values and ideals.”
Image Credit: Kisan / Shutterstock.com Continue reading

Posted in Human Robots

#431385 Here’s How to Get to Conscious ...

“We cannot be conscious of what we are not conscious of.” – Julian Jaynes, The Origin of Consciousness in the Breakdown of the Bicameral Mind
Unlike the director leads you to believe, the protagonist of Ex Machina, Andrew Garland’s 2015 masterpiece, isn’t Caleb, a young programmer tasked with evaluating machine consciousness. Rather, it’s his target Ava, a breathtaking humanoid AI with a seemingly child-like naïveté and an enigmatic mind.
Like most cerebral movies, Ex Machina leaves the conclusion up to the viewer: was Ava actually conscious? In doing so, it also cleverly avoids a thorny question that has challenged most AI-centric movies to date: what is consciousness, and can machines have it?
Hollywood producers aren’t the only people stumped. As machine intelligence barrels forward at breakneck speed—not only exceeding human performance on games such as DOTA and Go, but doing so without the need for human expertise—the question has once more entered the scientific mainstream.
Are machines on the verge of consciousness?
This week, in a review published in the prestigious journal Science, cognitive scientists Drs. Stanislas Dehaene, Hakwan Lau and Sid Kouider of the Collège de France, University of California, Los Angeles and PSL Research University, respectively, argue: not yet, but there is a clear path forward.
The reason? Consciousness is “resolutely computational,” the authors say, in that it results from specific types of information processing, made possible by the hardware of the brain.
There is no magic juice, no extra spark—in fact, an experiential component (“what is it like to be conscious?”) isn’t even necessary to implement consciousness.
If consciousness results purely from the computations within our three-pound organ, then endowing machines with a similar quality is just a matter of translating biology to code.
Much like the way current powerful machine learning techniques heavily borrow from neurobiology, the authors write, we may be able to achieve artificial consciousness by studying the structures in our own brains that generate consciousness and implementing those insights as computer algorithms.
From Brain to Bot
Without doubt, the field of AI has greatly benefited from insights into our own minds, both in form and function.
For example, deep neural networks, the architecture of algorithms that underlie AlphaGo’s breathtaking sweep against its human competitors, are loosely based on the multi-layered biological neural networks that our brain cells self-organize into.
Reinforcement learning, a type of “training” that teaches AIs to learn from millions of examples, has roots in a centuries-old technique familiar to anyone with a dog: if it moves toward the right response (or result), give a reward; otherwise ask it to try again.
In this sense, translating the architecture of human consciousness to machines seems like a no-brainer towards artificial consciousness. There’s just one big problem.
“Nobody in AI is working on building conscious machines because we just have nothing to go on. We just don’t have a clue about what to do,” said Dr. Stuart Russell, the author of Artificial Intelligence: A Modern Approach in a 2015 interview with Science.
Multilayered consciousness
The hard part, long before we can consider coding machine consciousness, is figuring out what consciousness actually is.
To Dehaene and colleagues, consciousness is a multilayered construct with two “dimensions:” C1, the information readily in mind, and C2, the ability to obtain and monitor information about oneself. Both are essential to consciousness, but one can exist without the other.
Say you’re driving a car and the low fuel light comes on. Here, the perception of the fuel-tank light is C1—a mental representation that we can play with: we notice it, act upon it (refill the gas tank) and recall and speak about it at a later date (“I ran out of gas in the boonies!”).
“The first meaning we want to separate (from consciousness) is the notion of global availability,” explains Dehaene in an interview with Science. When you’re conscious of a word, your whole brain is aware of it, in a sense that you can use the information across modalities, he adds.
But C1 is not just a “mental sketchpad.” It represents an entire architecture that allows the brain to draw multiple modalities of information from our senses or from memories of related events, for example.
Unlike subconscious processing, which often relies on specific “modules” competent at a defined set of tasks, C1 is a global workspace that allows the brain to integrate information, decide on an action, and follow through until the end.
Like The Hunger Games, what we call “conscious” is whatever representation, at one point in time, wins the competition to access this mental workspace. The winners are shared among different brain computation circuits and are kept in the spotlight for the duration of decision-making to guide behavior.
Because of these features, C1 consciousness is highly stable and global—all related brain circuits are triggered, the authors explain.
For a complex machine such as an intelligent car, C1 is a first step towards addressing an impending problem, such as a low fuel light. In this example, the light itself is a type of subconscious signal: when it flashes, all of the other processes in the machine remain uninformed, and the car—even if equipped with state-of-the-art visual processing networks—passes by gas stations without hesitation.
With C1 in place, the fuel tank would alert the car computer (allowing the light to enter the car’s “conscious mind”), which in turn checks the built-in GPS to search for the next gas station.
“We think in a machine this would translate into a system that takes information out of whatever processing module it’s encapsulated in, and make it available to any of the other processing modules so they can use the information,” says Dehaene. “It’s a first sense of consciousness.”
Meta-cognition
In a way, C1 reflects the mind’s capacity to access outside information. C2 goes introspective.
The authors define the second facet of consciousness, C2, as “meta-cognition:” reflecting on whether you know or perceive something, or whether you just made an error (“I think I may have filled my tank at the last gas station, but I forgot to keep a receipt to make sure”). This dimension reflects the link between consciousness and sense of self.
C2 is the level of consciousness that allows you to feel more or less confident about a decision when making a choice. In computational terms, it’s an algorithm that spews out the probability that a decision (or computation) is correct, even if it’s often experienced as a “gut feeling.”
C2 also has its claws in memory and curiosity. These self-monitoring algorithms allow us to know what we know or don’t know—so-called “meta-memory,” responsible for that feeling of having something at the tip of your tongue. Monitoring what we know (or don’t know) is particularly important for children, says Dehaene.
“Young children absolutely need to monitor what they know in order to…inquire and become curious and learn more,” he explains.
The two aspects of consciousness synergize to our benefit: C1 pulls relevant information into our mental workspace (while discarding other “probable” ideas or solutions), while C2 helps with long-term reflection on whether the conscious thought led to a helpful response.
Going back to the low fuel light example, C1 allows the car to solve the problem in the moment—these algorithms globalize the information, so that the car becomes aware of the problem.
But to solve the problem, the car would need a “catalog of its cognitive abilities”—a self-awareness of what resources it has readily available, for example, a GPS map of gas stations.
“A car with this sort of self-knowledge is what we call having C2,” says Dehaene. Because the signal is globally available and because it’s being monitored in a way that the machine is looking at itself, the car would care about the low gas light and behave like humans do—lower fuel consumption and find a gas station.
“Most present-day machine learning systems are devoid of any self-monitoring,” the authors note.
But their theory seems to be on the right track. The few examples whereby a self-monitoring system was implemented—either within the structure of the algorithm or as a separate network—the AI has generated “internal models that are meta-cognitive in nature, making it possible for an agent to develop a (limited, implicit, practical) understanding of itself.”
Towards conscious machines
Would a machine endowed with C1 and C2 behave as if it were conscious? Very likely: a smartcar would “know” that it’s seeing something, express confidence in it, report it to others, and find the best solutions for problems. If its self-monitoring mechanisms break down, it may also suffer “hallucinations” or even experience visual illusions similar to humans.
Thanks to C1 it would be able to use the information it has and use it flexibly, and because of C2 it would know the limit of what it knows, says Dehaene. “I think (the machine) would be conscious,” and not just merely appearing so to humans.
If you’re left with a feeling that consciousness is far more than global information sharing and self-monitoring, you’re not alone.
“Such a purely functional definition of consciousness may leave some readers unsatisfied,” the authors acknowledge.
“But we’re trying to take a radical stance, maybe simplifying the problem. Consciousness is a functional property, and when we keep adding functions to machines, at some point these properties will characterize what we mean by consciousness,” Dehaene concludes.
Image Credit: agsandrew / Shutterstock.com Continue reading

Posted in Human Robots

#431383 Sony revives robot pet dog

Japanese electronics giant Sony is marking the year of the dog by bringing back to life its robot canine—packed with artificial intelligence and internet capability. Continue reading

Posted in Human Robots