Tag Archives: artificial

#437671 Video Friday: Researchers 3D Print ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online]
IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

The Giant Gundam in Yokohama is actually way cooler than I thought it was going to be.

[ Gundam Factory ] via [ YouTube ]

A new 3D-printing method will make it easier to manufacture and control the shape of soft robots, artificial muscles and wearable devices. Researchers at UC San Diego show that by controlling the printing temperature of liquid crystal elastomer, or LCE, they can control the material’s degree of stiffness and ability to contract—also known as degree of actuation. What’s more, they are able to change the stiffness of different areas in the same material by exposing it to heat.

[ UCSD ]

Thanks Ioana!

This is the first successful reactive stepping test on our new torque-controlled biped robot named Bolt. The robot has 3 active degrees of freedom per leg and one passive joint in ankle. Since there is no active joint in ankle, the robot only relies on step location and timing adaptation to stabilize its motion. Not only can the robot perform stepping without active ankles, but it is also capable of rejecting external disturbances as we showed in this video.

[ ODRI ]

The curling robot “Curly” is the first AI-based robot to demonstrate competitive curling skills in an icy real environment with its high uncertainties. Scientists from seven different Korean research institutions including Prof. Klaus-Robert Müller, head of the machine-learning group at TU Berlin and guest professor at Korea University, have developed an AI-based curling robot.

[ TU Berlin ]

MoonRanger, a small robotic rover being developed by Carnegie Mellon University and its spinoff Astrobotic, has completed its preliminary design review in preparation for a 2022 mission to search for signs of water at the moon’s south pole. Red Whittaker explains why the new MoonRanger Lunar Explorer design is innovative and different from prior planetary rovers.

[ CMU ]

Cobalt’s security robot can now navigate unmodified elevators, which is an impressive feat.

Also, EXTERMINATE!

[ Cobalt ]

OrionStar, the robotics company invested in by Cheetah Mobile, announced the Robotic Coffee Master. Incorporating 3,000 hours of AI learning, 30,000 hours of robotic arm testing and machine vision training, the Robotic Coffee Master can perform complex brewing techniques, such as curves and spirals, with millimeter-level stability and accuracy (reset error ≤ 0.1mm).

[ Cheetah Mobile ]

DARPA OFFensive Swarm-Enabled Tactics (OFFSET) researchers recently tested swarms of autonomous air and ground vehicles at the Leschi Town Combined Arms Collective Training Facility (CACTF), located at Joint Base Lewis-McChord (JBLM) in Washington. The Leschi Town field experiment is the fourth of six planned experiments for the OFFSET program, which seeks to develop large-scale teams of collaborative autonomous systems capable of supporting ground forces operating in urban environments.

[ DARPA ]

Here are some highlights from Team Explorer’s SubT Urban competition back in February.

[ Team Explorer ]

Researchers with the Skoltech Intelligent Space Robotics Laboratory have developed a system that allows easy interaction with a micro-quadcopter with LEDs that can be used for light-painting. The researchers used a 92x92x29 mm Crazyflie 2.0 quadrotor that weighs just 27 grams, equipped with a light reflector and an array of controllable RGB LEDs. The control system consists of a glove equipped with an inertial measurement unit (IMU; an electronic device that tracks the movement of a user’s hand), and a base station that runs a machine learning algorithm.

[ Skoltech ]

“DeKonBot” is the prototype of a cleaning and disinfection robot for potentially contaminated surfaces in buildings such as door handles, light switches or elevator buttons. While other cleaning robots often spray the cleaning agents over a large area, DeKonBot autonomously identifies the surface to be cleaned.

[ Fraunhofer IPA ]

On Oct. 20, the OSIRIS-REx mission will perform the first attempt of its Touch-And-Go (TAG) sample collection event. Not only will the spacecraft navigate to the surface using innovative navigation techniques, but it could also collect the largest sample since the Apollo missions.

[ NASA ]

With all the robotics research that seems to happen in places where snow is more of an occasional novelty or annoyance, it’s good to see NORLAB taking things more seriously

[ NORLAB ]

Telexistence’s Model-T robot works very slowly, but very safely, restocking shelves.

[ Telexistence ] via [ YouTube ]

Roboy 3.0 will be unveiled next month!

[ Roboy ]

KUKA ready2_educate is your training cell for hands-on education in robotics. It is especially aimed at schools, universities and company training facilities. The training cell is a complete starter package and your perfect partner for entry into robotics.

[ KUKA ]

A UPenn GRASP Lab Special Seminar on Data Driven Perception for Autonomy, presented by Dapo Afolabi from UC Berkeley.

Perception systems form a crucial part of autonomous and artificial intelligence systems since they convert data about the relationship between an autonomous system and its environment into meaningful information. Perception systems can be difficult to build since they may involve modeling complex physical systems or other autonomous agents. In such scenarios, data driven models may be used to augment physics based models for perception. In this talk, I will present work making use of data driven models for perception tasks, highlighting the benefit of such approaches for autonomous systems.

[ GRASP Lab ]

A Maryland Robotics Center Special Robotics Seminar on Underwater Autonomy, presented by Ioannis Rekleitis from the University of South Carolina.

This talk presents an overview of algorithmic problems related to marine robotics, with a particular focus on increasing the autonomy of robotic systems in challenging environments. I will talk about vision-based state estimation and mapping of underwater caves. An application of monitoring coral reefs is going to be discussed. I will also talk about several vehicles used at the University of South Carolina such as drifters, underwater, and surface vehicles. In addition, a short overview of the current projects will be discussed. The work that I will present has a strong algorithmic flavour, while it is validated in real hardware. Experimental results from several testing campaigns will be presented.

[ MRC ]

This week’s CMU RI Seminar comes from Scott Niekum at UT Austin, on Scaling Probabilistically Safe Learning to Robotics.

Before learning robots can be deployed in the real world, it is critical that probabilistic guarantees can be made about the safety and performance of such systems. This talk focuses on new developments in three key areas for scaling safe learning to robotics: (1) a theory of safe imitation learning; (2) scalable reward inference in the absence of models; (3) efficient off-policy policy evaluation. The proposed algorithms offer a blend of safety and practicality, making a significant step towards safe robot learning with modest amounts of real-world data.

[ CMU RI ] Continue reading

Posted in Human Robots

#437639 Boston Dynamics’ Spot Is Helping ...

In terms of places where you absolutely want a robot to go instead of you, what remains of the utterly destroyed Chernobyl Reactor 4 should be very near the top of your list. The reactor, which suffered a catastrophic meltdown in 1986, has been covered up in almost every way possible in an effort to keep its nuclear core contained. But eventually, that nuclear material is going to have to be dealt with somehow, and in order to do that, it’s important to understand which bits of it are just really bad, and which bits are the actual worst. And this is where Spot is stepping in to help.

The big open space that Spot is walking through is right next to what’s left of Reactor 4. Within six months of the disaster, Reactor 4 was covered in a sarcophagus made of concrete and steel to try and keep all the nasty nuclear fuel from leaking out more than it already had, and it still contains “30 tons of highly contaminated dust, 16 tons of uranium and plutonium, and 200 tons of radioactive lava.” Oof. Over the next 10 years, the sarcophagus slowly deteriorated, and despite the addition of that gigantic network of steel support beams that you can see in the video, in the late 1990s it was decided to erect an enormous building over the entire mess to try and stabilize it for as long as possible.

Reactor 4 is now snugly inside the massive New Safe Confinement (NSC) structure, and the idea is that eventually, the structure will allow for the safe disassembly of what’s left of the reactor, although nobody is quite sure how to do that. This is all just to say that the area inside of the containment structure offers a lot of good opportunities for robots to take over from humans.

This particular Spot is owned by the U.K. Atomic Energy Authority, and was packed off to Russia with the assistance of the Robotics and Artificial Intelligence in Nuclear (RAIN) initiative and the National Centre for Nuclear Robotics. Dr. Dave Megson-Smith, who is a researcher at the University of Bristol, in the U.K., and part of the Hot Robotics Facility at the National Nuclear User Facility, was one of the scientists lucky enough to accompany Spot on its adventure. Megson-Smith specializes in sensor development, and he equipped Spot with a collimated radiation sensor in addition to its mapping payload. “We actually built a map of the radiation coming out of the front wall of Chernobyl power plant as we were in there with it,” Megson-Smith told us, and was able to share this picture, which shows a map of gamma photon count rate:

Image: University of Bristol

Researchers equipped Spot with a collimated radiation sensor and use one of the data readings (gamma photon count rate) to create a map of the radiation coming out of the front wall of the Chernobyl power plant.

So what’s the reason you’d want to use a very expensive legged robot to wander around what looks like a very flat and robot friendly floor? As it turns out, the floor is very dusty in there, and a priority inside the NSC is to keep dust down as much as possible, since the dust is radioactive and gets on everything and is consequently the easiest way for radioactivity to escape the NSC. “You want to minimize picking up material, so we consider the total contact surface area,” says Megson-Smith. “If you use a legged system rather than a wheeled or tracked system, you have a much smaller footprint and you disturb the environment a lot less.” While it’s nice that Spot is nimble and can climb stairs and stuff, tracked vehicles can do that as well, so in this case, the primary driving factor of choosing a robot to work inside Chernobyl is minimizing those contact points.

Right now, routine weekly measurements in contaminated spaces at Chernobyl are done by humans, which puts those humans at risk. Spot, or a robot like it, could potentially take over from those humans, as a sort of “automated safety checker”

Right now, routine weekly measurements in contaminated spaces at Chernobyl are done by humans, which puts those humans at risk. Spot, or a robot like it, could potentially take over from those humans, as a sort of “automated safety checker” able to work in medium level contaminated environments.” As far as more dangerous areas go, there’s a lot of uncertainty about what Spot is actually capable of, according to Megson-Smith. “What you think the problems are, and what the industry thinks the problems are, are subtly different things.

We were thinking that we’d have to make robots incredibly radiation proof to go into these contaminated environments, but they said, “can you just give us a system that we can send into places where humans already can go, but where we just don’t want to send humans.” Making robots incredibly radiation proof is challenging, and without extensive testing and ruggedizing, failures can be frequent, as many robots discovered at Fukushima. Indeed, Megson-Smith that in Fukushima there’s a particular section that’s known as a “robot graveyard” where robots just go to die, and they’ve had to up their standards again and again to keep the robots from failing. “So the thing they’re worried about with Spot is, what is its tolerance? What components will fail, and what can we do to harden it?” he says. “We’re approaching Boston Dynamics at the moment to see if they’ll work with us to address some of those questions.

There’s been a small amount of testing of how robots fair under harsh radiation, Megson-Smith told us, including (relatively recently) a KUKA LBR800 arm, which “stopped operating after a large radiation dose of 164.55(±1.09) Gy to its end effector, and the component causing the failure was an optical encoder.” And in case you’re wondering how much radiation that is, a 1 to 2 Gy dose to the entire body gets you acute radiation sickness and possibly death, while 8 Gy is usually just straight-up death. The goal here is not to kill robots (I mean, it sort of is), but as Megson-Smith says, “if we can work out what the weak points are in a robotic system, can we address those, can we redesign those, or at least understand when they might start to fail?” Now all he has to do is convince Boston Dynamics to send them a Spot that they can zap until it keels over.

The goal for Spot in the short term is fully autonomous radiation mapping, which seems very possible. It’ll also get tested with a wider range of sensor packages, and (happily for the robot) this will all take place safely back at home in the U.K. As far as Chernobyl is concerned, robots will likely have a substantial role to play in the near future. “Ultimately, Chernobyl has to be taken apart and decommissioned. That’s the long-term plan for the facility. To do that, you first need to understand everything, which is where we come in with our sensor systems and robotic platforms,” Megson-Smith tells us. “Since there are entire swathes of the Chernobyl nuclear plant where people can’t go in, we’d need robots like Spot to do those environmental characterizations.” Continue reading

Posted in Human Robots

#437630 How Toyota Research Envisions the Future ...

Yesterday, the Toyota Research Institute (TRI) showed off some of the projects that it’s been working on recently, including a ceiling-mounted robot that could one day help us with household chores. That system is just one example of how TRI envisions the future of robotics and artificial intelligence. As TRI CEO Gill Pratt told us, the company is focusing on robotics and AI technology for “amplifying, rather than replacing, human beings.” In other words, Toyota wants to develop robots not for convenience or to do our jobs for us, but rather to allow people to continue to live and work independently even as we age.

To better understand Toyota’s vision of robotics 15 to 20 years from now, it’s worth watching the 20-minute video below, which depicts various scenarios “where the application of robotic capabilities is enabling members of an aging society to live full and independent lives in spite of the challenges that getting older brings.” It’s a long video, but it helps explains TRI’s perspective on how robots will collaborate with humans in our daily lives over the next couple of decades.

Those are some interesting conceptual telepresence-controlled bipeds they’ve got running around in that video, right?

For more details, we sent TRI some questions on how it plans to go from concepts like the ones shown in the video to real products that can be deployed in human environments. Below are answers from TRI CEO Gill Pratt, who is also chief scientist for Toyota Motor Corp.; Steffi Paepcke, senior UX designer at TRI; and Max Bajracharya, VP of robotics at TRI.

IEEE Spectrum: TRI seems to have a more explicit focus on eventual commercialization than most of the robotics research that we cover. At what point TRI starts to think about things like reliability and cost?

Photo: TRI

Toyota is exploring robots capable of manipulating dishes in a sink and a dishwasher, performing experiments and simulations to make sure that the robots can handle a wide range of conditions.

Gill Pratt: It’s a really interesting question, because the normal way to think about this would be to say, well, both reliability and cost are product development tasks. But actually, we need to think about it at the earliest possible stage with research as well. The hardware that we use in the laboratory for doing experiments, we don’t worry about cost there, or not nearly as much as you’d worry about for a product. However, in terms of what research we do, we very much have to think about, is it possible (if the research is successful) for it to end up in a product that has a reasonable cost. Because if a customer can’t afford what we come up with, maybe it has some academic value but it’s not actually going to make a difference in their quality of life in the real world. So we think about cost very much from the beginning.

The same is true with reliability. Right now, we’re working very hard to make our control techniques robust to wide variations in the environment. For instance, in work that Russ Tedrake is doing with manipulating dishes in a sink and a dishwasher, both in physical testing and in simulation, we’re doing thousands and now millions of different experiments to make sure that we can handle the edge cases and it works over a very wide range of conditions.

A tremendous amount of work that we do is trying to bring robotics out of the age of doing demonstrations. There’s been a history of robotics where for some time, things have not been reliable, so we’d catch the robot succeeding just once and then show that video to the world, and people would get the mis-impression that it worked all of the time. Some researchers have been very good about showing the blooper reel too, to show that some of the time, robots don’t work.

“A tremendous amount of work that we do is trying to bring robotics out of the age of doing demonstrations. There’s been a history of robotics where for some time, things have not been reliable, so we’d catch the robot succeeding just once and then show that video to the world, and people would get the mis-impression that it worked all of the time.”
—Gill Pratt, TRI

In the spirit of sharing things that didn’t work, can you tell us a bit about some of the robots that TRI has had under development that didn’t make it into the demo yesterday because they were abandoned along the way?

Steffi Paepcke: We’re really looking at how we can connect people; it can be hard to stay in touch and see our loved ones as much as we would like to. There have been a few prototypes that we’ve worked on that had to be put on the shelf, at least for the time being. We were exploring how to use light so that people could be ambiently aware of one another across distances. I was very excited about that—the internal name was “glowing orb.” For a variety of reasons, it didn’t work out, but it was really fascinating to investigate different modalities for keeping in touch.

Another prototype we worked on—we found through our research that grocery shopping is obviously an important part of life, and for a lot of older adults, it’s not necessarily the right answer to always have groceries delivered. Getting up and getting out of the house keeps you physically active, and a lot of people prefer to continue doing it themselves. But it can be challenging, especially if you’re purchasing heavy items that you need to transport. We had a prototype that assisted with grocery shopping, but when we pivoted our focus to Japan, we found that the inside of a Japanese home really needs to stay inside, and the outside needs to stay outside, so a robot that traverses both domains is probably not the right fit for a Japanese audience, and those were some really valuable lessons for us.

Photo: TRI

Toyota recently demonstrated a gantry robot that would hang from the ceiling to perform tasks like wiping surfaces and clearing clutter.

I love that TRI is exploring things like the gantry robot both in terms of near-term research and as part of its long-term vision, but is a robot like this actually worth pursuing? Or more generally, what’s the right way to compromise between making an environment robot friendly, and asking humans to make changes to their homes?

Max Bajracharya: We think a lot about the problems that we’re trying to address in a holistic way. We don’t want to just give people a robot, and assume that they’re not going to change anything about their lifestyle. We have a lot of evidence from people who use automated vacuum cleaners that people will adapt to the tools you give them, and they’ll change their lifestyle. So we want to think about what is that trade between changing the environment, and giving people robotic assistance and tools.

We certainly think that there are ways to make the gantry system plausible. The one you saw today is obviously a prototype and does require significant infrastructure. If we’re going to retrofit a home, that isn’t going to be the way to do it. But we still feel like we’re very much in the prototype phase, where we’re trying to understand whether this is worth it to be able to bypass navigation challenges, and coming up with the pros and cons of the gantry system. We’re evaluating whether we think this is the right approach to solving the problem.

To what extent do you think humans should be either directly or indirectly in the loop with home and service robots?

Bajracharya: Our goal is to amplify people, so achieving this is going to require robots to be in a loop with people in some form. One thing we have learned is that using people in a slow loop with robots, such as teaching them or helping them when they make mistakes, gives a robot an important advantage over one that has to do everything perfectly 100 percent of the time. In unstructured human environments, robots are going to encounter corner cases, and are going to need to learn to adapt. People will likely play an important role in helping the robots learn. Continue reading

Posted in Human Robots

#437628 Video Friday: An In-Depth Look at Mesmer ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online]
IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

Bear Robotics, a robotics and artificial intelligence company, and SoftBank Robotics Group, a leading robotics manufacturer and solutions provider, have collaborated to bring a new robot named Servi to the food service and hospitality field.

[ Bear Robotics ]

A literal in-depth look at Engineered Arts’ Mesmer android.

[ Engineered Arts ]

Is your robot running ROS? Is it connected to the Internet? Are you actually in control of it right now? Are you sure?

I appreciate how the researchers admitted to finding two of their own robots as part of the scan, a Baxter and a drone.

[ Brown ]

Smile Robotics describes this as “(possibly) world’s first full-autonomous clear-up-the-table robot.”

We’re not qualified to make a judgement on the world firstness, but personally I hate clearing tables, so this robot has my vote.

Smile Robotics founder and CEO Takashi Ogura, along with chief engineer Mitsutaka Kabasawa and engineer Kazuya Kobayashi, are former Google roboticists. Ogura also worked at SCHAFT. Smile says its robot uses ROS and is controlled by a framework written mainly in Rust, adding: “We are hiring Rustacean Roboticists!”

[ Smile Robotics ]

We’re not entirely sure why, but Panasonic has released plans for an Internet of Things system for hamsters.

We devised a recipe for a “small animal healthcare device” that can measure the weight and activity of small animals, the temperature and humidity of the breeding environment, and manage their health. This healthcare device visualizes the health status and breeding environment of small animals and manages their health to promote early detection of diseases. While imagining the scene where a healthcare device is actually used for an important small animal that we treat with affection, we hope to help overcome the current difficult situation through manufacturing.

[ Panasonic ] via [ RobotStart ]

Researchers at Yale have developed a robotic fabric, a breakthrough that could lead to such innovations as adaptive clothing, self-deploying shelters, or lightweight shape-changing machinery.

The researchers focused on processing functional materials into fiber-form so they could be integrated into fabrics while retaining its advantageous properties. For example, they made variable stiffness fibers out of an epoxy embedded with particles of Field’s metal, an alloy that liquifies at relatively low temperatures. When cool, the particles are solid metal and make the material stiffer; when warm, the particles melt into liquid and make the material softer.

[ Yale ]

In collaboration with Armasuisse and SBB, RSL demonstrated the use of a teleoperated Menzi Muck M545 to clean up a rock slide in Central Switzerland. The machine can be operated from a teloperation platform with visual and motion feedback. The walking excavator features an active chassis that can adapt to uneven terrain.

[ ETHZ RSL ]

An international team of JKU researchers is continuing to develop their vision for robots made out of soft materials. A new article in the journal “Communications Materials” demonstrates just how these kinds of soft machines react using weak magnetic fields to move very quickly. A triangle-shaped robot can roll itself in air at high speed and walk forward when exposed to an alternating in-plane square wave magnetic field (3.5 mT, 1.5 Hz). The diameter of the robot is 18 mm with a thickness of 80 µm. A six-arm robot can grab, transport, and release non-magnetic objects such as a polyurethane foam cube controlled by a permanent magnet.

Okay but tell me more about that cute sheep.

[ JKU ]

Interbotix has this “research level robotic crawler,” which both looks mean and runs ROS, a dangerous combination.

And here’s how it all came together:

[ Interbotix ]

I guess if you call them “loitering missile systems” rather than “drones that blow things up” people are less likely to get upset?

[ AeroVironment ]

In this video, we show a planner for a master dual-arm robot to manipulate tethered tools with an assistant dual-arm robot’s help. The assistant robot provides assistance to the master robot by manipulating the tool cable and avoiding collisions. The provided assistance allows the master robot to perform tool placements on the robot workspace table to regrasp the tool, which would typically fail since the tool cable tension may change the tool positions. It also allows the master robot to perform tool handovers, which would normally cause entanglements or collisions with the cable and the environment without the assistance.

[ Harada Lab ]

This video shows a flexible and robust robotic system for autonomous drawing on 3D surfaces. The system takes 2D drawing strokes and a 3D target surface (mesh or point clouds) as input. It maps the 2D strokes onto the 3D surface and generates a robot motion to draw the mapped strokes using visual recognition, grasp pose reasoning, and motion planning.

[ Harada Lab ]

Weekly mobility test. This time the Warthog takes on a fallen tree. Will it cross it? The answer is in the video!

And the answer is: kinda?

[ NORLAB ]

One of the advantages of walking machines is their ability to apply forces in all directions and of various magnitudes to the environment. Many of the multi-legged robots are equipped with point contact feet as these simplify the design and control of the robot. The iStruct project focuses on the development of a foot that allows extensive contact with the environment.

[ DFKI ]

An urgent medical transport was simulated in NASA’s second Systems Integration and Operationalization (SIO) demonstration Sept. 28 with partner Bell Textron Inc. Bell used the remotely-piloted APT 70 to conduct a flight representing an urgent medical transport mission. It is envisioned in the future that an operational APT 70 could provide rapid medical transport for blood, organs, and perishable medical supplies (payload up to 70 pounds). The APT 70 is estimated to move three times as fast as ground transportation.

Always a little suspicious when the video just shows the drone flying, and sitting on the ground, but not that tricky transition between those two states.

[ NASA ]

A Lockheed Martin Robotics Seminar on “Socially Assistive Mobile Robots,” by Yi Guo from Stevens Institute of Technology.

The use of autonomous mobile robots in human environments is on the rise. Assistive robots have been seen in real-world environments, such as robot guides in airports, robot polices in public parks, and patrolling robots in supermarkets. In this talk, I will first present current research activities conducted in the Robotics and Automation Laboratory at Stevens. I’ll then focus on robot-assisted pedestrian regulation, where pedestrian flows are regulated and optimized through passive human-robot interaction.

[ UMD ]

This week’s CMU RI Seminar is by CMU’s Zachary Manchester, on “The World’s Tiniest Space Program.”

The aerospace industry has experienced a dramatic shift over the last decade: Flying a spacecraft has gone from something only national governments and large defense contractors could afford to something a small startup can accomplish on a shoestring budget. A virtuous cycle has developed where lower costs have led to more launches and the growth of new markets for space-based data. However, many barriers remain. This talk will focus on driving these trends to their ultimate limit by harnessing advances in electronics, planning, and control to build spacecraft that cost less than a new smartphone and can be deployed in large numbers.

[ CMU RI ] Continue reading

Posted in Human Robots

#437620 The Trillion-Transistor Chip That Just ...

The history of computer chips is a thrilling tale of extreme miniaturization.

The smaller, the better is a trend that’s given birth to the digital world as we know it. So, why on earth would you want to reverse course and make chips a lot bigger? Well, while there’s no particularly good reason to have a chip the size of an iPad in an iPad, such a chip may prove to be genius for more specific uses, like artificial intelligence or simulations of the physical world.

At least, that’s what Cerebras, the maker of the biggest computer chip in the world, is hoping.

The Cerebras Wafer-Scale Engine is massive any way you slice it. The chip is 8.5 inches to a side and houses 1.2 trillion transistors. The next biggest chip, NVIDIA’s A100 GPU, measures an inch to a side and has a mere 54 billion transistors. The former is new, largely untested and, so far, one-of-a-kind. The latter is well-loved, mass-produced, and has taken over the world of AI and supercomputing in the last decade.

So can Goliath flip the script on David? Cerebras is on a mission to find out.

Big Chips Beyond AI
When Cerebras first came out of stealth last year, the company said it could significantly speed up the training of deep learning models.

Since then, the WSE has made its way into a handful of supercomputing labs, where the company’s customers are putting it through its paces. One of those labs, the National Energy Technology Laboratory, is looking to see what it can do beyond AI.

So, in a recent trial, researchers pitted the chip—which is housed in an all-in-one system about the size of a dorm room mini-fridge called the CS-1—against a supercomputer in a fluid dynamics simulation. Simulating the movement of fluids is a common supercomputer application useful for solving complex problems like weather forecasting and airplane wing design.

The trial was described in a preprint paper written by a team led by Cerebras’s Michael James and NETL’s Dirk Van Essendelft and presented at the supercomputing conference SC20 this week. The team said the CS-1 completed a simulation of combustion in a power plant roughly 200 times faster than it took the Joule 2.0 supercomputer to do a similar task.

The CS-1 was actually faster-than-real-time. As Cerebrus wrote in a blog post, “It can tell you what is going to happen in the future faster than the laws of physics produce the same result.”

The researchers said the CS-1’s performance couldn’t be matched by any number of CPUs and GPUs. And CEO and cofounder Andrew Feldman told VentureBeat that would be true “no matter how large the supercomputer is.” At a point, scaling a supercomputer like Joule no longer produces better results in this kind of problem. That’s why Joule’s simulation speed peaked at 16,384 cores, a fraction of its total 86,400 cores.

A comparison of the two machines drives the point home. Joule is the 81st fastest supercomputer in the world, takes up dozens of server racks, consumes up to 450 kilowatts of power, and required tens of millions of dollars to build. The CS-1, by comparison, fits in a third of a server rack, consumes 20 kilowatts of power, and sells for a few million dollars.

While the task is niche (but useful) and the problem well-suited to the CS-1, it’s still a pretty stunning result. So how’d they pull it off? It’s all in the design.

Cut the Commute
Computer chips begin life on a big piece of silicon called a wafer. Multiple chips are etched onto the same wafer and then the wafer is cut into individual chips. While the WSE is also etched onto a silicon wafer, the wafer is left intact as a single, operating unit. This wafer-scale chip contains almost 400,000 processing cores. Each core is connected to its own dedicated memory and its four neighboring cores.

Putting that many cores on a single chip and giving them their own memory is why the WSE is bigger; it’s also why, in this case, it’s better.

Most large-scale computing tasks depend on massively parallel processing. Researchers distribute the task among hundreds or thousands of chips. The chips need to work in concert, so they’re in constant communication, shuttling information back and forth. A similar process takes place within each chip, as information moves between processor cores, which are doing the calculations, and shared memory to store the results.

It’s a little like an old-timey company that does all its business on paper.

The company uses couriers to send and collect documents from other branches and archives across town. The couriers know the best routes through the city, but the trips take some minimum amount of time determined by the distance between the branches and archives, the courier’s top speed, and how many other couriers are on the road. In short, distance and traffic slow things down.

Now, imagine the company builds a brand new gleaming skyscraper. Every branch is moved into the new building and every worker gets a small filing cabinet in their office to store documents. Now any document they need can be stored and retrieved in the time it takes to step across the office or down the hall to their neighbor’s office. The information commute has all but disappeared. Everything’s in the same house.

Cerebras’s megachip is a bit like that skyscraper. The way it shuttles information—aided further by its specially tailored compiling software—is far more efficient compared to a traditional supercomputer that needs to network a ton of traditional chips.

Simulating the World as It Unfolds
It’s worth noting the chip can only handle problems small enough to fit on the wafer. But such problems may have quite practical applications because of the machine’s ability to do high-fidelity simulation in real-time. The authors note, for example, the machine should in theory be able to accurately simulate the air flow around a helicopter trying to land on a flight deck and semi-automate the process—something not possible with traditional chips.

Another opportunity, they note, would be to use a simulation as input to train a neural network also residing on the chip. In an intriguing and related example, a Caltech machine learning technique recently proved to be 1,000 times faster at solving the same kind of partial differential equations at play here to simulate fluid dynamics.

They also note that improvements in the chip (and others like it, should they arrive) will push back the limits of what can be accomplished. Already, Cerebras has teased the release of its next-generation chip, which will have 2.6 trillion transistors, 850,00 cores, and more than double the memory.

Of course, it still remains to be seen whether wafer-scale computing really takes off. The idea has been around for decades, but Cerebras is the first to pursue it seriously. Clearly, they believe they’ve solved the problem in a way that’s useful and economical.

Other new architectures are also being pursued in the lab. Memristor-based neuromorphic chips, for example, mimic the brain by putting processing and memory into individual transistor-like components. And of course, quantum computers are in a separate lane, but tackle similar problems.

It could be that one of these technologies eventually rises to rule them all. Or, and this seems just as likely, computing may splinter into a bizarre quilt of radical chips, all stitched together to make the most of each depending on the situation.

Image credit: Cerebras Continue reading

Posted in Human Robots