Tag Archives: applications

#435828 Video Friday: Boston Dynamics’ ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, Calif., USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

You’ve almost certainly seen the new Spot and Atlas videos from Boston Dynamics, if for no other reason than we posted about Spot’s commercial availability earlier this week. But what, are we supposed to NOT include them in Video Friday anyway? Psh! Here you go:

[ Boston Dynamics ]

Eight deadly-looking robots. One Giant Nut trophy. Tonight is the BattleBots season finale, airing on Discovery, 8 p.m. ET, or check your local channels.

[ BattleBots ]

Thanks Trey!

Speaking of battling robots… Having giant robots fight each other is one of those things that sounds really great in theory, but doesn’t work out so well in reality. And sadly, MegaBots is having to deal with reality, which means putting their giant fighting robot up on eBay.

As of Friday afternoon, the current bid is just over $100,000 with a week to go.

[ MegaBots ]

Michigan Engineering has figured out the secret formula to getting 150,000 views on YouTube: drone plus nail gun.

[ Michigan Engineering ]

Michael Burke from the University of Edinburgh writes:

We’ve been learning to scoop grapefruit segments using a PR2, by “feeling” the difference between peel and pulp. We use joint torque measurements to predict the probability that the knife is in the peel or pulp, and use this to apply feedback control to a nominal cutting trajectory learned from human demonstration, so that we remain in a position of maximum uncertainty about which medium we’re cutting. This means we slice along the boundary between the two mediums. It works pretty well!

[ Paper ] via [ Robust Autonomy and Decisions Group ]

Thanks Michael!

Hey look, it’s Jan with eight EMYS robot heads. Hi, Jan! Hi, EMYSes!

[ EMYS ]

We’re putting the KRAKEN Arm through its paces, demonstrating that it can unfold from an Express Rack locker on the International Space Station and access neighboring lockers in NASA’s FabLab system to enable transfer of materials and parts between manufacturing, inspection, and storage stations. The KRAKEN arm will be able to change between multiple ’end effector’ tools such as grippers and inspection sensors – those are in development so they’re not shown in this video.

[ Tethers Unlimited ]

UBTECH’s Alpha Mini Robot with Smart Robot’s “Maatje” software is offering healthcare service to children at Praktijk Intraverte Multidisciplinary Institution in Netherlands.

This institution is using Alpha Mini in counseling children’s behavior. Alpha Mini can move and talk to children and offers games and activities to stimulate and interact with them. Alpha Mini talks, helps and motivates children thereby becoming more flexible in society.

[ UBTECH ]

Some impressive work here from Anusha Nagabandi, Kurt Konoglie, Sergey Levine, Vikash Kumar at Google Brain, training a dexterous multi-fingered hand to do that thing with two balls that I’m really bad at.

Dexterous multi-fingered hands can provide robots with the ability to flexibly perform a wide range of manipulation skills. However, many of the more complex behaviors are also notoriously difficult to control: Performing in-hand object manipulation, executing finger gaits to move objects, and exhibiting precise fine motor skills such as writing, all require finely balancing contact forces, breaking and reestablishing contacts repeatedly, and maintaining control of unactuated objects. In this work, we demonstrate that our method of online planning with deep dynamics models (PDDM) addresses both of these limitations; we show that improvements in learned dynamics models, together with improvements in online model-predictive control, can indeed enable efficient and effective learning of flexible contact-rich dexterous manipulation skills — and that too, on a 24-DoF anthropomorphic hand in the real world, using just 2-4 hours of purely real-world data to learn to simultaneously coordinate multiple free-floating objects.

[ PDDM ]

Thanks Vikash!

CMU’s Ballbot has a deceptively light touch that’s ideal for leading people around.

A paper on this has been submitted to IROS 2019.

[ CMU ]

The Autonomous Robots Lab at the University of Nevada is sharing some of the work they’ve done on path planning and exploration for aerial robots during the DARPA SubT Challenge.

[ Autonomous Robots Lab ]

More proof that anything can be a drone if you staple some motors to it. Even 32 feet of styrofoam insulation.

[ YouTube ]

Whatever you think of military drones, we can all agree that they look cool.

[ Boeing ]

I appreciate the fact that iCub has eyelids, I really do, but sometimes, it ends up looking kinda sleepy in research videos.

[ EPFL LASA ]

Video shows autonomous flight of a lightweight aerial vehicle outdoors and indoors on the campus of Carnegie Mellon University. The vehicle is equipped with limited onboard sensing from a front-facing camera and a proximity sensor. The aerial autonomy is enabled by utilizing a 3D prior map built in Step 1.

[ CMU ]

The Stanford Space Robotics Facility allows researchers to test innovative guidance and navigation algorithms on a realistic frictionless, underactuated system.

[ Stanford ASL ]

In this video, Ian and CP discuss Misty’s many capabilities including robust locomotion, obstacle avoidance, 3D mapping/SLAM, face detection and recognition, sound localization, hardware extensibility, photo and video capture, and programmable personality. They also talk about some of the skills he’s built using these capabilities (and others) and how those skills can be expanded upon by you.

[ Misty Robotics ]

This week’s CMU RI Seminar comes from Aaron Parness at Caltech and NASA JPL, on “Robotic Grippers for Planetary Applications.”

The previous generation of NASA missions to the outer solar system discovered salt water oceans on Europa and Enceladus, each with more liquid water than Earth – compelling targets to look for extraterrestrial life. Closer to home, JAXA and NASA have imaged sky-light entrances to lava tube caves on the Moon more than 100 m in diameter and ESA has characterized the incredibly varied and complex terrain of Comet 67P. While JPL has successfully landed and operated four rovers on the surface of Mars using a 6-wheeled rocker-bogie architecture, future missions will require new mobility architectures for these extreme environments. Unfortunately, the highest value science targets often lie in the terrain that is hardest to access. This talk will explore robotic grippers that enable missions to these extreme terrains through their ability to grip a wide variety of surfaces (shapes, sizes, and geotechnical properties). To prepare for use in space where repair or replacement is not possible, we field-test these grippers and robots in analog extreme terrain on Earth. Many of these systems are enabled by advances in autonomy. The talk will present a rapid overview of my work and a detailed case study of an underactuated rock gripper for deflecting asteroids.

[ CMU ]

Rod Brooks gives some of the best robotics talks ever. He gave this one earlier this week at UC Berkeley, on “Steps Toward Super Intelligence and the Search for a New Path.”

[ UC Berkeley ] Continue reading

Posted in Human Robots

#435824 A Q&A with Cruise’s head of AI, ...

In 2016, Cruise, an autonomous vehicle startup acquired by General Motors, had about 50 employees. At the beginning of 2019, the headcount at its San Francisco headquarters—mostly software engineers, mostly working on projects connected to machine learning and artificial intelligence—hit around 1000. Now that number is up to 1500, and by the end of this year it’s expected to reach about 2000, sprawling into a recently purchased building that had housed Dropbox. And that’s not counting the 200 or so tech workers that Cruise is aiming to install in a Seattle, Wash., satellite development center and a handful of others in Phoenix, Ariz., and Pasadena, Calif.

Cruise’s recent hires aren’t all engineers—it takes more than engineering talent to manage operations. And there are hundreds of so-called safety drivers that are required to sit in the 180 or so autonomous test vehicles whenever they roam the San Francisco streets. But that’s still a lot of AI experts to be hiring in a time of AI engineer shortages.

Hussein Mehanna, head of AI/ML at Cruise, says the company’s hiring efforts are on track, due to the appeal of the challenge of autonomous vehicles in drawing in AI experts from other fields. Mehanna himself joined Cruise in May from Google, where he was director of engineering at Google Cloud AI. Mehanna had been there about a year and a half, a relatively quick career stop after a short stint at Snap following four years working in machine learning at Facebook.

Mehanna has been immersed in AI and machine learning research since his graduate studies in speech recognition and natural language processing at the University of Cambridge. I sat down with Mehanna to talk about his career, the challenges of recruiting AI experts and autonomous vehicle development in general—and some of the challenges specific to San Francisco. We were joined by Michael Thomas, Cruise’s manager of AI/ML recruiting, who had also spent time recruiting AI engineers at Google and then Facebook.

IEEE Spectrum: When you were at Cambridge, did you think AI was going to take off like a rocket?

Mehanna: Did I imagine that AI was going to be as dominant and prevailing and sometimes hyped as it is now? No. I do recall in 2003 that my supervisor and I were wondering if neural networks could help at all in speech recognition. I remember my supervisor saying if anyone could figure out how use a neural net for speech he would give them a grant immediately. So he was on the right path. Now neural networks have dominated vision, speech, and language [processing]. But that boom started in 2012.

“In the early days, Facebook wasn’t that open to PhDs, it actually had a negative sentiment about researchers, and then Facebook shifted”

I didn’t [expect it], but I certainly aimed for it when [I was at] Microsoft, where I deliberately pushed my career towards machine learning instead of big data, which was more popular at the time. And [I aimed for it] when I joined Facebook.

In the early days, Facebook wasn’t that open to PhDs, or researchers. It actually had a negative sentiment about researchers. And then Facebook shifted to becoming one of the key places where PhD students wanted to do internships or join after they graduated. It was a mindset shift, they were [once] at a point in time where they thought what was needed for success wasn’t research, but now it’s different.

There was definitely an element of risk [in taking a machine learning career path], but I was very lucky, things developed very fast.

IEEE Spectrum: Is it getting harder or easier to find AI engineers to hire, given the reported shortages?

Mehanna: There is a mismatch [between job openings and qualified engineers], though it is hard to quantify it with numbers. There is good news as well: I see a lot more students diving deep into machine learning and data in their [undergraduate] computer science studies, so it’s not as bleak as it seems. But there is massive demand in the market.

Here at Cruise, demand for AI talent is just growing and growing. It might be is saturating or slowing down at other kinds of companies, though, [which] are leveraging more traditional applications—ad prediction, recommendations—that have been out there in the market for a while. These are more mature, better understood problems.

I believe autonomous vehicle technologies is the most difficult AI problem out there. The magnitude of the challenge of these problems is 1000 times more than other problems. They aren’t as well understood yet, and they require far deeper technology. And also the quality at which they are expected to operate is off the roof.

The autonomous vehicle problem is the engineering challenge of our generation. There’s a lot of code to write, and if we think we are going to hire armies of people to write it line by line, it’s not going to work. Machine learning can accelerate the process of generating the code, but that doesn’t mean we aren’t going to have engineers; we actually need a lot more engineers.

Sometimes people worry that AI is taking jobs. It is taking some developer jobs, but it is actually generating other developer jobs as well, protecting developers from the mundane and helping them build software faster and faster.

IEEE Spectrum: Are you concerned that the demand for AI in industry is drawing out the people in academia who are needed to educate future engineers, that is, the “eating the seed corn” problem?

Mehanna: There are some negative examples in the industry, but that’s not our style. We are looking for collaborations with professors, we want to cultivate a very deep and respectful relationship with universities.

And there’s another angle to this: Universities require a thriving industry for them to thrive. It is going to be extremely beneficial for academia to have this flourishing industry in AI, because it attracts more students to academia. I think we are doing them a fantastic favor by building these career opportunities. This is not the same as in my early days, [when] people told me “don’t go to AI; go to networking, work in the mobile industry; mobile is flourishing.”

IEEE Spectrum: Where are you looking as you try to find a thousand or so engineers to hire this year?

Thomas: We look for people who want to use machine learning to solve problems. They can be in many different industries—in the financial markets, in social media, in advertising. The autonomous vehicle industry is in its infancy. You can compare it to mobile in the early days: When the iPhone first came out, everyone was looking for developers with mobile experience, but you weren’t going to find them unless you went to straight to Apple, [so you had to hire other kinds of engineers]. This is the same type of thing: it is so new that you aren’t going to find experts in this area, because we are all still learning.

“You don’t have to be an autonomous vehicle expert to flourish in this world. It’s not too late to move…now would be a great time for AI experts working on other problems to shift their attention to autonomous vehicles.”

Mehanna: Because autonomous vehicle technology is the new frontier for AI experts, [the number of] people with both AI and autonomous vehicle experience is quite limited. So we are acquiring AI experts wherever they are, and helping them grow into the autonomous vehicle area. You don’t have to be an autonomous vehicle expert to flourish in this world. It’s not too late to move; even though there is a lot of great tech developed, there’s even more innovation ahead, so now would be a great time for AI experts working on other problems or applications to shift their attention to autonomous vehicles.

It feels like the Internet in 1980. It’s about to happen, but there are endless applications [to be developed over] the next few decades. Even if we can get a car to drive safely, there is the question of how can we tune the ride comfort, and then applying it all to different cities, different vehicles, different driving situations, and who knows to what other applications.

I can see how I can spend a lifetime career trying to solve this problem.

IEEE Spectrum: Why are you doing most of your development in San Francisco?

Mehanna: I think the best talent of the world is in Silicon Valley, and solving the autonomous vehicle problem is going to require the best of the best. It’s not just the engineering talent that is here, but [also] the entrepreneurial spirit. Solving the problem just as a technology is not going to be successful, you need to solve the product and the technology together. And the entrepreneurial spirit is one of the key reasons Cruise secured 7.5 billion in funding [besides GM, the company has a number of outside investors, including Honda, Softbank, and T. Rowe Price]. That [funding] is another reason Cruise is ahead of many others, because this problem requires deep resources.

“If you can do an autonomous vehicle in San Francisco you can do it almost anywhere.”

[And then there is the driving environment.] When I speak to my peers in the industry, they have a lot of respect for us, because the problems to solve in San Francisco technically are an order of magnitude harder. It is a tight environment, with a lot of pedestrians, and driving patterns that, let’s put it this way, are not necessarily the best in the nation. Which means we are seeing more problems ahead of our competitors, which gets us to better [software]. I think if you can do an autonomous vehicle in San Francisco you can do it almost anywhere.

A version of this post appears in the September 2019 print magazine as “AI Engineers: The Autonomous-Vehicle Industry Wants You.” Continue reading

Posted in Human Robots

#435818 Swappable Flying Batteries Keep Drones ...

Battery power is a limiting factor for robots everywhere, but it’s particularly problematic for drones, which have to make an awkward tradeoff between the amount of battery they carry, the amount of other more useful stuff they carry, and how long they can spend in the air. Consumer drones seem to have settled around about a third of their overall mass in battery, resulting in flight times of 20 to 25 minutes at best, before you have to bring the drone back for a battery swap. And if whatever the drone was supposed to be doing depended on it staying in the air, then you’re pretty much out of luck.

When much larger aircraft have this problem, and in particular military aircraft which sometimes need to stay on-station for long periods of time, the solution is mid-air refueling—why send an aircraft all the way back to its fuel source when you can instead bring the fuel source to the aircraft? It’s easier to do this with liquid fuel than it is with batteries, of course, but researchers at UC Berkeley have come up with a clever solution: You just give the batteries wings. Or, in this case, rotors.

The big quadrotor, which weighs 820 grams, is carrying its own 2.2 Ah lithium-polymer battery that by itself gives it a flight time of about 12 minutes. Each little quadrotor weighs 320 g, including its own 0.8 Ah battery plus a 1.5 Ah battery as cargo. The little ones can’t keep themselves aloft for all that long, but that’s okay, because as flying batteries their only job is to go from ground to the big quadrotor and back again.

Photo: UC Berkeley

The flying batteries land on a tray mounted atop the main drone and align their legs with electrical contacts.

How the flying batteries work
As each flying battery approaches the main quadrotor, the smaller quadrotor takes a position about 30 centimeter above a passive docking tray mounted on top of the bigger drone. It then slowly descends to about 3 cm above, waits for its alignment to be just right, and then drops, landing on the tray which helps align its legs with electrical contacts. As soon as a connection is made, the main quadrotor is able to power itself completely from the smaller drone’s battery payload. Each flying battery can power the main quadrotor for about 6 minutes, and then it flies off and a new flying battery takes its place. If everything goes well, the main quadrotor only uses its primary battery during the undocking and docking phases, and in testing, this boosted its flight time from 12 minutes to nearly an hour.

All of this happens in a motion-capture environment, which is a big constraint, and getting this precision(ish) docking maneuver to work outside, or when the primary drone is moving, is something that the researchers would like to figure out. There are potential applications in situations where continuous monitoring by a drone is important—you could argue that switching off two identical drones might be a simpler way of achieving that, but it also requires two (presumably fancy) drones as opposed to just one plus a bunch of relatively simple and inexpensive flying batteries.

“Flying Batteries: In-flight Battery Switching to Increase Multirotor Flight Time,” by Karan P. Jain and Mark W. Mueller from the High Performance Robotics Lab at UC Berkeley, is available on arXiv. Continue reading

Posted in Human Robots

#435806 Boston Dynamics’ Spot Robot Dog ...

Boston Dynamics is announcing this morning that Spot, its versatile quadruped robot, is now for sale. The machine’s animal-like behavior regularly electrifies crowds at tech conferences, and like other Boston Dynamics’ robots, Spot is a YouTube sensation whose videos amass millions of views.

Now anyone interested in buying a Spot—or a pack of them—can go to the company’s website and submit an order form. But don’t pull out your credit card just yet. Spot may cost as much as a luxury car, and it is not really available to consumers. The initial sale, described as an “early adopter program,” is targeting businesses. Boston Dynamics wants to find customers in select industries and help them deploy Spots in real-world scenarios.

“What we’re doing is the productization of Spot,” Boston Dynamics CEO Marc Raibert tells IEEE Spectrum. “It’s really a milestone for us going from robots that work in the lab to these that are hardened for work out in the field.”

Boston Dynamics has always been a secretive company, but last month, in preparation for launching Spot (formerly SpotMini), it allowed our photographers into its headquarters in Waltham, Mass., for a special shoot. In that session, we captured Spot and also Atlas—the company’s highly dynamic humanoid—in action, walking, climbing, and jumping.

You can see Spot’s photo interactives on our Robots Guide. (The Atlas interactives will appear in coming weeks.)

Gif: Bob O’Connor/Robots.ieee.org

And if you’re in the market for a robot dog, here’s everything we know about Boston Dynamics’ plans for Spot.

Who can buy a Spot?
If you’re interested in one, you should go to Boston Dynamics’ website and take a look at the information the company requires from potential buyers. Again, the focus is on businesses. Boston Dynamics says it wants to get Spots out to initial customers that “either have a compelling use case or a development team that we believe can do something really interesting with the robot,” says VP of business development Michael Perry. “Just because of the scarcity of the robots that we have, we’re going to have to be selective about which partners we start working together with.”

What can Spot do?
As you’ve probably seen on the YouTube videos, Spot can walk, trot, avoid obstacles, climb stairs, and much more. The robot’s hardware is almost completely custom, with powerful compute boards for control, and five sensor modules located on every side of Spot’s body, allowing it to survey the space around itself from any direction. The legs are powered by 12 custom motors with a reduction, with a top speed of 1.6 meters per second. The robot can operate for 90 minutes on a charge. In addition to the basic configuration, you can integrate up to 14 kilograms of extra hardware to a payload interface. Among the payload packages Boston Dynamics plans to offer are a 6 degrees-of-freedom arm, a version of which can be seen in some of the YouTube videos, and a ring of cameras called SpotCam that could be used to create Street View–type images inside buildings.

Image: Boston Dynamics

How do you control Spot?
Learning to drive the robot using its gaming-style controller “takes 15 seconds,” says CEO Marc Raibert. He explains that while teleoperating Spot, you may not realize that the robot is doing a lot of the work. “You don’t really see what that is like until you’re operating the joystick and you go over a box and you don’t have to do anything,” he says. “You’re practically just thinking about what you want to do and the robot takes care of everything.” The control methods have evolved significantly since the company’s first quadruped robots, machines like BigDog and LS3. “The control in those days was much more monolithic, and now we have what we call a sequential composition controller,” Raibert says, “which lets the system have control of the dynamics in a much broader variety of situations.” That means that every time one of Spot’s feet touches or doesn’t touch the ground, this different state of the body affects the basic physical behavior of the robot, and the controller adjusts accordingly. “Our controller is designed to understand what that state is and have different controls depending upon the case,” he says.

How much does Spot cost?
Boston Dynamics would not give us specific details about pricing, saying only that potential customers should contact them for a quote and that there is going to be a leasing option. It’s understandable: As with any expensive and complex product, prices can vary on a case by case basis and depend on factors such as configuration, availability, level of support, and so forth. When we pressed the company for at least an approximate base price, Perry answered: “Our general guidance is that the total cost of the early adopter program lease will be less than the price of a car—but how nice a car will depend on the number of Spots leased and how long the customer will be leasing the robot.”

Can Spot do mapping and SLAM out of the box?
The robot’s perception system includes cameras and 3D sensors (there is no lidar), used to avoid obstacles and sense the terrain so it can climb stairs and walk over rubble. It’s also used to create 3D maps. According to Boston Dynamics, the first software release will offer just teleoperation. But a second release, to be available in the next few weeks, will enable more autonomous behaviors. For example, it will be able to do mapping and autonomous navigation—similar to what the company demonstrated in a video last year, showing how you can drive the robot through an environment, create a 3D point cloud of the environment, and then set waypoints within that map for Spot to go out and execute that mission. For customers that have their own autonomy stack and are interested in using those on Spot, Boston Dynamics made it “as plug and play as possible in terms of how third-party software integrates into Spot’s system,” Perry says. This is done mainly via an API.

How does Spot’s API works?
Boston Dynamics built an API so that customers can create application-level products with Spot without having to deal with low-level control processes. “Rather than going and building joint-level kinematic access to the robot,” Perry explains, “we created a high-level API and SDK that allows people who are used to Web app development or development of missions for drones to use that same scope, and they’ll be able to build applications for Spot.”

What applications should we see first?
Boston Dynamics envisions Spot as a platform: a versatile mobile robot that companies can use to build applications based on their needs. What types of applications? The company says the best way to find out is to put Spot in the hands of as many users as possible and let them develop the applications. Some possibilities include performing remote data collection and light manipulation in construction sites; monitoring sensors and infrastructure at oil and gas sites; and carrying out dangerous missions such as bomb disposal and hazmat inspections. There are also other promising areas such as security, package delivery, and even entertainment. “We have some initial guesses about which markets could benefit most from this technology, and we’ve been engaging with customers doing proof-of-concept trials,” Perry says. “But at the end of the day, that value story is really going to be determined by people going out and exploring and pushing the limits of the robot.”

Photo: Bob O'Connor

How many Spots have been produced?
Last June, Boston Dynamics said it was planning to build about a hundred Spots by the end of the year, eventually ramping up production to a thousand units per year by the middle of this year. The company admits that it is not quite there yet. It has built close to a hundred beta units, which it has used to test and refine the final design. This version is now being mass manufactured, but the company is still “in the early tens of robots,” Perry says.

How did Boston Dynamics test Spot?

The company has tested the robots during proof-of-concept trials with customers, and at least one is already using Spot to survey construction sites. The company has also done reliability tests at its facility in Waltham, Mass. “We drive around, not quite day and night, but hundreds of miles a week, so that we can collect reliability data and find bugs,” Raibert says.

What about competitors?
In recent years, there’s been a proliferation of quadruped robots that will compete in the same space as Spot. The most prominent of these is ANYmal, from ANYbotics, a Swiss company that spun out of ETH Zurich. Other quadrupeds include Vision from Ghost Robotics, used by one of the teams in the DARPA Subterranean Challenge; and Laikago and Aliengo from Unitree Robotics, a Chinese startup. Raibert views the competition as a positive thing. “We’re excited to see all these companies out there helping validate the space,” he says. “I think we’re more in competition with finding the right need [that robots can satisfy] than we are with the other people building the robots at this point.”

Why is Boston Dynamics selling Spot now?
Boston Dynamics has long been an R&D-centric firm, with most of its early funding coming from military programs, but it says commercializing robots has always been a goal. Productizing its machines probably accelerated when the company was acquired by Google’s parent company, Alphabet, which had an ambitious (and now apparently very dead) robotics program. The commercial focus likely continued after Alphabet sold Boston Dynamics to SoftBank, whose famed CEO, Masayoshi Son, is known for his love of robots—and profits.

Which should I buy, Spot or Aibo?
Don’t laugh. We’ve gotten emails from individuals interested in purchasing a Spot for personal use after seeing our stories on the robot. Alas, Spot is not a bigger, fancier Aibo pet robot. It’s an expensive, industrial-grade machine that requires development and maintenance. If you’re maybe Jeff Bezos you could probably convince Boston Dynamics to sell you one, but otherwise the company will prioritize businesses.

What’s next for Boston Dynamics?
On the commercial side of things, other than Spot, Boston Dynamics is interested in the logistics space. Earlier this year it announced the acquisition of Kinema Systems, a startup that had developed vision sensors and deep-learning software to enable industrial robot arms to locate and move boxes. There’s also Handle, the mobile robot on whegs (wheels + legs), that can pick up and move packages. Boston Dynamics is hiring both in Waltham, Mass., and Mountain View, Calif., where Kinema was located.

Okay, can I watch a cool video now?
During our visit to Boston Dynamics’ headquarters last month, we saw Atlas and Spot performing some cool new tricks that we unfortunately are not allowed to tell you about. We hope that, although the company is putting a lot of energy and resources into its commercial programs, Boston Dynamics will still find plenty of time to improve its robots, build new ones, and of course, keep making videos. [Update: The company has just released a new Spot video, which we’ve embedded at the top of the post.][Update 2: We should have known. Boston Dynamics sure knows how to create buzz for itself: It has just released a second video, this time of Atlas doing some of those tricks we saw during our visit and couldn’t tell you about. Enjoy!]

[ Boston Dynamics ] Continue reading

Posted in Human Robots

#435769 The Ultimate Optimization Problem: How ...

Lucas Joppa thinks big. Even while gazing down into his cup of tea in his modest office on Microsoft’s campus in Redmond, Washington, he seems to see the entire planet bobbing in there like a spherical tea bag.

As Microsoft’s first chief environmental officer, Joppa came up with the company’s AI for Earth program, a five-year effort that’s spending US $50 million on AI-powered solutions to global environmental challenges.

The program is not just about specific deliverables, though. It’s also about mindset, Joppa told IEEE Spectrum in an interview in July. “It’s a plea for people to think about the Earth in the same way they think about the technologies they’re developing,” he says. “You start with an objective. So what’s our objective function for Earth?” (In computer science, an objective function describes the parameter or parameters you are trying to maximize or minimize for optimal results.)

Photo: Microsoft

Lucas Joppa

AI for Earth launched in December 2017, and Joppa’s team has since given grants to more than 400 organizations around the world. In addition to receiving funding, some grantees get help from Microsoft’s data scientists and access to the company’s computing resources.

In a wide-ranging interview about the program, Joppa described his vision of the “ultimate optimization problem”—figuring out which parts of the planet should be used for farming, cities, wilderness reserves, energy production, and so on.

Every square meter of land and water on Earth has an infinite number of possible utility functions. It’s the job of Homo sapiens to describe our overall objective for the Earth. Then it’s the job of computers to produce optimization results that are aligned with the human-defined objective.

I don’t think we’re close at all to being able to do this. I think we’re closer from a technology perspective—being able to run the model—than we are from a social perspective—being able to make decisions about what the objective should be. What do we want to do with the Earth’s surface?

Such questions are increasingly urgent, as climate change has already begun reshaping our planet and our societies. Global sea and air surface temperatures have already risen by an average of 1 degree Celsius above preindustrial levels, according to the Intergovernmental Panel on Climate Change.

Today, people all around the world participated in a “climate strike,” with young people leading the charge and demanding a global transition to renewable energy. On Monday, world leaders will gather in New York for the United Nations Climate Action Summit, where they’re expected to present plans to limit warming to 1.5 degrees Celsius.

Joppa says such summit discussions should aim for a truly holistic solution.

We talk about how to solve climate change. There’s a higher-order question for society: What climate do we want? What output from nature do we want and desire? If we could agree on those things, we could put systems in place for optimizing our environment accordingly. Instead we have this scattered approach, where we try for local optimization. But the sum of local optimizations is never a global optimization.

There’s increasing interest in using artificial intelligence to tackle global environmental problems. New sensing technologies enable scientists to collect unprecedented amounts of data about the planet and its denizens, and AI tools are becoming vital for interpreting all that data.

The 2018 report “Harnessing AI for the Earth,” produced by the World Economic Forum and the consulting company PwC, discusses ways that AI can be used to address six of the world’s most pressing environmental challenges (climate change, biodiversity, and healthy oceans, water security, clean air, and disaster resilience).

Many of the proposed applications involve better monitoring of human and natural systems, as well as modeling applications that would enable better predictions and more efficient use of natural resources.

Joppa says that AI for Earth is taking a two-pronged approach, funding efforts to collect and interpret vast amounts of data alongside efforts that use that data to help humans make better decisions. And that’s where the global optimization engine would really come in handy.

For any location on earth, you should be able to go and ask: What’s there, how much is there, and how is it changing? And more importantly: What should be there?

On land, the data is really only interesting for the first few hundred feet. Whereas in the ocean, the depth dimension is really important.

We need a planet with sensors, with roving agents, with remote sensing. Otherwise our decisions aren’t going to be any good.

AI for Earth isn’t going to create such an online portal within five years, Joppa stresses. But he hopes the projects that he’s funding will contribute to making such a portal possible—eventually.

We’re asking ourselves: What are the fundamental missing layers in the tech stack that would allow people to build a global optimization engine? Some of them are clear, some are still opaque to me.

By the end of five years, I’d like to have identified these missing layers, and have at least one example of each of the components.

Some of the projects that AI for Earth has funded seem to fit that desire. Examples include SilviaTerra, which used satellite imagery and AI to create a map of the 92 billion trees in forested areas across the United States. There’s also OceanMind, a non-profit that detects illegal fishing and helps marine authorities enforce compliance. Platforms like Wildbook and iNaturalist enable citizen scientists to upload pictures of animals and plants, aiding conservation efforts and research on biodiversity. And FarmBeats aims to enable data-driven agriculture with low-cost sensors, drones, and cloud services.

It’s not impossible to imagine putting such services together into an optimization engine that knows everything about the land, the water, and the creatures who live on planet Earth. Then we’ll just have to tell that engine what we want to do about it.

Editor’s note: This story is published in cooperation with more than 250 media organizations and independent journalists that have focused their coverage on climate change ahead of the UN Climate Action Summit. IEEE Spectrum’s participation in the Covering Climate Now partnership builds on our past reporting about this global issue. Continue reading

Posted in Human Robots