Tag Archives: art
#437864 Video Friday: Jet-Powered Flying ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
ICRA 2020 – June 1-15, 2020 – [Virtual Conference]
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.
ICRA 2020, the world’s best, biggest, longest virtual robotics conference ever, kicked off last Sunday with an all-star panel on a critical topic: “COVID-19: How Can Roboticists Help?”
Watch other ICRA keynotes on IEEE.tv.
We’re getting closer! Well, kinda. iRonCub, the jet-powered flying humanoid, is still a simulation for now, but not only are the simulations getting better—the researchers have begun testing real jet engines!
This video shows the latest results on Aerial Humanoid Robotics obtained by the Dynamic Interaction Control Lab at the Italian Institute of Technology. The video simulates robot and jet dynamics, where the latter uses the results obtained in the paper “Modeling, Identification and Control of Model Jet Engines for Jet Powered Robotics” published in IEEE Robotics and Automation Letters.
This video presents the paper entitled “Modeling, Identification and Control of Model Jet Engines for Jet Powered Robotics” published in IEEE Robotics and Automation Letters (Volume: 5 , Issue: 2 , April 2020 ) Page(s): 2070 – 2077. Preprint at https://arxiv.org/pdf/1909.13296.pdf.
[ IIT ]
In a new pair of papers, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) came up with new tools to let robots better perceive what they’re interacting with: the ability to see and classify items, and a softer, delicate touch.
[ MIT CSAIL ]
UBTECH’s anti-epidemic solutions greatly relieve the workload of front-line medical staff and cut the consumption of personal protective equipment (PPE).
[ UBTECH ]
We demonstrate a method to assess the concrete deterioration in sewers by performing a tactile inspection motion with a sensorized foot of a legged robot.
[ THING ] via [ ANYmal Research ]
Get a closer look at the Virtual competition of the Urban Circuit and how teams can use the simulated environments to better prepare for the physical courses of the Subterranean Challenge.
[ SubT ]
Roboticists at the University of California San Diego have developed flexible feet that can help robots walk up to 40 percent faster on uneven terrain, such as pebbles and wood chips. The work has applications for search-and-rescue missions as well as space exploration.
[ UCSD ]
Thanks Ioana!
Tsuki is a ROS-enabled, highly dynamic quadruped robot developed by Lingkang Zhang.
And as far as we know, Lingkang is still chasing it.
[ Quadruped Tsuki ]
Thanks Lingkang!
Watch this.
This video shows an impressive demo of how YuMi’s superior precision, using precise servo gripper fingers and vacuum suction tool to pick up extremely small parts inside a mechanical watch. The video is not a final application used in production, it is a demo of how such an application can be implemented.
[ ABB ]
Meet Presso, the “5-minute dry cleaning robot.” Can you really call this a robot? We’re not sure. The company says it uses “soft robotics to hold the garment correctly, then clean, sanitize, press and dry under 5 minutes.” The machine was initially designed for use in the hospitality industry, but after adding a disinfectant function for COVID-19, it is now being used on movie and TV sets.
[ Presso ]
The next Mars rover launches next month (!), and here’s a look at some of the instruments on board.
[ JPL ]
Embodied Lead Engineer, Peter Teel, describes why we chose to build Moxie’s computing system from scratch and what makes it so unique.
[ Embodied ]
I did not know that this is where Pepper’s e-stop is. Nice design!
[ Softbank Robotics ]
State of the art in the field of swarm robotics lacks systems capable of absolute decentralization and is hence unable to mimic complex biological swarm systems consisting of simple units. Our research interconnects fields of swarm robotics and computer vision, and introduces novel use of a vision-based method UVDAR for mutual localization in swarm systems, allowing for absolute decentralization found among biological swarm systems. The developed methodology allows us to deploy real-world aerial swarming systems with robots directly localizing each other instead of communicating their states via a communication network, which is a typical bottleneck of current state of the art systems.
[ CVUT ]
I’m almost positive I could not do this task.
It’s easy to pick up objects using YuMi’s integrated vacuum functionality, it also supports ABB Robot’s Conveyor Tracking and Pickmaster 3 functionality, enabling it to track a moving conveyor and pick up objects using vision. Perfect for consumer products handling applications.
[ ABB ]
Cycling safety gestures, such as hand signals and shoulder checks, are an essential part of safe manoeuvring on the road. Child cyclists, in particular, might have difficulties performing safety gestures on the road or even forget about them, given the lack of cycling experience, road distractions and differences in motor and perceptual-motor abilities compared with adults. To support them, we designed two methods to remind about safety gestures while cycling. The first method employs an icon-based reminder in heads-up display (HUD) glasses and the second combines vibration on the handlebar and ambient light in the helmet. We investigated the performance of both methods in a controlled test-track experiment with 18 children using a mid-size tricycle, augmented with a set of sensors to recognize children’s behavior in real time. We found that both systems are successful in reminding children about safety gestures and have their unique advantages and disadvantages.
[ Paper ]
Nathan Sam and Robert “Red” Jensen fabricate and fly a Prandtl-M aircraft at NASA’s Armstrong Flight Research Center in California. The aircraft is the second of three prototypes of varying sizes to provide scientists with options to fly sensors in the Martian atmosphere to collect weather and landing site information for future human exploration of Mars.
[ NASA ]
This is clever: In order to minimize time spent labeling datasets, you can use radar to identify other vehicles, not because the radar can actually recognize other vehicles, but because the radar can recognize other stuff that’s big and moving, which turns out to be almost as good.
[ ICRA Paper ]
Happy 10th birthday to the Natural Robotics Lab at the University of Sheffield.
[ NRL ] Continue reading →
#437826 Video Friday: Skydio 2 Drone Is Back on ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.
Skydio, which makes what we’re pretty sure is the most intelligent consumer drone (or maybe just drone period) in existence, has been dealing with COVID-19 just like the rest of us. Even so, they’ve managed to push out a major software update, and pre-orders for the Skydio 2 are now open again.
If you think you might want one, read our review, after which you’ll be sure you want one.
[ Skydio ]
Worried about people with COVID entering your workplace? Misty II has your front desk covered, in a way that’s quite a bit friendlier than many other options.
Misty II provides a dynamic and interactive screening experience that delivers a joyful experience in an otherwise depressing moment while also delivering state of the art thermal scanning and health screening. We have already found that employees, customers, and visitors appreciate the novelty of interacting with a clever and personable robot. Misty II engages dynamically, both visually and verbally. Companies appreciate using a solution with a blackbody-referenced thermal camera that provides high accuracy and a short screening process for efficiency. Putting a robot to work in this role shifts not only how people look at the screening process but also how robots can take on useful assignments in business, schools and homes.
[ Misty Robotics ]
Thanks Tim!
I’m definitely the one in the middle.
[ Agility Robotics ]
NASA’s Ingenuity helicopter is traveling to Mars attached to the belly of the Perseverance rover and must safely detach to begin the first attempt at powered flight on another planet. Tests done at NASA’s Jet Propulsion Laboratory and Lockheed Martin Space show the sequence of events that will bring the helicopter down to the Martian surface.
[ JPL ]
Here’s a sequence of videos of Cassie Blue making it (or mostly making it) up a 22-degree slope.
My mood these days is Cassie at 1:09.
[ University of Michigan ]
Thanks Jesse!
This is somewhere on the line between home automation and robotics, but it’s a cool idea: A baby crib that “uses computer vision and machine learning to recognize subtle changes” in an infant’s movement, and proactively bounces them to keep them sleeping peacefully.
It costs $1000, but how much value do you put on 24 months of your own sleep?
[ Cradlewise ]
Thanks Ben!
As captive marine mammal shows have fallen from favor; and the catching, transporting and breeding of marine animals has become more restricted, the marine park industry as a viable business has become more challenging – yet the audience appetite for this type of entertainment and education has remained constant.
Real-time Animatronics provide a way to reinvent the marine entertainment industry with a sustainable, safe, and profitable future. Show venues include aquariums, marine parks, theme parks, fountain shows, cruise lines, resort hotels, shopping malls, museums, and more.
[ EdgeFX ] via [ Gizmodo ]
Robotic cabling is surprisingly complex and kinda cool to watch.
The video shows the sophisticated robot application “Automatic control cabinet cabling”, which Fraunhofer IPA implemented together with the company Rittal. The software pitasc, developed at Fraunhofer IPA, is used for force-controlled assembly processes. Two UR robot arms carry out the task together. The modular pitasc system enables the robot arms to move and rotate in parallel. They work hand in hand, with one robot holding the cable and the second bringing it to the starting position for the cabling. The robots can find, tighten, hold ready, lay, plug in, fix, move freely or immerse cables. They can also perform push-ins and pull tests.
[ Fraunhofer ]
This is from 2018, but the concept is still pretty neat.
We propose to perform a novel investigation into the ability of a propulsively hopping robot to reach targets of high science value on the icy, rugged terrains of Ocean Worlds. The employment of a multi-hop architecture allows for the rapid traverse of great distances, enabling a single mission to reach multiple geologic units within a timespan conducive to system survival in a harsh radiation environment. We further propose that the use of a propulsive hopping technique obviates the need for terrain topographic and strength assumptions and allows for complete terrain agnosticism; a key strength of this concept.
[ NASA ]
Aerial-aquatic robots possess the unique ability of operating in both air and water. However, this capability comes with tremendous challenges, such as communication incompati- bility, increased airborne mass, potentially inefficient operation in each of the environments and manufacturing difficulties. Such robots, therefore, typically have small payloads and a limited operational envelope, often making their field usage impractical. We propose a novel robotic water sampling approach that combines the robust technologies of multirotors and underwater micro-vehicles into a single integrated tool usable for field operations.
[ Imperial ]
Event cameras are bio-inspired vision sensors with microsecond latency resolution, much larger dynamic range and hundred times lower power consumption than standard cameras. This 20-minute talk gives a short tutorial on event cameras and show their applications on computer vision, drones, and cars.
[ UZH ]
We interviewed Paul Newman, Perla Maiolino and Lars Kunze, ORI academics, to hear what gets them excited about robots in the future and any advice they have for those interested in the field.
[ Oxford Robotics Institute ]
Two projects from the Rehabilitation Engineering Lab at ETH Zurich, including a self-stabilizing wheelchair and a soft exoskeleton for grasping assistance.
[ ETH Zurich ]
Silicon Valley Robotics hosted an online conversation about robotics and racism. Moderated by Andra Keay, the panel featured Maynard Holliday, Tom Williams, Monroe Kennedy III, Jasmine Lawrence, Chad Jenkins, and Ken Goldberg.
[ SVR ]
The ICRA Legged Locomotion workshop has been taking place online, and while we’re not getting a robot mosh pit, there are still some great talks. We’ll post two here, but for more, follow the legged robots YouTube channel at the link below.
[ YouTube ] Continue reading →
#437776 Video Friday: This Terrifying Robot Will ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today's videos.
The Aigency, which created the FitBot launch video below, is “the world’s first talent management resource for robotic personalities.”
Robots will be playing a bigger role in our lives in the future. By learning to speak their language and work with them now, we can make this future better for everybody. If you’re a creator that’s producing content to entertain and educate people, robots can be a part of that. And we can help you. Robotic actors can show up alongside the rest of your actors.
The folks at Aigency have put together a compilation reel of clips they’ve put on TikTok, which is nice of them, because some of us don’t know how to TikTok because we’re old and boring.
Do googly eyes violate the terms and conditions?
[ Aigency ]
Shane Wighton of the “Stuff Made Here” YouTube channel, who you might remember from that robotic basketball hoop, has a new invention: A haircut robot. This is not the the first barber bot, but previous designs typically used hair clippers. Shane wanted his robot to use scissors. Hilarious and terrifying at once.
[ Stuff Made Here ]
Starting in October of 2016, Prof. Charlie Kemp and Henry M. Clever invented a new kind of robot. They named the prototype NewRo. In March of 2017, Prof. Kemp filmed this video of Henry operating NewRo to perform a number of assistive tasks. While visiting the Bay Area for a AAAI Symposium workshop at Stanford, Prof. Kemp showed this video to a select group of people to get advice, including Dr. Aaron Edsinger. In August of 2017, Dr. Edsinger and Dr. Kemp founded Hello Robot Inc. to commercialize this patent pending assistive technology. Hello Robot Inc. licensed the intellectual property (IP) from Georgia Tech. After three years of stealthy effort, Hello Robot Inc. revealed Stretch, a new kind of robot!
[ Georgia Tech ]
NASA’s Ingenuity Mars Helicopter will make history's first attempt at powered flight on another planet next spring. It is riding with the agency's next mission to Mars (the Mars 2020 Perseverance rover) as it launches from Cape Canaveral Air Force Station later this summer. Perseverance, with Ingenuity attached to its belly, will land on Mars February 18, 2021.
[ JPL ]
For humans, it can be challenging to manipulate thin flexible objects like ropes, wires, or cables. But if these problems are hard for humans, they are nearly impossible for robots. As a cable slides between the fingers, its shape is constantly changing, and the robot’s fingers must be constantly sensing and adjusting the cable’s position and motion. A group of researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and from the MIT Department of Mechanical Engineering pursued the task from a different angle, in a manner that more closely mimics us humans. The team’s new system uses a pair of soft robotic grippers with high-resolution tactile sensors (and no added mechanical constraints) to successfully manipulate freely moving cables.
The team observed that it was difficult to pull the cable back when it reached the edge of the finger, because of the convex surface of the GelSight sensor. Therefore, they hope to improve the finger-sensor shape to enhance the overall performance. In the future, they plan to study more complex cable manipulation tasks such as cable routing and cable inserting through obstacles, and they want to eventually explore autonomous cable manipulation tasks in the auto industry.
[ MIT ]
Gripping robots typically have troubles grabbing transparent or shiny objects. A new technique by Carnegie Mellon University relies on color camera system and machine learning to recognize shapes based on color.
[ CMU ]
A new robotic prosthetic leg prototype offers a more natural, comfortable gait while also being quieter and more energy efficient than other designs. The key is the use of new small and powerful motors with fewer gears, borrowed from the space industry. This streamlined technology enables a free-swinging knee and regenerative braking, which charges the battery during use with energy that would typically be dissipated when the foot hits the ground. This feature enables the leg to more than double a typical prosthetic user's walking needs with one charge per day.
[ University of Michigan ]
Thanks Kate!
This year’s Wonder League teams have been put to the test not only with the challenges set forth by Wonder Workshop and Cartoon Network as they look to help the creek kids from Craig of the Creek solve the greatest mystery of all – the quest for the Lost Realm but due to forces outside their control. With a global pandemic displacing many teams from one another due to lockdowns and quarantines, these teams continued to push themselves to find new ways to work together, solve problems, communicate more effectively, and push themselves to complete a journey that they started and refused to give up on. We at Wonder Workshop are humbled and in awe of all these teams have accomplished.
[ Wonder Workshop ]
Thanks Nicole!
Meet Colin Creager, a mechanical engineer at NASA's Glenn Research Center. Colin is focusing on developing tires that can be used on other worlds. These tires use coil springs made of a special shape memory alloy that will let rovers move across sharp jagged rocks or through soft sand on the Moon or Mars.
[ NASA ]
To be presented at IROS this year, “the first on robot collision detection system using low cost microphones.”
[ Rutgers ]
Robot and mechanism designs inspired by the art of Origami have the potential to generate compact, deployable, lightweight morphing structures, as seen in nature, for potential applications in search-and-rescue, aerospace systems, and medical devices. However, it is challenging to obtain actuation that is easily patternable, reversible, and made with a scalable manufacturing process for origami-inspired self-folding machines. In this work, we describe an approach to design reversible self-folding machines using liquid crystal elastomer (LCE), that contracts when heated, as an artificial muscle.
[ UCSD ]
Just in case you need some extra home entertainment, and you’d like cleaner floors at the same time.
[ iRobot ]
Sure, toss it from a drone. Or from orbit. Whatever, it’s squishy!
[ Squishy Robotics ]
The [virtual] RSS conference this week featured an excellent lineup of speakers and panels, and the best part about it being virtual is that you can watch them all at your leisure! Here’s what’s been posted so far:
[ RSS 2020 ]
Lockheed Martin Robotics Seminar: Toward autonomous flying insect-sized robots: recent results in fabrication, design, power systems, control, and sensing with Sawyer Fuller.
[ UMD ]
In this episode of the AI Podcast, Lex interviews Sergey Levine.
[ AI Podcast ] Continue reading →
#437769 Q&A: Facebook’s CTO Is at War With ...
Photo: Patricia de Melo Moreira/AFP/Getty Images
Facebook chief technology officer Mike Schroepfer leads the company’s AI and integrity efforts.
Facebook’s challenge is huge. Billions of pieces of content—short and long posts, images, and combinations of the two—are uploaded to the site daily from around the world. And any tiny piece of that—any phrase, image, or video—could contain so-called bad content.
In its early days, Facebook relied on simple computer filters to identify potentially problematic posts by their words, such as those containing profanity. These automatically filtered posts, as well as posts flagged by users as offensive, went to humans for adjudication.
In 2015, Facebook started using artificial intelligence to cull images that contained nudity, illegal goods, and other prohibited content; those images identified as possibly problematic were sent to humans for further review.
By 2016, more offensive photos were reported by Facebook’s AI systems than by Facebook users (and that is still the case).
In 2018, Facebook CEO Mark Zuckerberg made a bold proclamation: He predicted that within five or ten years, Facebook’s AI would not only look for profanity, nudity, and other obvious violations of Facebook’s policies. The tools would also be able to spot bullying, hate speech, and other misuse of the platform, and put an immediate end to them.
Today, automated systems using algorithms developed with AI scan every piece of content between the time when a user completes a post and when it is visible to others on the site—just fractions of a second. In most cases, a violation of Facebook’s standards is clear, and the AI system automatically blocks the post. In other cases, the post goes to human reviewers for a final decision, a workforce that includes 15,000 content reviewers and another 20,000 employees focused on safety and security, operating out of more than 20 facilities around the world.
In the first quarter of this year, Facebook removed or took other action (like appending a warning label) on more than 9.6 million posts involving hate speech, 8.6 million involving child nudity or exploitation, almost 8 million posts involving the sale of drugs, 2.3 million posts involving bullying and harassment, and tens of millions of posts violating other Facebook rules.
Right now, Facebook has more than 1,000 engineers working on further developing and implementing what the company calls “integrity” tools. Using these systems to screen every post that goes up on Facebook, and doing so in milliseconds, is sucking up computing resources. Facebook chief technology officer Mike Schroepfer, who is heading up Facebook’s AI and integrity efforts, spoke with IEEE Spectrum about the team’s progress on building an AI system that detects bad content.
Since that discussion, Facebook’s policies around hate speech have come under increasing scrutiny, with particular attention on divisive posts by political figures. A group of major advertisers in June announced that they would stop advertising on the platform while reviewing the situation, and civil rights groups are putting pressure on others to follow suit until Facebook makes policy changes related to hate speech and groups that promote hate, misinformation, and conspiracies.
Facebook CEO Mark Zuckerberg responded with news that Facebook will widen the category of what it considers hateful content in ads. Now the company prohibits claims that people from a specific race, ethnicity, national origin, religious affiliation, caste, sexual orientation, gender identity, or immigration status are a threat to the physical safety, health, or survival of others. The policy change also aims to better protect immigrants, migrants, refugees, and asylum seekers from ads suggesting these groups are inferior or expressing contempt. Finally, Zuckerberg announced that the company will label some problematic posts by politicians and government officials as content that violates Facebook’s policies.
However, civil rights groups say that’s not enough. And an independent audit released in July also said that Facebook needs to go much further in addressing civil rights concerns and disinformation.
Schroepfer indicated that Facebook’s AI systems are designed to quickly adapt to changes in policy. “I don’t expect considerable technical changes are needed to adjust,” he told Spectrum.
This interview has been edited and condensed for clarity.
IEEE Spectrum: What are the stakes of content moderation? Is this an existential threat to Facebook? And is it critical that you deal well with the issue of election interference this year?
Schroepfer: It’s probably existential; it’s certainly massive. We are devoting a tremendous amount of our attention to it.
The idea that anyone could meddle in an election is deeply disturbing and offensive to all of us here, just as people and citizens of democracies. We don’t want to see that happen anywhere, and certainly not on our watch. So whether it’s important to the company or not, it’s important to us as people. And I feel a similar way on the content-moderation side.
There are not a lot of easy choices here. The only way to prevent people, with certainty, from posting bad things is to not let them post anything. We can take away all voice and just say, “Sorry, the Internet’s too dangerous. No one can use it.” That will certainly get rid of all hate speech online. But I don’t want to end up in that world. And there are variants of that world that various governments are trying to implement, where they get to decide what’s true or not, and you as a person don’t. I don’t want to get there either.
My hope is that we can build a set of tools that make it practical for us to do a good enough job, so that everyone is still excited about the idea that anyone can share what they want, and so that Facebook is a safe and reasonable place for people to operate in.
Spectrum: You joined Facebook in 2008, before AI was part of the company’s toolbox. When did that change? When did you begin to think that AI tools would be useful to Facebook?
Schroepfer: Ten years ago, AI wasn’t commercially practical; the technology just didn’t work very well. In 2012, there was one of those moments that a lot of people point to as the beginning of the current revolution in deep learning and AI. A computer-vision model—a neural network—was trained using what we call supervised training, and it turned out to be better than all the existing models.
Spectrum: How is that training done, and how did computer-vision models come to Facebook?
Image: Facebook
Just Broccoli? Facebook’s image analysis algorithms can tell the difference between marijuana [left] and tempura broccoli [right] better than some humans.
Schroepfer: Say I take a bunch of photos and I have people look at them. If they see a photo of a cat, they put a text label that says cat; if it’s one of a dog, the text label says dog. If you build a big enough data set and feed that to the neural net, it learns how to tell the difference between cats and dogs.
Prior to 2012, it didn’t work very well. And then in 2012, there was this moment where it seemed like, “Oh wow, this technique might work.” And a few years later we were deploying that form of technology to help us detect problematic imagery.
Spectrum: Do your AI systems work equally well on all types of prohibited content?
Schroepfer: Nudity was technically easiest. I don’t need to understand language or culture to understand that this is either a naked human or not. Violence is a much more nuanced problem, so it was harder technically to get it right. And with hate speech, not only do you have to understand the language, it may be very contextual, even tied to recent events. A week before the Christchurch shooting [New Zealand, 2019], saying “I wish you were in the mosque” probably doesn’t mean anything. A week after, that might be a terrible thing to say.
Spectrum: How much progress have you made on hate speech?
Schroepfer: AI, in the first quarter of 2020, proactively detected 88.8 percent of the hate-speech content we removed, up from 80.2 percent in the previous quarter. In the first quarter of 2020, we took action on 9.6 million pieces of content for violating our hate-speech policies.
Image: Facebook
Off Label: Sometimes image analysis isn’t enough to determine whether a picture posted violates the company’s policies. In considering these candy-colored vials of marijuana, for example, the algorithms can look at any accompanying text and, if necessary, comments on the post.
Spectrum: It sounds like you’ve expanded beyond tools that analyze images and are also using AI tools that analyze text.
Schroepfer: AI started off as very siloed. People worked on language, people worked on computer vision, people worked on video. We’ve put these things together—in production, not just as research—into multimodal classifiers.
[Schroepfer shows a photo of a pan of Rice Krispies treats, with text referring to it as a “potent batch”] This is a case in which you have an image, and then you have the text on the post. This looks like Rice Krispies. On its own, this image is fine. You put the text together with it in a bigger model; that can then understand what’s going on. That didn’t work five years ago.
Spectrum: Today, every post that goes up on Facebook is immediately checked by automated systems. Can you explain that process?
Image: Facebook
Bigger Picture: Identifying hate speech is often a matter of context. Either the text or the photo in this post isn’t hateful standing alone, but putting them together tells a different story.
Schroepfer: You upload an image and you write some text underneath it, and the systems look at both the image and the text to try to see which, if any, policies it violates. Those decisions are based on our Community Standards. It will also look at other signals on the posts, like the comments people make.
It happens relatively instantly, though there may be times things happen after the fact. Maybe you uploaded a post that had misinformation in it, and at the time you uploaded it, we didn’t know it was misinformation. The next day we fact-check something and scan again; we may find your post and take it down. As we learn new things, we’re going to go back through and look for violations of what we now know to be a problem. Or, as people comment on your post, we might update our understanding of it. If people are saying, “That’s terrible,” or “That’s mean,” or “That looks fake,” those comments may be an interesting signal.
Spectrum: How is Facebook applying its AI tools to the problem of election interference?
Schroepfer: I would split election interference into two categories. There are times when you’re going after the content, and there are times you’re going after the behavior or the authenticity of the person.
On content, if you’re sharing misinformation, saying, “It’s super Wednesday, not super Tuesday, come vote on Wednesday,” that’s a problem whether you’re an American sitting in California or a foreign actor.
Other times, people create a series of Facebook pages pretending they’re Americans, but they’re really a foreign entity. That is a problem on its own, even if all the content they’re sharing completely meets our Community Standards. The problem there is that you have a foreign government running an information operation.
There, you need different tools. What you’re trying to do is put pieces together, to say, “Wait a second. All of these pages—Martians for Justice, Moonlings for Justice, and Venusians for Justice”—are all run by an administrator with an IP address that’s outside the United States. So they’re all connected, even though they’re pretending to not be connected. That’s a very different problem than me sitting in my office in Menlo Park [Calif.] sharing misinformation.
I’m not going to go into lots of technical detail, because this is an area of adversarial nature. The fundamental problem you’re trying to solve is that there’s one entity coordinating the activity of a bunch of things that look like they’re not all one thing. So this is a series of Instagram accounts, or a series of Facebook pages, or a series of WhatsApp accounts, and they’re pretending to be totally different things. We’re looking for signals that these things are related in some way. And we’re looking through the graph [what Facebook calls its map of relationships between users] to understand the properties of this network.
Spectrum: What cutting-edge AI tools and methods have you been working on lately?
Schroepfer: Supervised learning, with humans setting up the instruction process for the AI systems, is amazingly effective. But it has a very obvious flaw: the speed at which you can develop these things is limited by how fast you can curate the data sets. If you’re dealing in a problem domain where things change rapidly, you have to rebuild a new data set and retrain the whole thing.
Self-supervision is inspired by the way people learn, by the way kids explore the world around them. To get computers to do it themselves, we take a bunch of raw data and build a way for the computer to construct its own tests. For language, you scan a bunch of Web pages, and the computer builds a test where it takes a sentence, eliminates one of the words, and figures out how to predict what word belongs there. And because it created the test, it actually knows the answer. I can use as much raw text as I can find and store because it’s processing everything itself and doesn’t require us to sit down and build the information set. In the last two years there has been a revolution in language understanding as a result of AI self-supervised learning.
Spectrum: What else are you excited about?
Schroepfer: What we’ve been working on over the last few years is multilingual understanding. Usually, when I’m trying to figure out, say, whether something is hate speech or not I have to go through the whole process of training the model in every language. I have to do that one time for every language. When you make a post, the first thing we have to figure out is what language your post is in. “Ah, that’s Spanish. So send it to the Spanish hate-speech model.”
We’ve started to build a multilingual model—one box where you can feed in text in 40 different languages and it determines whether it’s hate speech or not. This is way more effective and easier to deploy.
To geek out for a second, just the idea that you can build a model that understands a concept in multiple languages at once is crazy cool. And it not only works for hate speech, it works for a variety of things.
When we started working on this multilingual model years ago, it performed worse than every single individual model. Now, it not only works as well as the English model, but when you get to the languages where you don’t have enough data, it’s so much better. This rapid progress is very exciting.
Spectrum: How do you move new AI tools from your research labs into operational use?
Schroepfer: Engineers trying to make the next breakthrough will often say, “Cool, I’ve got a new thing and it achieved state-of-the-art results on machine translation.” And we say, “Great. How long does it take to run in production?” They say, “Well, it takes 10 seconds for every sentence to run on a CPU.” And we say, “It’ll eat our whole data center if we deploy that.” So we take that state-of-the-art model and we make it 10 or a hundred or a thousand times more efficient, maybe at the cost of a little bit of accuracy. So it’s not as good as the state-of-the-art version, but it’s something we can actually put into our data centers and run in production.
Spectrum: What’s the role of the humans in the loop? Is it true that Facebook currently employs 35,000 moderators?
Schroepfer: Yes. Right now our goal is not to reduce that. Our goal is to do a better job catching bad content. People often think that the end state will be a fully automated system. I don’t see that world coming anytime soon.
As automated systems get more sophisticated, they take more and more of the grunt work away, freeing up the humans to work on the really gnarly stuff where you have to spend an hour researching.
We also use AI to give our human moderators power tools. Say I spot this new meme that is telling everyone to vote on Wednesday rather than Tuesday. I have a tool in front of me that says, “Find variants of that throughout the system. Find every photo with the same text, find every video that mentions this thing and kill it in one shot.” Rather than, I found this one picture, but then a bunch of other people upload that misinformation in different forms.
Another important aspect of AI is that anything I can do to prevent a person from having to look at terrible things is time well spent. Whether it’s a person employed by us as a moderator or a user of our services, looking at these things is a terrible experience. If I can build systems that take the worst of the worst, the really graphic violence, and deal with that in an automated fashion, that’s worth a lot to me. Continue reading →
#437733 Video Friday: MIT Media Lab Developing ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
AWS Cloud Robotics Summit – August 18-19, 2020 – [Online Conference]
CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.
Very impressive local obstacle avoidance at a fairly high speed on a small drone, both indoors and outdoors.
[ FAST Lab ]
Matt Carney writes:
My PhD at MIT Media Lab has been the design and build of a next generation powered prosthesis. The bionic ankle, named TF8, was designed to provide biologically equivalent power and range of motion for plantarflexion-dorsiflexion. This video shows the process of going from a blank sheet of paper to people walking on it. Shown are three different people wearing the robot. About a dozen people have since been able to test the hardware.
[ MIT ]
Thanks Matt!
Exciting changes are coming to the iRobot® Home App. Get ready for new personalized experiences, improved features, and an easy-to-use interface. The update is rolling out over the next few weeks!
[ iRobot ]
MOFLIN is an AI Pet created from a totally new concept. It possesses emotional capabilities that evolve like living animals. With its warm soft fur, cute sounds, and adorable movement, you’d want to love it forever. We took a nature inspired approach and developed a unique algorithm that allows MOFLIN to learn and grow by constantly using its interactions to determine patterns and evaluate its surroundings from its sensors. MOFLIN will choose from an infinite number of mobile and sound pattern combinations to respond and express its feelings. To put it in simple terms, it’s like you’re interacting with a living pet.
You lost me at “it’s like you’re interacting with a living pet.”
[ Kickstarter ] via [ Gizmodo ]
This video is only robotics-adjacent, but it has applications for robotic insects. With a high-speed tracking system, we can now follow insects as they jump and fly, and watch how clumsy (but effective) they are at it.
[ Paper ]
Thanks Sawyer!
Suzumori Endo Lab, Tokyo Tech has developed self-excited pneumatic actuators that can be integrally molded by a 3D printer. These actuators use the “automatic flow path switching mechanism” we have devised.
[ Suzimori Endo Lab ]
Quadrupeds are getting so much better at deciding where to step rather than just stepping where they like and trying not to fall over.
[ RSL ]
Omnidirectional micro aerial vehicles are a growing field of research, with demonstrated advantages for aerial interaction and uninhibited observation. While systems with complete pose omnidirectionality and high hover efficiency have been developed independently, a robust system that combines the two has not been demonstrated to date. This paper presents the design and optimal control of a novel omnidirectional vehicle that can exert a wrench in any orientation while maintaining efficient flight configurations.
[ ASL ]
The latest in smooth humanoid walking from Dr. Guero.
[ YouTube ]
Will robots replace humans one day? When it comes to space exploration, robots are our precursors, gathering data to prepare humans for deep space. ESA robotics engineer Martin Azkarate discusses some of the upcoming missions involving robots and the unique science they will perform in this episode of Meet the Experts.
[ ESA ]
The Multi-robot Systems Group at FEE-CTU in Prague is working on an autonomous drone that detects fires and the shoots an extinguisher capsule at them.
[ MRS ]
This experiment with HEAP (Hydraulic Excavator for Autonomous Purposes) demonstrates our latest research in on-site and mobile digital fabrication with found materials. The embankment prototype in natural granular material was achieved using state of the art design and construction processes in mapping, modelling, planning and control. The entire process of building the embankment was fully autonomous. An operator was only present in the cabin for safety purposes.
[ RSL ]
The Simulation, Systems Optimization and Robotics Group (SIM) of Technische Universität Darmstadt’s Department of Computer Science conducts research on cooperating autonomous mobile robots, biologically inspired robots and numerical optimization and control methods.
[ SIM ]
Starting January 1, 2021, your drone platform of choice may be severely limited by the European Union’s new drone regulations. In this short video, senseFly’s Brock Ryder explains what that means for drone programs and operators and where senseFly drones fit in the EU’s new regulatory framework.
[ SenseFly ]
Nearly every company across every industry is looking for new ways to minimize human contact, cut costs and address the labor crunch in repetitive and dangerous jobs. WSJ explores why many are looking to robots as the solution for all three.
[ WSJ ]
You’ll need to prepare yourself emotionally for this video on “Examining Users’ Attitude Towards Robot Punishment.”
[ ACM ]
In this episode of the AI Podcast, Lex interviews Russ Tedrake (MIT and TRI) about biped locomotion, the DRC, home robots, and more.
[ AI Podcast ] Continue reading →