Tag Archives: appears

#437695 Video Friday: Even Robots Know That You ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
Other Than Human – September 3-10, 2020 – Stockholm, Sweden
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

From the Robotics and Perception Group at UZH comes Flightmare, a simulation environment for drones that combines a slick rendering engine with a robust physics engine that can run as fast as your system can handle.

Flightmare is composed of two main components: a configurable rendering engine built on Unity and a flexible physics engine for dynamics simulation. Those two components are totally decoupled and can run independently from each other. Flightmare comes with several desirable features: (i) a large multi-modal sensor suite, including an interface to extract the 3D point-cloud of the scene; (ii) an API for reinforcement learning which can simulate hundreds of quadrotors in parallel; and (iii) an integration with a virtual-reality headset for interaction with the simulated environment. Flightmare can be used for various applications, including path-planning, reinforcement learning, visual-inertial odometry, deep learning, human-robot interaction, etc.

[ Flightmare ]

Quadruped robots yelling at people to maintain social distancing is really starting to become a thing, for better or worse.

We introduce a fully autonomous surveillance robot based on a quadruped platform that can promote social distancing in complex urban environments. Specifically, to achieve autonomy, we mount multiple cameras and a 3D LiDAR on the legged robot. The robot then uses an onboard real-time social distancing detection system to track nearby pedestrian groups. Next, the robot uses a crowd-aware navigation algorithm to move freely in highly dynamic scenarios. The robot finally uses a crowd aware routing algorithm to effectively promote social distancing by using human-friendly verbal cues to send suggestions to overcrowded pedestrians.

[ Project ]

Thanks Fan!

The Personal Robotics Group at Oregon State University is looking at UV germicidal irradiation for surface disinfection with a Fetch Manipulator Robot.

Fetch Robot disinfecting dance party woo!

[ Oregon State ]

How could you not take a mask from this robot?

[ Reachy ]

This work presents the design, development and autonomous navigation of the alpha-version of our Resilient Micro Flyer, a new type of collision-tolerant small aerial robot tailored to traversing and searching within highly confined environments including manhole-sized tubes. The robot is particularly lightweight and agile, while it implements a rigid collision-tolerant design which renders it resilient during forcible interaction with the environment. Furthermore, the design of the system is enhanced through passive flaps ensuring smoother and more compliant collision which was identified to be especially useful in very confined settings.

[ ARL ]

Pepper can make maps and autonomously navigate, which is interesting, but not as interesting as its posture when it's wandering around.

Dat backing into the charging dock tho.

[ Pepper ]

RatChair a strategy for displacing big objects by attaching relatively small vibration sources. After learning how several random bursts of vibration affect its pose, an optimization algorithm discovers the optimal sequence of vibration patterns required to (slowly but surely) move the object to a specified position.

This is from 2015, why isn't all of my furniture autonomous yet?!

[ KAIST ]

The new SeaDrone Pro is designed to be the underwater equivalent of a quadrotor. This video is a rendering, but we've been assured that it does actually exist.

[ SeaDrone ]

Thanks Eduardo!

Porous Loops is a lightweight composite facade panel that shows the potential of 3D printing of mineral foams for building scale applications.

[ ETH ]

Thanks Fan!

Here's an interesting idea for a robotic gripper- it's what appears to be a snap bracelet coupled to a pneumatic actuator that allows the snap bracelet to be reset.

[ Georgia Tech ]

Graze is developing a commercial robotic lawnmower. They're also doing a sort of crowdfunded investment thing, which probably explains the painfully overproduced nature of the following video:

A couple things about this: the hard part, which the video skips over almost entirely, is the mapping, localization, and understanding where to mow and where not to mow. The pitch deck seems to suggest that this is mostly done through computer vision, a thing that's perhaps easy to do under controlled ideal conditions, but difficult to apply to a world full lawns that are all different. The commercial aspect is interesting because golf courses are likely as standardized as you can get, but the emphasis here on how much money they can make without really addressing any of the technical stuff makes me raise an eyebrow or two.

[ Graze ]

The record & playback X-series arm demo allows the user to record the arm's movements while motors are torqued off. Then, the user may torque the motor's on and watch the movements they just made playback!

[ Interbotix ]

Shadow Robot has a new teleop system for its hand. I'm guessing that it's even trickier to use than it looks.

[ Shadow Robot ]

Quanser Interactive Labs is a collection of virtual hardware-based laboratory activities that supplement traditional or online courses. Same as working with physical systems in the lab, students work with virtual twins of Quanser's most popular plants, develop their mathematical models, implement and simulate the dynamic behavior of these systems, design controllers, and validate them on a high-fidelity 3D real-time virtual models. The virtual systems not only look like the real ones, they also behave, can be manipulated, measured, and controlled like real devices. And finally, when students go to the lab, they can deploy their virtually-validated designs on actual physical equipment.

[ Quanser ]

This video shows robot-assisted heart surgery. It's amazing to watch if you haven't seen this sort of thing before, but be aware that there is a lot of blood.

This video demonstrates a fascinating case of robotic left atrial myxoma excision, narrated by Joel Dunning, Middlesbrough, UK. The Robotic platform provides superior visualisation and enhanced dexterity, through keyhole incisions. Robotic surgery is an integral part of our Minimally Invasive Cardiothoracic Surgery Program.

[ Tristan D. Yan ]

Thanks Fan!

In this talk, we present our work on learning control policies directly in simulation that are deployed onto real drones without any fine tuning. The presentation covers autonomous drone racing, drone acrobatics, and uncertainty estimation in deep networks.

[ RPG ] Continue reading

Posted in Human Robots

#437673 Can AI and Automation Deliver a COVID-19 ...

Illustration: Marysia Machulska

Within moments of meeting each other at a conference last year, Nathan Collins and Yann Gaston-Mathé began devising a plan to work together. Gaston-Mathé runs a startup that applies automated software to the design of new drug candidates. Collins leads a team that uses an automated chemistry platform to synthesize new drug candidates.

“There was an obvious synergy between their technology and ours,” recalls Gaston-Mathé, CEO and cofounder of Paris-based Iktos.

In late 2019, the pair launched a project to create a brand-new antiviral drug that would block a specific protein exploited by influenza viruses. Then the COVID-19 pandemic erupted across the world stage, and Gaston-Mathé and Collins learned that the viral culprit, SARS-CoV-2, relied on a protein that was 97 percent similar to their influenza protein. The partners pivoted.

Their companies are just two of hundreds of biotech firms eager to overhaul the drug-discovery process, often with the aid of artificial intelligence (AI) tools. The first set of antiviral drugs to treat COVID-19 will likely come from sifting through existing drugs. Remdesivir, for example, was originally developed to treat Ebola, and it has been shown to speed the recovery of hospitalized COVID-19 patients. But a drug made for one condition often has side effects and limited potency when applied to another. If researchers can produce an ­antiviral that specifically targets SARS-CoV-2, the drug would likely be safer and more effective than a repurposed drug.

There’s one big problem: Traditional drug discovery is far too slow to react to a pandemic. Designing a drug from scratch typically takes three to five years—and that’s before human clinical trials. “Our goal, with the combination of AI and automation, is to reduce that down to six months or less,” says Collins, who is chief strategy officer at SRI Biosciences, a division of the Silicon Valley research nonprofit SRI International. “We want to get this to be very, very fast.”

That sentiment is shared by small biotech firms and big pharmaceutical companies alike, many of which are now ramping up automated technologies backed by supercomputing power to predict, design, and test new antivirals—for this pandemic as well as the next—with unprecedented speed and scope.

“The entire industry is embracing these tools,” says Kara Carter, president of the International Society for Antiviral Research and executive vice president of infectious disease at Evotec, a drug-discovery company in Hamburg. “Not only do we need [new antivirals] to treat the SARS-CoV-2 infection in the population, which is probably here to stay, but we’ll also need them to treat future agents that arrive.”

There are currentlyabout 200 known viruses that infect humans. Although viruses represent less than 14 percent of all known human pathogens, they make up two-thirds of all new human pathogens discovered since 1980.

Antiviral drugs are fundamentally different from vaccines, which teach a person’s immune system to mount a defense against a viral invader, and antibody treatments, which enhance the body’s immune response. By contrast, anti­virals are chemical compounds that directly block a virus after a person has become infected. They do this by binding to specific proteins and preventing them from functioning, so that the virus cannot copy itself or enter or exit a cell.

The SARS-CoV-2 virus has an estimated 25 to 29 proteins, but not all of them are suitable drug targets. Researchers are investigating, among other targets, the virus’s exterior spike protein, which binds to a receptor on a human cell; two scissorlike enzymes, called proteases, that cut up long strings of viral proteins into functional pieces inside the cell; and a polymerase complex that makes the cell churn out copies of the virus’s genetic material, in the form of single-stranded RNA.

But it’s not enough for a drug candidate to simply attach to a target protein. Chemists also consider how tightly the compound binds to its target, whether it binds to other things as well, how quickly it metabolizes in the body, and so on. A drug candidate may have 10 to 20 such objectives. “Very often those objectives can appear to be anticorrelated or contradictory with each other,” says Gaston-Mathé.

Compared with antibiotics, antiviral drug discovery has proceeded at a snail’s pace. Scientists advanced from isolating the first antibacterial molecules in 1910 to developing an arsenal of powerful antibiotics by 1944. By contrast, it took until 1951 for researchers to be able to routinely grow large amounts of virus particles in cells in a dish, a breakthrough that earned the inventors a Nobel Prize in Medicine in 1954.

And the lag between the discovery of a virus and the creation of a treatment can be heartbreaking. According to the World Health Organization, 71 million people worldwide have chronic hepatitis C, a major cause of liver cancer. The virus that causes the infection was discovered in 1989, but effective antiviral drugs didn’t hit the market until 2014.

While many antibiotics work on a range of microbes, most antivirals are highly specific to a single virus—what those in the business call “one bug, one drug.” It takes a detailed understanding of a virus to develop an antiviral against it, says Che Colpitts, a virologist at Queen’s University, in Canada, who works on antivirals against RNA viruses. “When a new virus emerges, like SARS-CoV-2, we’re at a big disadvantage.”

Making drugs to stop viruses is hard for three main reasons. First, viruses are the Spartans of the pathogen world: They’re frugal, brutal, and expert at evading the human immune system. About 20 to 250 nanometers in diameter, viruses rely on just a few parts to operate, hijacking host cells to reproduce and often destroying those cells upon departure. They employ tricks to camouflage their presence from the host’s immune system, including preventing infected cells from sending out molecular distress beacons. “Viruses are really small, so they only have a few components, so there’s not that many drug targets available to start with,” says Colpitts.

Second, viruses replicate quickly, typically doubling in number in hours or days. This constant copying of their genetic material enables viruses to evolve quickly, producing mutations able to sidestep drug effects. The virus that causes AIDS soon develops resistance when exposed to a single drug. That’s why a cocktail of antiviral drugs is used to treat HIV infection.

Finally, unlike bacteria, which can exist independently outside human cells, viruses invade human cells to propagate, so any drug designed to eliminate a virus needs to spare the host cell. A drug that fails to distinguish between a virus and a cell can cause serious side effects. “Discriminating between the two is really quite difficult,” says Evotec’s Carter, who has worked in antiviral drug discovery for over three decades.

And then there’s the money barrier. Developing antivirals is rarely profitable. Health-policy researchers at the London School of Economics recently estimated that the average cost of developing a new drug is US $1 billion, and up to $2.8 billion for cancer and other specialty drugs. Because antivirals are usually taken for only short periods of time or during short outbreaks of disease, companies rarely recoup what they spent developing the drug, much less turn a profit, says Carter.

To change the status quo, drug discovery needs fresh approaches that leverage new technologies, rather than incremental improvements, says Christian Tidona, managing director of BioMed X, an independent research institute in Heidelberg, Germany. “We need breakthroughs.”

Putting Drug Development on Autopilot
Earlier this year, SRI Biosciences and Iktos began collaborating on a way to use artificial intelligence and automated chemistry to rapidly identify new drugs to target the COVID-19 virus. Within four months, they had designed and synthesized a first round of antiviral candidates. Here’s how they’re doing it.

1/5

STEP 1: Iktos’s AI platform uses deep-learning algorithms in an iterative process to come up with new molecular structures likely to bind to and disable a specific coronavirus protein. Illustrations: Chris Philpot

2/5

STEP 2: SRI Biosciences’s SynFini system is a three-part automated chemistry suite for producing new compounds. Starting with a target compound from Iktos, SynRoute uses machine learning to analyze and optimize routes for creating that compound, with results in about 10 seconds. It prioritizes routes based on cost, likelihood of success, and ease of implementation.

3/5

STEP 3: SynJet, an automated inkjet printer platform, tests the routes by printing out tiny quantities of chemical ingredients to see how they react. If the right compound is produced, the platform tests it.

4/5

STEP 4: AutoSyn, an automated tabletop chemical plant, synthesizes milligrams to grams of the desired compound for further testing. Computer-selected “maps” dictate paths through the plant’s modular components.

5/5

STEP 5: The most promising compounds are tested against live virus samples.

Previous
Next

Iktos’s AI platform was created by a medicinal chemist and an AI expert. To tackle SARS-CoV-2, the company used generative models—deep-learning algorithms that generate new data—to “imagine” molecular structures with a good chance of disabling a key coronavirus protein.

For a new drug target, the software proposes and evaluates roughly 1 million compounds, says Gaston-Mathé. It’s an iterative process: At each step, the system generates 100 virtual compounds, which are tested in silico with predictive models to see how closely they meet the objectives. The test results are then used to design the next batch of compounds. “It’s like we have a very, very fast chemist who is designing compounds, testing compounds, getting back the data, then designing another batch of compounds,” he says.

The computer isn’t as smart as a human chemist, Gaston-Mathé notes, but it’s much faster, so it can explore far more of what people in the field call “chemical space”—the set of all possible organic compounds. Unexplored chemical space is huge: Biochemists estimate that there are at least 1063 possible druglike molecules, and that 99.9 percent of all possible small molecules or compounds have never been synthesized.

Still, designing a chemical compound isn’t the hardest part of creating a new drug. After a drug candidate is designed, it must be synthesized, and the highly manual process for synthesizing a new chemical hasn’t changed much in 200 years. It can take days to plan a synthesis process and then months to years to optimize it for manufacture.

That’s why Gaston-Mathé was eager to send Iktos’s AI-generated designs to Collins’s team at SRI Biosciences. With $13.8 million from the Defense Advanced Research Projects Agency, SRI Biosciences spent the last four years automating the synthesis process. The company’s automated suite of three technologies, called SynFini, can produce new chemical compounds in just hours or days, says Collins.

First, machine-learning software devises possible routes for making a desired molecule. Next, an inkjet printer platform tests the routes by printing out and mixing tiny quantities of chemical ingredients to see how they react with one another; if the right compound is produced, the platform runs tests on it. Finally, a tabletop chemical plant synthesizes milligrams to grams of the desired compound.

Less than four months after Iktos and SRI Biosciences announced their collaboration, they had designed and synthesized a first round of antiviral candidates for SARS-CoV-2. Now they’re testing how well the compounds work on actual samples of the virus.

Out of 10
63 possible druglike molecules, 99.9 percent have never been synthesized.

Theirs isn’t the only collaborationapplying new tools to drug discovery. In late March, Alex Zhavoronkov, CEO of Hong Kong–based Insilico Medicine, came across a YouTube video showing three virtual-reality avatars positioning colorful, sticklike fragments in the side of a bulbous blue protein. The three researchers were using VR to explore how compounds might bind to a SARS-CoV-2 enzyme. Zhavoronkov contacted the startup that created the simulation—Nanome, in San Diego—and invited it to examine Insilico’s ­AI-generated molecules in virtual reality.

Insilico runs an AI platform that uses biological data to train deep-learning algorithms, then uses those algorithms to identify molecules with druglike features that will likely bind to a protein target. A four-day training sprint in late January yielded 100 molecules that appear to bind to an important SARS-CoV-2 protease. The company recently began synthesizing some of those molecules for laboratory testing.

Nanome’s VR software, meanwhile, allows researchers to import a molecular structure, then view and manipulate it on the scale of individual atoms. Like human chess players who use computer programs to explore potential moves, chemists can use VR to predict how to make molecules more druglike, says Nanome CEO Steve McCloskey. “The tighter the interface between the human and the computer, the more information goes both ways,” he says.

Zhavoronkov sent data about several of Insilico’s compounds to Nanome, which re-created them in VR. Nanome’s chemist demonstrated chemical tweaks to potentially improve each compound. “It was a very good experience,” says Zhavoronkov.

Meanwhile, in March, Takeda Pharmaceutical Co., of Japan, invited Schrödinger, a New York–based company that develops chemical-simulation software, to join an alliance working on antivirals. Schrödinger’s AI focuses on the physics of how proteins interact with small molecules and one another.

The software sifts through billions of molecules per week to predict a compound’s properties, and it optimizes for multiple desired properties simultaneously, says Karen Akinsanya, chief biomedical scientist and head of discovery R&D at Schrödinger. “There’s a huge sense of urgency here to come up with a potent molecule, but also to come up with molecules that are going to be well tolerated” by the body, she says. Drug developers are seeking compounds that can be broadly used and easily administered, such as an oral drug rather than an intravenous drug, she adds.

Schrödinger evaluated four protein targets and performed virtual screens for two of them, a computing-intensive process. In June, Google Cloud donated the equivalent of 16 million hours of Nvidia GPU time for the company’s calculations. Next, the alliance’s drug companies will synthesize and test the most promising compounds identified by the virtual screens.

Other companies, including Amazon Web Services, IBM, and Intel, as well as several U.S. national labs are also donating time and resources to the Covid-19 High Performance Computing Consortium. The consortium is supporting 87 projects, which now have access to 6.8 million CPU cores, 50,000 GPUs, and 600 petaflops of computational resources.

While advanced technologies could transform early drug discovery, any new drug candidate still has a long road after that. It must be tested in animals, manufactured in large batches for clinical trials, then tested in a series of trials that, for antivirals, lasts an average of seven years.

In May, the BioMed X Institute in Germany launched a five-year project to build a Rapid Antiviral Response Platform, which would speed drug discovery all the way through manufacturing for clinical trials. The €40 million ($47 million) project, backed by drug companies, will identify ­outside-the-box proposals from young scientists, then provide space and funding to develop their ideas.

“We’ll focus on technologies that allow us to go from identification of a new virus to 10,000 doses of a novel potential therapeutic ready for trials in less than six months,” says BioMed X’s Tidona, who leads the project.

While a vaccine will likely arrive long before a bespoke antiviral does, experts expect COVID-19 to be with us for a long time, so the effort to develop a direct-acting, potent antiviral continues. Plus, having new antivirals—and tools to rapidly create more—can only help us prepare for the next pandemic, whether it comes next month or in another 102 years.

“We’ve got to start thinking differently about how to be more responsive to these kinds of threats,” says Collins. “It’s pushing us out of our comfort zones.”

This article appears in the October 2020 print issue as “Automating Antivirals.” Continue reading

Posted in Human Robots

#437645 How Robots Became Essential Workers in ...

Photo: Sivaram V/Reuters

A robot, developed by Asimov Robotics to spread awareness about the coronavirus, holds a tray with face masks and sanitizer.

As the coronavirus emergency exploded into a full-blown pandemic in early 2020, forcing countless businesses to shutter, robot-making companies found themselves in an unusual situation: Many saw a surge in orders. Robots don’t need masks, can be easily disinfected, and, of course, they don’t get sick.

An army of automatons has since been deployed all over the world to help with the crisis: They are monitoring patients, sanitizing hospitals, making deliveries, and helping frontline medical workers reduce their exposure to the virus. Not all robots operate autonomously—many, in fact, require direct human supervision, and most are limited to simple, repetitive tasks. But robot makers say the experience they’ve gained during this trial-by-fire deployment will make their future machines smarter and more capable. These photos illustrate how robots are helping us fight this pandemic—and how they might be able to assist with the next one.

DROID TEAM

Photo: Clement Uwiringiyimana/Reuters

A squad of robots serves as the first line of defense against person-to-person transmission at a medical center in Kigali, Rwanda. Patients walking into the facility get their temperature checked by the machines, which are equipped with thermal cameras atop their heads. Developed by UBTech Robotics, in China, the robots also use their distinctive appearance—they resemble characters out of a Star Wars movie—to get people’s attention and remind them to wash their hands and wear masks.

Photo: Clement Uwiringiyimana/Reuters

SAY “AAH”
To speed up COVID-19 testing, a team of Danish doctors and engineers at the University of Southern Denmark and at Lifeline Robotics is developing a fully automated swab robot. It uses computer vision and machine learning to identify the perfect target spot inside the person’s throat; then a robotic arm with a long swab reaches in to collect the sample—all done with a swiftness and consistency that humans can’t match. In this photo, one of the creators, Esben Østergaard, puts his neck on the line to demonstrate that the robot is safe.

Photo: University of Southern Denmark

GERM ZAPPER
After six of its doctors became infected with the coronavirus, the Sassarese hospital in Sardinia, Italy, tightened its safety measures. It also brought in the robots. The machines, developed by UVD Robots, use lidar to navigate autonomously. Each bot carries an array of powerful short-wavelength ultraviolet-C lights that destroy the genetic material of viruses and other pathogens after a few minutes of exposure. Now there is a spike in demand for UV-disinfection robots as hospitals worldwide deploy them to sterilize intensive care units and operating theaters.

Photo: UVD Robots

RUNNING ERRANDS

In medical facilities, an ideal role for robots is taking over repetitive chores so that nurses and physicians can spend their time doing more important tasks. At Shenzhen Third People’s Hospital, in China, a robot called Aimbot drives down the hallways, enforcing face-mask and social-distancing rules and spraying disinfectant. At a hospital near Austin, Texas, a humanoid robot developed by Diligent Robotics fetches supplies and brings them to patients’ rooms. It repeats this task day and night, tirelessly, allowing the hospital staff to spend more time interacting with patients.

Photos, left: Diligent Robotics; Right: UBTech Robotics

THE DOCTOR IS IN
Nurses and doctors at Circolo Hospital in Varese, in northern Italy—the country’s hardest-hit region—use robots as their avatars, enabling them to check on their patients around the clock while minimizing exposure and conserving protective equipment. The robots, developed by Chinese firm Sanbot, are equipped with cameras and microphones and can also access patient data like blood oxygen levels. Telepresence robots, originally designed for offices, are becoming an invaluable tool for medical workers treating highly infectious diseases like COVID-19, reducing the risk that they’ll contract the pathogen they’re fighting against.

Photo: Miguel Medina/AFP/Getty Images

HELP FROM ABOVE

Photo: Zipline

Authorities in several countries attempted to use drones to enforce lockdowns and social-distancing rules, but the effectiveness of such measures remains unclear. A better use of drones was for making deliveries. In the United States, startup Zipline deployed its fixed-wing autonomous aircraft to connect two medical facilities 17 kilometers apart. For the staff at the Huntersville Medical Center, in North Carolina, masks, gowns, and gloves literally fell from the skies. The hope is that drones like Zipline’s will one day be able to deliver other kinds of critical materials, transport test samples, and distribute drugs and vaccines.

Photos: Zipline

SPECIAL DELIVERY
It’s not quite a robot takeover, but the streets and sidewalks of dozens of cities around the world have seen a proliferation of hurrying wheeled machines. Delivery robots are now in high demand as online orders continue to skyrocket.

In Hamburg, the six-wheeled robots developed by Starship Technologies navigate using cameras, GPS, and radar to bring groceries to customers.

Photo: Christian Charisius/Picture Alliance/Getty Images

In Medellín, Colombia, a startup called Rappi deployed a fleet of robots, built by Kiwibot, to deliver takeout to people in lockdown.

Photo: Joaquin Sarmiento/AFP/Getty Images

China’s JD.com, one of the country’s largest e-commerce companies, is using 20 robots to transport goods in Changsha, Hunan province; each vehicle has 22 separate compartments, which customers unlock using face authentication.

Photos: TPG/Getty Images

LIFE THROUGH ROBOTS
Robots can’t replace real human interaction, of course, but they can help people feel more connected at a time when meetings and other social activities are mostly on hold.

In Ostend, Belgium, ZoraBots brought one of its waist-high robots, equipped with cameras, microphones, and a screen, to a nursing home, allowing residents like Jozef Gouwy to virtually communicate with loved ones despite a ban on in-person visits.

Photo: Yves Herman/Reuters

In Manila, nearly 200 high school students took turns “teleporting” into a tall wheeled robot, developed by the school’s robotics club, to walk on stage during their graduation ceremony.

Photo: Ezra Acayan/Getty Images

And while Japan’s Chiba Zoological Park was temporarily closed due to the pandemic, the zoo used an autonomous robotic vehicle called RakuRo, equipped with 360-degree cameras, to offer virtual tours to children quarantined at home.

Photo: Tomohiro Ohsumi/Getty Images

SENTRY ROBOTS
Offices, stores, and medical centers are adopting robots as enforcers of a new coronavirus code.

At Fortis Hospital in Bangalore, India, a robot called Mitra uses a thermal camera to perform a preliminary screening of patients.

Photo: Manjunath Kiran/AFP/Getty Images

In Tunisia, the police use a tanklike robot to patrol the streets of its capital city, Tunis, verifying that citizens have permission to go out during curfew hours.

Photo: Khaled Nasraoui/Picture Alliance/Getty Images

And in Singapore, the Bishan-Ang Moh Kio Park unleashed a Spot robot dog, developed by Boston Dynamics, to search for social-distancing violators. Spot won’t bark at them but will rather play a recorded message reminding park-goers to keep their distance.

Photo: Roslan Rahman/AFP/Getty Images

This article appears in the October 2020 print issue as “How Robots Became Essential Workers.” Continue reading

Posted in Human Robots

#437590 Why We Need a Robot Registry


I have a confession to make: A robot haunts my nightmares. For me, Boston Dynamics’ Spot robot is 32.5 kilograms (71.1 pounds) of pure terror. It can climb stairs. It can open doors. Seeing it in a video cannot prepare you for the moment you cross paths on a trade-show floor. Now that companies can buy a Spot robot for US $74,500, you might encounter Spot anywhere.

Spot robots now patrol public parks in Singapore to enforce social distancing during the pandemic. They meet with COVID-19 patients at Boston’s Brigham and Women’s Hospital so that doctors can conduct remote consultations. Imagine coming across Spot while walking in the park or returning to your car in a parking garage. Wouldn’t you want to know why this hunk of metal is there and who’s operating it? Or at least whom to call to report a malfunction?

Robots are becoming more prominent in daily life, which is why I think governments need to create national registries of robots. Such a registry would let citizens and law enforcement look up the owner of any roaming robot, as well as learn that robot’s purpose. It’s not a far-fetched idea: The U.S. Federal Aviation Administration already has a registry for drones.

Governments could create national databases that require any companies operating robots in public spaces to report the robot make and model, its purpose, and whom to contact if the robot breaks down or causes problems. To allow anyone to use the database, all public robots would have an easily identifiable marker or model number on their bodies. Think of it as a license plate or pet microchip, but for bots.

There are some smaller-scale registries today. San Jose’s Department of Transportation (SJDOT), for example, is working with Kiwibot, a delivery robot manufacturer, to get real-time data from the robots as they roam the city’s streets. The Kiwibots report their location to SJDOT using the open-source Mobility Data Specification, which was originally developed by Los Angeles to track Bird scooters.

Real-time location reporting makes sense for Kiwibots and Spots wandering the streets, but it’s probably overkill for bots confined to cleaning floors or patrolling parking lots. That said, any robots that come in contact with the general public should clearly provide basic credentials and a way to hold their operators accountable. Given that many robots use cameras, people may also be interested in looking up who’s collecting and using that data.

I starting thinking about robot registries after Spot became available in June for anyone to purchase. The idea gained specificity after listening to Andra Keay, founder and managing director at Silicon Valley Robotics, discuss her five rules of ethical robotics at an Arm event in October. I had already been thinking that we needed some way to track robots, but her suggestion to tie robot license plates to a formal registry made me realize that people also need a way to clearly identify individual robots.

Keay pointed out that in addition to sating public curiosity and keeping an eye on robots that could cause harm, a registry could also track robots that have been hacked. For example, robots at risk of being hacked and running amok could be required to report their movements to a database, even if they’re typically restricted to a grocery store or warehouse. While we’re at it, Spot robots should be required to have sirens, because there’s no way I want one of those sneaking up on me.

This article appears in the December 2020 print issue as “Who’s Behind That Robot?” Continue reading

Posted in Human Robots

#437579 Disney Research Makes Robotic Gaze ...

While it’s not totally clear to what extent human-like robots are better than conventional robots for most applications, one area I’m personally comfortable with them is entertainment. The folks over at Disney Research, who are all about entertainment, have been working on this sort of thing for a very long time, and some of their animatronic attractions are actually quite impressive.

The next step for Disney is to make its animatronic figures, which currently feature scripted behaviors, to perform in an interactive manner with visitors. The challenge is that this is where you start to get into potential Uncanny Valley territory, which is what happens when you try to create “the illusion of life,” which is what Disney (they explicitly say) is trying to do.

In a paper presented at IROS this month, a team from Disney Research, Caltech, University of Illinois at Urbana-Champaign, and Walt Disney Imagineering is trying to nail that illusion of life with a single, and perhaps most important, social cue: eye gaze.

Before you watch this video, keep in mind that you’re watching a specific character, as Disney describes:

The robot character plays an elderly man reading a book, perhaps in a library or on a park bench. He has difficulty hearing and his eyesight is in decline. Even so, he is constantly distracted from reading by people passing by or coming up to greet him. Most times, he glances at people moving quickly in the distance, but as people encroach into his personal space, he will stare with disapproval for the interruption, or provide those that are familiar to him with friendly acknowledgment.

What, exactly, does “lifelike” mean in the context of robotic gaze? The paper abstract describes the goal as “[seeking] to create an interaction which demonstrates the illusion of life.” I suppose you could think of it like a sort of old-fashioned Turing test focused on gaze: If the gaze of this robot cannot be distinguished from the gaze of a human, then victory, that’s lifelike. And critically, we’re talking about mutual gaze here—not just a robot gazing off into the distance, but you looking deep into the eyes of this robot and it looking right back at you just like a human would. Or, just like some humans would.

The approach that Disney is using is more animation-y than biology-y or psychology-y. In other words, they’re not trying to figure out what’s going on in our brains to make our eyes move the way that they do when we’re looking at other people and basing their control system on that, but instead, Disney just wants it to look right. This “visual appeal” approach is totally fine, and there’s been an enormous amount of human-robot interaction (HRI) research behind it already, albeit usually with less explicitly human-like platforms. And speaking of human-like platforms, the hardware is a “custom Walt Disney Imagineering Audio-Animatronics bust,” which has DoFs that include neck, eyes, eyelids, and eyebrows.

In order to decide on gaze motions, the system first identifies a person to target with its attention using an RGB-D camera. If more than one person is visible, the system calculates a curiosity score for each, currently simplified to be based on how much motion it sees. Depending on which person that the robot can see has the highest curiosity score, the system will choose from a variety of high level gaze behavior states, including:

Read: The Read state can be considered the “default” state of the character. When not executing another state, the robot character will return to the Read state. Here, the character will appear to read a book located at torso level.

Glance: A transition to the Glance state from the Read or Engage states occurs when the attention engine indicates that there is a stimuli with a curiosity score […] above a certain threshold.

Engage: The Engage state occurs when the attention engine indicates that there is a stimuli […] to meet a threshold and can be triggered from both Read and Glance states. This state causes the robot to gaze at the person-of-interest with both the eyes and head.

Acknowledge: The Acknowledge state is triggered from either Engage or Glance states when the person-of-interest is deemed to be familiar to the robot.

Running underneath these higher level behavior states are lower level motion behaviors like breathing, small head movements, eye blinking, and saccades (the quick eye movements that occur when people, or robots, look between two different focal points). The term for this hierarchical behavioral state layering is a subsumption architecture, which goes all the way back to Rodney Brooks’ work on robots like Genghis in the 1980s and Cog and Kismet in the ’90s, and it provides a way for more complex behaviors to emerge from a set of simple, decentralized low-level behaviors.

“25 years on Disney is using my subsumption architecture for humanoid eye control, better and smoother now than our 1995 implementations on Cog and Kismet.”
—Rodney Brooks, MIT emeritus professor

Brooks, an emeritus professor at MIT and, most recently, cofounder and CTO of Robust.ai, tweeted about the Disney project, saying: “People underestimate how long it takes to get from academic paper to real world robotics. 25 years on Disney is using my subsumption architecture for humanoid eye control, better and smoother now than our 1995 implementations on Cog and Kismet.”

From the paper:

Although originally intended for control of mobile robots, we find that the subsumption architecture, as presented in [17], lends itself as a framework for organizing animatronic behaviors. This is due to the analogous use of subsumption in human behavior: human psychomotor behavior can be intuitively modeled as layered behaviors with incoming sensory inputs, where higher behavioral levels are able to subsume lower behaviors. At the lowest level, we have involuntary movements such as heartbeats, breathing and blinking. However, higher behavioral responses can take over and control lower level behaviors, e.g., fight-or-flight response can induce faster heart rate and breathing. As our robot character is modeled after human morphology, mimicking biological behaviors through the use of a bottom-up approach is straightforward.

The result, as the video shows, appears to be quite good, although it’s hard to tell how it would all come together if the robot had more of, you know, a face. But it seems like you don’t necessarily need to have a lifelike humanoid robot to take advantage of this architecture in an HRI context—any robot that wants to make a gaze-based connection with a human could benefit from doing it in a more human-like way.

“Realistic and Interactive Robot Gaze,” by Matthew K.X.J. Pan, Sungjoon Choi, James Kennedy, Kyna McIntosh, Daniel Campos Zamora, Gunter Niemeyer, Joohyung Kim, Alexis Wieland, and David Christensen from Disney Research, California Institute of Technology, University of Illinois at Urbana-Champaign, and Walt Disney Imagineering, was presented at IROS 2020. You can find the full paper, along with a 13-minute video presentation, on the IROS on-demand conference website.

< Back to IEEE Journal Watch Continue reading

Posted in Human Robots