Tag Archives: answer
#436200 AI and the Future of Work: The Economic ...
This week at MIT, academics and industry officials compared notes, studies, and predictions about AI and the future of work. During the discussions, an insurance company executive shared details about one AI program that rolled out at his firm earlier this year. A chatbot the company introduced, the executive said, now handles 150,000 calls per month.
Later in the day, a panelist—David Fanning, founder of PBS’s Frontline—remarked that this statistic is emblematic of broader fears he saw when reporting a new Frontline documentary about AI. “People are scared,” Fanning said of the public’s AI anxiety.
Fanning was part of a daylong symposium about AI’s economic consequences—good, bad, and otherwise—convened by MIT’s Task Force on the Work of the Future.
“Dig into every industry, and you’ll find AI changing the nature of work,” said Daniela Rus, director of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL). She cited recent McKinsey research that found 45 percent of the work people are paid to do today can be automated with currently available technologies. Those activities, McKinsey found, represent some US $2 trillion in wages.
However, the threat of automation—whether by AI or other technologies—isn’t as new as technologists on America’s coasts seem to believe, said panelist Fred Goff, CEO of Jobcase, Inc.
“If you live in Detroit or Toledo, where I come from, technology has been displacing jobs for the last half-century,” Goff said. “I don’t think that most people in this country have the increased anxiety that the coasts do, because they’ve been living this.”
Goff added that the challenge AI poses for the workforce is not, as he put it, “getting coal miners to code.” Rather, he said, as AI automates some jobs, it will also open opportunities for “reskilling” that may have nothing to do with AI or automation. He touted trade schools—teaching skills like welding, plumbing, and electrical work—and certification programs for sales industry software packages like Salesforce.
On the other hand, a documentarian who reported another recent program on AI—Krishna Andavolu, senior correspondent for Vice Media—said “reskilling” may not be an easy answer.
“People in rooms like this … don’t realize that a lot of people don’t want to work that much,” Andavolu said. “They’re not driven by passion for their career, they’re driven by passion for life. We’re telling a lot of these workers that they need to reskill. But to a lot of people that sounds like, ‘I’ve got to work twice as hard for what I have now.’ That sounds scary. We underestimate that at our peril.”
Part of the problem with “reskilling,” Andavolu said, is that some high-growth industries involve caregiving for seniors and in medical facilities—roles which are traditionally considered “feminized” careers. Destigmatizing these jobs, and increasing the pay to match the salaries of displaced jobs like long-haul truck drivers, is another challenge.
Daron Acemoglu, MIT Institute Professor of Economics, faulted the comparably slim funding of academic research into AI.
“There is nothing preordained about the progress of technology,” he said. Computers, the Internet, antibiotics, and sensors all grew out of government and academic research programs. What he called the “blue-sky thinking” of non-corporate AI research can also develop applications that are not purely focused on maximizing profits.
American companies, Acemoglu said, get tax breaks for capital R&D—but not for developing new technologies for their employees. “We turn around and [tell companies], ‘Use your technologies to empower workers,’” he said. “But why should they do that? Hiring workers is expensive in many ways. And we’re subsidizing capital.”
Said Sarita Gupta, director of the Ford Foundation’s Future of Work(ers) Program, “Low and middle income workers have for over 30 years been experiencing stagnant and declining pay, shrinking benefits, and less power on the job. Now technology is brilliant at enabling scale. But the question we sit with is—how do we make sure that we’re not scaling these longstanding problems?”
Andrew McAfee, co-director of MIT’s Initiative on the Digital Economy, said AI may not reduce the number of jobs available in the workplace today. But the quality of those jobs is another story. He cited the Dutch economist Jan Tinbergen who decades ago said that “Inequality is a race between technology and education.”
McAfee said, ultimately, the time to solve the economic problems AI poses for workers in the United States is when the U.S. economy is doing well—like right now.
“We do have the wind at our backs,” said Elisabeth Reynolds, executive director of MIT’s Task Force on the Work of the Future.
“We have some breathing room right now,” McAfee agreed. “Economic growth has been pretty good. Unemployment is pretty low. Interest rates are very, very low. We might not have that war chest in the future.” Continue reading
#436174 How Selfish Are You? It Matters for ...
Our personalities impact almost everything we do, from the career path we choose to the way we interact with others to how we spend our free time.
But what about the way we drive—could personality be used to predict whether a driver will cut someone off, speed, or, say, zoom through a yellow light instead of braking?
There must be something to the idea that those of us who are more mild-mannered are likely to drive a little differently than the more assertive among us. At least, that’s what a team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is betting on.
“Working with and around humans means figuring out their intentions to better understand their behavior,” said graduate student Wilko Schwarting, lead author on the paper published this week in Proceedings of the National Academy of Sciences. “People’s tendencies to be collaborative or competitive often spills over into how they behave as drivers. In this paper we sought to understand if this was something we could actually quantify.”
The team is building a model that classifies drivers according to how selfish or selfless they are, then uses that classification to help predict how drivers will behave on the road. Ideally, the system will help improve safety for self-driving cars by integrating a degree of ‘humanity’ into how their software perceives its surroundings; right now, human drivers and their cars are just another object, not much different than a tree or a sign.
But unlike trees and signs, humans have behavioral patterns and motivations. For greater success on roads that are still dominated by us mercurial humans, the CSAIL team believes, driverless cars should take our personalities into account.
How Selfish Are You?
About how important is your own well-being to you vs. the well-being of other people? It’s a hard question to answer without specifying who the other people are; your answer would likely differ if we’re talking about your friends, loved ones, strangers, or people you actively dislike.
In social psychology, social value orientation (SVO) refers to people’s preferences for allocating resources between themselves and others. The two broad categories people can fall into are pro-social (people who are more cooperative, and expect cooperation from others) and pro-self (pretty self-explanatory: “Me first!”).
Based on drivers’ behavior in two different road scenarios—merging and making a left turn—the CSAIL team’s model classified drivers as pro-social or egoistic. Slowing down to let someone merge into your lane in front of you would earn you a pro-social classification, while cutting someone off or not slowing down to allow a left turn would make you egoistic.
On the Road
The system then uses these classifications to model and predict drivers’ behavior. The team demonstrated that using their model, errors in predicting the behavior of other cars were reduced by 25 percent.
In a left-turn simulation, for example, their car would wait when an approaching car had an egoistic driver, but go ahead and make the turn when the other driver was prosocial. Similarly, if a self-driving car is trying to merge into the left lane and it’s identified the drivers in that lane as egoistic, it will assume they won’t slow down to let it in, and will wait to merge behind them. If, on the other hand, the self-driving car knows that the human drivers in the left lane are prosocial, it will attempt to merge between them since they’re likely to let it in.
So how does this all translate to better safety?
It’s essentially a starting point for imbuing driverless cars with some of the abilities and instincts that are innate to humans. If you’re driving down the highway and you see a car swerving outside its lane, you’ll probably distance yourself from that car because you know it’s more likely to cause an accident. Our senses take in information we can immediately interpret and act on, and this includes predictions about what might happen based on observations of what just happened. Our observations can clue us in to a driver’s personality (the swerver must be careless) or simply to the circumstances of a given moment (the swerver was texting).
But right now, self-driving cars assume all human drivers behave the same way, and they have no mechanism for incorporating observations about behavioral differences between drivers into their decisions.
“Creating more human-like behavior in autonomous vehicles (AVs) is fundamental for the safety of passengers and surrounding vehicles, since behaving in a predictable manner enables humans to understand and appropriately respond to the AV’s actions,” said Schwarting.
Though it may feel a bit unsettling to think of an algorithm lumping you into a category and driving accordingly around you, maybe it’s less unsettling than thinking of self-driving cars as pre-programmed, oblivious robots unable to adapt to different driving styles.
The team’s next step is to apply their model to pedestrians, bikes, and other agents frequently found in driving environments. They also plan to look into other robotic systems acting among people, like household robots, and integrating social value orientation into their algorithms.
Image Credit: Image by Free-Photos from Pixabay Continue reading
#436167 Is it Time for Tech to Stop Moving Fast ...
On Monday, I attended the 2019 Fall Conference of Stanford’s Institute for Human Centered Artificial Intelligence (HAI). That same night I watched the Season 6 opener for the HBO TV show Silicon Valley. And the debates featured in both surrounded the responsibility of tech companies for the societal effects of the technologies they produce. The two events have jumbled together in my mind, perhaps because I was in a bit of a brain fog, thanks to the nasty combination of a head cold and the smoke that descended on Silicon Valley from the northern California wildfires. But perhaps that mixture turned out to be a good thing.
What is clear, in spite of the smoke, is that this issue is something a lot of people are talking about, inside and outside of Silicon Valley (witness the viral video of Rep. Alexandria Ocasio-Cortez (D-NY) grilling Facebook CEO Mark Zuckerberg).
So, to add to that conversation, here’s my HBO Silicon Valley/Stanford HAI conference mashup.
Silicon Valley’s fictional CEO Richard Hendriks, in the opening scene of the episode, tells Congress that Facebook, Google, and Amazon only care about exploiting personal data for profit. He states:
“These companies are kings, and they rule over kingdoms far larger than any nation in history.”
Meanwhile Marietje Schaake, former member of the European Parliament and a fellow at HAI, told the conference audience of 900:
“There is a lot of power in the hands of few actors—Facebook decides who is a news source, Microsoft will run the defense department’s cloud…. I believe we need a deeper debate about which tasks need to stay in the hands of the public.”
Eric Schmidt, former CEO and executive chairman of Google, agreed. He says:
“It is important that we debate now the ethics of what we are doing, and the impact of the technology that we are building.”
Stanford Associate Professor Ge Wang, also speaking at the HAI conference, pointed out:
“‘Doing no harm’ is a vital goal, and it is not easy. But it is different from a proactive goal, to ‘do good.’”
Had Silicon Valley’s Hendricks been there, he would have agreed. He said in the episode:
“Just because it’s successful, doesn’t mean it’s good. Hiroshima was a successful implementation.”
The speakers at the HAI conference discussed the implications of moving fast and breaking things, of putting untested and unregulated technology into the world now that we know that things like public trust and even democracy can be broken.
Google’s Schmidt told the HAI audience:
“I don’t think that everything that is possible should be put into the wild in society, we should answer the question, collectively, how much risk are we willing to take.
And Silicon Valley denizens real and fictional no longer think it’s OK to just say sorry afterwards. Says Schmidt:
“When you ask Facebook about various scandals, how can they still say ‘We are very sorry; we have a lot of learning to do.’ This kind of naiveté stands out of proportion to the power tech companies have. With great power should come great responsibility, or at least modesty.”
Schaake argued:
“We need more guarantees, institutions, and policies than stated good intentions. It’s about more than promises.”
Fictional CEO Hendricks thinks saying sorry is a cop-out as well. In the episode, a developer admits that his app collected user data in spite of Hendricks assuring Congress that his company doesn’t do that:
“You didn’t know at the time,” the developer says. “Don’t beat yourself up about it. But in the future, stop saying it. Or don’t; I don’t care. Maybe it will be like Google saying ‘Don’t be evil,’ or Facebook saying ‘I’m sorry, we’ll do better.’”
Hendricks doesn’t buy it:
“This stops now. I’m the boss, and this is over.”
(Well, he is fictional.)
How can government, the tech world, and the general public address this in a more comprehensive way? Out in the real world, the “what to do” discussion at Stanford HAI surrounded regulation—how much, what kind, and when.
Says the European Parliament’s Schaake:
“An often-heard argument is that government should refrain from regulating tech because [regulation] will stifle innovation. [That argument] implies that innovation is more important than democracy or the rule of law. Our problems don’t stem from over regulation, but under regulation of technologies.”
But when should that regulation happen. Stanford provost emeritus John Etchemendy, speaking from the audience at the HAI conference, said:
“I’ve been an advocate of not trying to regulate before you understand it. Like San Francisco banning of use of facial recognition is not a good example of regulation; there are uses of facial recognition that we should allow. We want regulations that are just right, that prevent the bad things and allow the good things. So we are going to get it wrong either way, if we regulate to soon or hold off, we will get some things wrong.”
Schaake would opt for regulating sooner rather than later. She says that she often hears the argument that it is too early to regulate artificial intelligence—as well as the argument that it is too late to regulate ad-based political advertising, or online privacy. Neither, to her, makes sense. She told the HAI attendees:
“We need more than guarantees than stated good intentions.”
U.S. Chief Technology Officer Michael Kratsios would go with later rather than sooner. (And, yes, the country has a CTO. President Barack Obama created the position in 2009; Kratsios is the fourth to hold the office and the first under President Donald Trump. He was confirmed in August.) Also speaking at the HAI conference, Kratsios argued:
“I don’t think we should be running to regulate anything. We are a leader [in technology] not because we had great regulations, but we have taken a free market approach. We have done great in driving innovation in technologies that are born free, like the Internet. Technologies born in captivity, like autonomous vehicles, lag behind.”
In the fictional world of HBO’s Silicon Valley, startup founder Hendricks has a solution—a technical one of course: the decentralized Internet. He tells Congress:
“The way we win is by creating a new, decentralized Internet, one where the behavior of companies like this will be impossible, forever. Where it is the users, not the kings, who have sovereign control over their data. I will help you build an Internet that is of the people, by the people, and for the people.”
(This is not a fictional concept, though it is a long way from wide use. Also called the decentralized Web, the concept takes the content on today’s Web and fragments it, and then replicates and scatters those fragments to hosts around the world, increasing privacy and reducing the ability of governments to restrict access.)
If neither regulation nor technology comes to make the world safe from the unforeseen effects of new technologies, there is one more hope, according to Schaake: the millennials and subsequent generations.
Tech companies can no longer pursue growth at all costs, not if they want to keep attracting the talent they need, says Schaake. She noted that, “the young generation looks at the environment, at homeless on the streets,” and they expect their companies to tackle those and other issues and make the world a better place. Continue reading