Tag Archives: answer

#434508 The Top Biotech and Medicine Advances to ...

2018 was bonkers for science.

From a woman who gave birth using a transplanted uterus, to the infamous CRISPR baby scandal, to forensics adopting consumer-based genealogy test kits to track down criminals, last year was a factory churning out scientific “whoa” stories with consequences for years to come.

With CRISPR still in the headlines, Britain ready to bid Europe au revoir, and multiple scientific endeavors taking off, 2019 is shaping up to be just as tumultuous.

Here are the science and health stories that may blow up in the new year. But first, a note of caveat: predicting the future is tough. Forecasting is the lovechild between statistics and (a good deal of) intuition, and entire disciplines have been dedicated to the endeavor. But January is the perfect time to gaze into the crystal ball for wisps of insight into the year to come. Last year we predicted the widespread approval of gene therapy products—on the most part, we nailed it. This year we’re hedging our bets with multiple predictions.

Gene Drives Used in the Wild
The concept of gene drives scares many, for good reason. Gene drives are a step up in severity (and consequences) from CRISPR and other gene-editing tools. Even with germline editing, in which the sperm, egg, or embryos are altered, gene editing affects just one genetic line—one family—at least at the beginning, before they reproduce with the general population.

Gene drives, on the other hand, have the power to wipe out entire species.

In a nutshell, they’re little bits of DNA code that help a gene transfer from parent to child with almost 100 percent perfect probability. The “half of your DNA comes from dad, the other comes from mom” dogma? Gene drives smash that to bits.

In other words, the only time one would consider using a gene drive is to change the genetic makeup of an entire population. It sounds like the plot of a supervillain movie, but scientists have been toying around with the idea of deploying the technology—first in mosquitoes, then (potentially) in rodents.

By releasing just a handful of mutant mosquitoes that carry gene drives for infertility, for example, scientists could potentially wipe out entire populations that carry infectious scourges like malaria, dengue, or Zika. The technology is so potent—and dangerous—the US Defense Advances Research Projects Agency is shelling out $65 million to suss out how to deploy, control, counter, or even reverse the effects of tampering with ecology.

Last year, the U.N. gave a cautious go-ahead for the technology to be deployed in the wild in limited terms. Now, the first release of a genetically modified mosquito is set for testing in Burkina Faso in Africa—the first-ever field experiment involving gene drives.

The experiment will only release mosquitoes in the Anopheles genus, which are the main culprits transferring disease. As a first step, over 10,000 male mosquitoes are set for release into the wild. These dudes are genetically sterile but do not cause infertility, and will help scientists examine how they survive and disperse as a preparation for deploying gene-drive-carrying mosquitoes.

Hot on the project’s heels, the nonprofit consortium Target Malaria, backed by the Bill and Melinda Gates foundation, is engineering a gene drive called Mosq that will spread infertility across the population or kill out all female insects. Their attempt to hack the rules of inheritance—and save millions in the process—is slated for 2024.

A Universal Flu Vaccine
People often brush off flu as a mere annoyance, but the infection kills hundreds of thousands each year based on the CDC’s statistical estimates.

The flu virus is actually as difficult of a nemesis as HIV—it mutates at an extremely rapid rate, making effective vaccines almost impossible to engineer on time. Scientists currently use data to forecast the strains that will likely explode into an epidemic and urge the public to vaccinate against those predictions. That’s partly why, on average, flu vaccines only have a success rate of roughly 50 percent—not much better than a coin toss.

Tired of relying on educated guesses, scientists have been chipping away at a universal flu vaccine that targets all strains—perhaps even those we haven’t yet identified. Often referred to as the “holy grail” in epidemiology, these vaccines try to alert our immune systems to parts of a flu virus that are least variable from strain to strain.

Last November, a first universal flu vaccine developed by BiondVax entered Phase 3 clinical trials, which means it’s already been proven safe and effective in a small numbers and is now being tested in a broader population. The vaccine doesn’t rely on dead viruses, which is a common technique. Rather, it uses a small chain of amino acids—the chemical components that make up proteins—to stimulate the immune system into high alert.

With the government pouring $160 million into the research and several other universal candidates entering clinical trials, universal flu vaccines may finally experience a breakthrough this year.

In-Body Gene Editing Shows Further Promise
CRISPR and other gene editing tools headed the news last year, including both downers suggesting we already have immunity to the technology and hopeful news of it getting ready for treating inherited muscle-wasting diseases.

But what wasn’t widely broadcasted was the in-body gene editing experiments that have been rolling out with gusto. Last September, Sangamo Therapeutics in Richmond, California revealed that they had injected gene-editing enzymes into a patient in an effort to correct a genetic deficit that prevents him from breaking down complex sugars.

The effort is markedly different than the better-known CAR-T therapy, which extracts cells from the body for genetic engineering before returning them to the hosts. Rather, Sangamo’s treatment directly injects viruses carrying the edited genes into the body. So far, the procedure looks to be safe, though at the time of reporting it was too early to determine effectiveness.

This year the company hopes to finally answer whether it really worked.

If successful, it means that devastating genetic disorders could potentially be treated with just a few injections. With a gamut of new and more precise CRISPR and other gene-editing tools in the works, the list of treatable inherited diseases is likely to grow. And with the CRISPR baby scandal potentially dampening efforts at germline editing via regulations, in-body gene editing will likely receive more attention if Sangamo’s results return positive.

Neuralink and Other Brain-Machine Interfaces
Neuralink is the stuff of sci fi: tiny implanted particles into the brain could link up your biological wetware with silicon hardware and the internet.

But that’s exactly what Elon Musk’s company, founded in 2016, seeks to develop: brain-machine interfaces that could tinker with your neural circuits in an effort to treat diseases or even enhance your abilities.

Last November, Musk broke his silence on the secretive company, suggesting that he may announce something “interesting” in a few months, that’s “better than anyone thinks is possible.”

Musk’s aspiration for achieving symbiosis with artificial intelligence isn’t the driving force for all brain-machine interfaces (BMIs). In the clinics, the main push is to rehabilitate patients—those who suffer from paralysis, memory loss, or other nerve damage.

2019 may be the year that BMIs and neuromodulators cut the cord in the clinics. These devices may finally work autonomously within a malfunctioning brain, applying electrical stimulation only when necessary to reduce side effects without requiring external monitoring. Or they could allow scientists to control brains with light without needing bulky optical fibers.

Cutting the cord is just the first step to fine-tuning neurological treatments—or enhancements—to the tune of your own brain, and 2019 will keep on bringing the music.

Image Credit: angellodeco / Shutterstock.com Continue reading

Posted in Human Robots

#434336 These Smart Seafaring Robots Have a ...

Drones. Self-driving cars. Flying robo taxis. If the headlines of the last few years are to be believed, terrestrial transportation in the future will someday be filled with robotic conveyances and contraptions that will require little input from a human other than to download an app.

But what about the other 70 percent of the planet’s surface—the part that’s made up of water?

Sure, there are underwater drones that can capture 4K video for the next BBC documentary. Remotely operated vehicles (ROVs) are capable of diving down thousands of meters to investigate ocean vents or repair industrial infrastructure.

Yet most of the robots on or below the water today still lean heavily on the human element to operate. That’s not surprising given the unstructured environment of the seas and the poor communication capabilities for anything moving below the waves. Autonomous underwater vehicles (AUVs) are probably the closest thing today to smart cars in the ocean, but they generally follow pre-programmed instructions.

A new generation of seafaring robots—leveraging artificial intelligence, machine vision, and advanced sensors, among other technologies—are beginning to plunge into the ocean depths. Here are some of the latest and most exciting ones.

The Transformer of the Sea
Nic Radford, chief technology officer of Houston Mechatronics Inc. (HMI), is hesitant about throwing around the word “autonomy” when talking about his startup’s star creation, Aquanaut. He prefers the term “shared control.”

Whatever you want to call it, Aquanaut seems like something out of the script of a Transformers movie. The underwater robot begins each mission in a submarine-like shape, capable of autonomously traveling up to 200 kilometers on battery power, depending on the assignment.

When Aquanaut reaches its destination—oil and gas is the primary industry HMI hopes to disrupt to start—its four specially-designed and built linear actuators go to work. Aquanaut then unfolds into a robot with a head, upper torso, and two manipulator arms, all while maintaining proper buoyancy to get its job done.

The lightbulb moment of how to engineer this transformation from submarine to robot came one day while Aquanaut’s engineers were watching the office’s stand-up desks bob up and down. The answer to the engineering challenge of the hull suddenly seemed obvious.

“We’re just gonna build a big, gigantic, underwater stand-up desk,” Radford told Singularity Hub.

Hardware wasn’t the only problem the team, comprised of veteran NASA roboticists like Radford, had to solve. In order to ditch the expensive support vessels and large teams of humans required to operate traditional ROVs, Aquanaut would have to be able to sense its environment in great detail and relay that information back to headquarters using an underwater acoustics communications system that harkens back to the days of dial-up internet connections.

To tackle that problem of low bandwidth, HMI equipped Aquanaut with a machine vision system comprised of acoustic, optical, and laser-based sensors. All of that dense data is compressed using in-house designed technology and transmitted to a single human operator who controls Aquanaut with a few clicks of a mouse. In other words, no joystick required.

“I don’t know of anyone trying to do this level of autonomy as it relates to interacting with the environment,” Radford said.

HMI got $20 million earlier this year in Series B funding co-led by Transocean, one of the world’s largest offshore drilling contractors. That should be enough money to finish the Aquanaut prototype, which Radford said is about 99.8 percent complete. Some “high-profile” demonstrations are planned for early next year, with commercial deployments as early as 2020.

“What just gives us an incredible advantage here is that we have been born and bred on doing robotic systems for remote locations,” Radford noted. “This is my life, and I’ve bet the farm on it, and it takes this kind of fortitude and passion to see these things through, because these are not easy problems to solve.”

On Cruise Control
Meanwhile, a Boston-based startup is trying to solve the problem of making ships at sea autonomous. Sea Machines is backed by about $12.5 million in capital venture funding, with Toyota AI joining the list of investors in a $10 million Series A earlier this month.

Sea Machines is looking to the self-driving industry for inspiration, developing what it calls “vessel intelligence” systems that can be retrofitted on existing commercial vessels or installed on newly-built working ships.

For instance, the startup announced a deal earlier this year with Maersk, the world’s largest container shipping company, to deploy a system of artificial intelligence, computer vision, and LiDAR on the Danish company’s new ice-class container ship. The technology works similar to advanced driver-assistance systems found in automobiles to avoid hazards. The proof of concept will lay the foundation for a future autonomous collision avoidance system.

It’s not just startups making a splash in autonomous shipping. Radford noted that Rolls Royce—yes, that Rolls Royce—is leading the way in the development of autonomous ships. Its Intelligence Awareness system pulls in nearly every type of hyped technology on the market today: neural networks, augmented reality, virtual reality, and LiDAR.

In augmented reality mode, for example, a live feed video from the ship’s sensors can detect both static and moving objects, overlaying the scene with details about the types of vessels in the area, as well as their distance, heading, and other pertinent data.

While safety is a primary motivation for vessel automation—more than 1,100 ships have been lost over the past decade—these new technologies could make ships more efficient and less expensive to operate, according to a story in Wired about the Rolls Royce Intelligence Awareness system.

Sea Hunt Meets Science
As Singularity Hub noted in a previous article, ocean robots can also play a critical role in saving the seas from environmental threats. One poster child that has emerged—or, invaded—is the spindly lionfish.

A venomous critter endemic to the Indo-Pacific region, the lionfish is now found up and down the east coast of North America and beyond. And it is voracious, eating up to 30 times its own stomach volume and reducing juvenile reef fish populations by nearly 90 percent in as little as five weeks, according to the Ocean Support Foundation.

That has made the colorful but deadly fish Public Enemy No. 1 for many marine conservationists. Both researchers and startups are developing autonomous robots to hunt down the invasive predator.

At the Worcester Polytechnic Institute, for example, students are building a spear-carrying robot that uses machine learning and computer vision to distinguish lionfish from other aquatic species. The students trained the algorithms on thousands of different images of lionfish. The result: a lionfish-killing machine that boasts an accuracy of greater than 95 percent.

Meanwhile, a small startup called the American Marine Research Corporation out of Pensacola, Florida is applying similar technology to seek and destroy lionfish. Rather than spearfishing, the AMRC drone would stun and capture the lionfish, turning a profit by selling the creatures to local seafood restaurants.

Lionfish: It’s what’s for dinner.

Water Bots
A new wave of smart, independent robots are diving, swimming, and cruising across the ocean and its deepest depths. These autonomous systems aren’t necessarily designed to replace humans, but to venture where we can’t go or to improve safety at sea. And, perhaps, these latest innovations may inspire the robots that will someday plumb the depths of watery planets far from Earth.

Image Credit: Houston Mechatronics, Inc. Continue reading

Posted in Human Robots

#433939 The Promise—and Complications—of ...

Every year, for just a few days in a major city, a small team of roboticists get to live the dream: ordering around their own personal robot butlers. In carefully-constructed replicas of a restaurant scene or a domestic setting, these robots perform any number of simple algorithmic tasks. “Get the can of beans from the shelf. Greet the visitors to the museum. Help the humans with their shopping. Serve the customers at the restaurant.”

This is Robocup @ Home, the annual tournament where teams of roboticists put their autonomous service robots to the test for practical domestic applications. The tasks seem simple and mundane, but considering the technology required reveals that they’re really not.

The Robot Butler Contest
Say you want a robot to fetch items in the supermarket. In a crowded, noisy environment, the robot must understand your commands, ask for clarification, and map out and navigate an unfamiliar environment, avoiding obstacles and people as it does so. Then it must recognize the product you requested, perhaps in a cluttered environment, perhaps in an unfamiliar orientation. It has to grasp that product appropriately—recall that there are entire multi-million-dollar competitions just dedicated to developing robots that can grasp a range of objects—and then return it to you.

It’s a job so simple that a child could do it—and so complex that teams of smart roboticists can spend weeks programming and engineering, and still end up struggling to complete simplified versions of this task. Of course, the child has the advantage of millions of years of evolutionary research and development, while the first robots that could even begin these tasks were only developed in the 1970s.

Even bearing this in mind, Robocup @ Home can feel like a place where futurist expectations come crashing into technologist reality. You dream of a smooth-voiced, sardonic JARVIS who’s already made your favorite dinner when you come home late from work; you end up shouting “remember the biscuits” at a baffled, ungainly droid in aisle five.

Caring for the Elderly
Famously, Japan is one of the most robo-enthusiastic nations in the world; they are the nation that stunned us all with ASIMO in 2000, and several studies have been conducted into the phenomenon. It’s no surprise, then, that humanoid robotics should be seriously considered as a solution to the crisis of the aging population. The Japanese government, as part of its robots strategy, has already invested $44 million in their development.

Toyota’s Human Support Robot (HSR-2) is a simple but programmable robot with a single arm; it can be remote-controlled to pick up objects and can monitor patients. HSR-2 has become the default robot for use in Robocup @ Home tournaments, at least in tasks that involve manipulating objects.

Alongside this, Toyota is working on exoskeletons to assist people in walking after strokes. It may surprise you to learn that nurses suffer back injuries more than any other occupation, at roughly three times the rate of construction workers, due to the day-to-day work of lifting patients. Toyota has a Care Assist robot/exoskeleton designed to fix precisely this problem by helping care workers with the heavy lifting.

The Home of the Future
The enthusiasm for domestic robotics is easy to understand and, in fact, many startups already sell robots marketed as domestic helpers in some form or another. In general, though, they skirt the immensely complicated task of building a fully capable humanoid robot—a task that even Google’s skunk-works department gave up on, at least until recently.

It’s plain to see why: far more research and development is needed before these domestic robots could be used reliably and at a reasonable price. Consumers with expectations inflated by years of science fiction saturation might find themselves frustrated as the robots fail to perform basic tasks.

Instead, domestic robotics efforts fall into one of two categories. There are robots specialized to perform a domestic task, like iRobot’s Roomba, which stuck to vacuuming and became the most successful domestic robot of all time by far.

The tasks need not necessarily be simple, either: the impressive but expensive automated kitchen uses the world’s most dexterous hands to cook meals, providing it can recognize the ingredients. Other robots focus on human-robot interaction, like Jibo: they essentially package the abilities of a voice assistant like Siri, Cortana, or Alexa to respond to simple questions and perform online tasks in a friendly, dynamic robot exterior.

In this way, the future of domestic automation starts to look a lot more like smart homes than a robot or domestic servant. General robotics is difficult in the same way that general artificial intelligence is difficult; competing with humans, the great all-rounders, is a challenge. Getting superhuman performance at a more specific task, however, is feasible and won’t cost the earth.

Individual startups without the financial might of a Google or an Amazon can develop specialized robots, like Seven Dreamers’ laundry robot, and hope that one day it will form part of a network of autonomous robots that each have a role to play in the household.

Domestic Bliss?
The Smart Home has been a staple of futurist expectations for a long time, to the extent that movies featuring smart homes out of control are already a cliché. But critics of the smart home idea—and of the internet of things more generally—tend to focus on the idea that, more often than not, software just adds an additional layer of things that can break (NSFW), in exchange for minimal added convenience. A toaster that can short-circuit is bad enough, but a toaster that can refuse to serve you toast because its firmware is updating is something else entirely.

That’s before you even get into the security vulnerabilities, which are all the more important when devices are installed in your home and capable of interacting with them. The idea of a smart watch that lets you keep an eye on your children might sound like something a security-conscious parent would like: a smart watch that can be hacked to track children, listen in on their surroundings, and even fool them into thinking a call is coming from their parents is the stuff of nightmares.

Key to many of these problems is the lack of standardization for security protocols, and even the products themselves. The idea of dozens of startups each developing a highly-specialized piece of robotics to perform a single domestic task sounds great in theory, until you realize the potential hazards and pitfalls of getting dozens of incompatible devices to work together on the same system.

It seems inevitable that there are yet more layers of domestic drudgery that can be automated away, decades after the first generation of time-saving domestic devices like the dishwasher and vacuum cleaner became mainstream. With projected market values into the billions and trillions of dollars, there is no shortage of industry interest in ironing out these kinks. But, for now at least, the answer to the question: “Where’s my robot butler?” is that it is gradually, painstakingly learning how to sort through groceries.

Image Credit: Nonchanon / Shutterstock.com Continue reading

Posted in Human Robots

#433901 The SpiNNaker Supercomputer, Modeled ...

We’ve long used the brain as inspiration for computers, but the SpiNNaker supercomputer, switched on this month, is probably the closest we’ve come to recreating it in silicon. Now scientists hope to use the supercomputer to model the very thing that inspired its design.

The brain is the most complex machine in the known universe, but that complexity comes primarily from its architecture rather than the individual components that make it up. Its highly interconnected structure means that relatively simple messages exchanged between billions of individual neurons add up to carry out highly complex computations.

That’s the paradigm that has inspired the ‘Spiking Neural Network Architecture” (SpiNNaker) supercomputer at the University of Manchester in the UK. The project is the brainchild of Steve Furber, the designer of the original ARM processor. After a decade of development, a million-core version of the machine that will eventually be able to simulate up to a billion neurons was switched on earlier this month.

The idea of splitting computation into very small chunks and spreading them over many processors is already the leading approach to supercomputing. But even the most parallel systems require a lot of communication, and messages may have to pack in a lot of information, such as the task that needs to be completed or the data that needs to be processed.

In contrast, messages in the brain consist of simple electrochemical impulses, or spikes, passed between neurons, with information encoded primarily in the timing or rate of those spikes (which is more important is a topic of debate among neuroscientists). Each neuron is connected to thousands of others via synapses, and complex computation relies on how spikes cascade through these highly-connected networks.

The SpiNNaker machine attempts to replicate this using a model called Address Event Representation. Each of the million cores can simulate roughly a million synapses, so depending on the model, 1,000 neurons with 1,000 connections or 100 neurons with 10,000 connections. Information is encoded in the timing of spikes and the identity of the neuron sending them. When a neuron is activated it broadcasts a tiny packet of data that contains its address, and spike timing is implicitly conveyed.

By modeling their machine on the architecture of the brain, the researchers hope to be able to simulate more biological neurons in real time than any other machine on the planet. The project is funded by the European Human Brain Project, a ten-year science mega-project aimed at bringing together neuroscientists and computer scientists to understand the brain, and researchers will be able to apply for time on the machine to run their simulations.

Importantly, it’s possible to implement various different neuronal models on the machine. The operation of neurons involves a variety of complex biological processes, and it’s still unclear whether this complexity is an artefact of evolution or central to the brain’s ability to process information. The ability to simulate up to a billion simple neurons or millions of more complex ones on the same machine should help to slowly tease out the answer.

Even at a billion neurons, that still only represents about one percent of the human brain, so it’s still going to be limited to investigating isolated networks of neurons. But the previous 500,000-core machine has already been used to do useful simulations of the Basal Ganglia—an area affected in Parkinson’s disease—and an outer layer of the brain that processes sensory information.

The full-scale supercomputer will make it possible to study even larger networks previously out of reach, which could lead to breakthroughs in our understanding of both the healthy and unhealthy functioning of the brain.

And while neurological simulation is the main goal for the machine, it could also provide a useful research tool for roboticists. Previous research has already shown a small board of SpiNNaker chips can be used to control a simple wheeled robot, but Furber thinks the SpiNNaker supercomputer could also be used to run large-scale networks that can process sensory input and generate motor output in real time and at low power.

That low power operation is of particular promise for robotics. The brain is dramatically more power-efficient than conventional supercomputers, and by borrowing from its principles SpiNNaker has managed to capture some of that efficiency. That could be important for running mobile robotic platforms that need to carry their own juice around.

This ability to run complex neural networks at low power has been one of the main commercial drivers for so-called neuromorphic computing devices that are physically modeled on the brain, such as IBM’s TrueNorth chip and Intel’s Loihi. The hope is that complex artificial intelligence applications normally run in massive data centers could be run on edge devices like smartphones, cars, and robots.

But these devices, including SpiNNaker, operate very differently from the leading AI approaches, and its not clear how easy it would be to transfer between the two. The need to adopt an entirely new programming paradigm is likely to limit widespread adoption, and the lack of commercial traction for the aforementioned devices seems to back that up.

At the same time, though, this new paradigm could potentially lead to dramatic breakthroughs in massively parallel computing. SpiNNaker overturns many of the foundational principles of how supercomputers work that make it much more flexible and error-tolerant.

For now, the machine is likely to be firmly focused on accelerating our understanding of how the brain works. But its designers also hope those findings could in turn point the way to more efficient and powerful approaches to computing.

Image Credit: Adrian Grosu / Shutterstock.com Continue reading

Posted in Human Robots

#433895 Sci-Fi Movies Are the Secret Weapon That ...

If there’s one line that stands the test of time in Steven Spielberg’s 1993 classic Jurassic Park, it’s probably Jeff Goldblum’s exclamation, “Your scientists were so preoccupied with whether or not they could, they didn’t stop to think if they should.”

Goldblum’s character, Dr. Ian Malcolm, was warning against the hubris of naively tinkering with dinosaur DNA in an effort to bring these extinct creatures back to life. Twenty-five years on, his words are taking on new relevance as a growing number of scientists and companies are grappling with how to tread the line between “could” and “should” in areas ranging from gene editing and real-world “de-extinction” to human augmentation, artificial intelligence and many others.

Despite growing concerns that powerful emerging technologies could lead to unexpected and wide-ranging consequences, innovators are struggling with how to develop beneficial new products while being socially responsible. Part of the answer could lie in watching more science fiction movies like Jurassic Park.

Hollywood Lessons in Societal Risks
I’ve long been interested in how innovators and others can better understand the increasingly complex landscape around the social risks and benefits associated with emerging technologies. Growing concerns over the impacts of tech on jobs, privacy, security and even the ability of people to live their lives without undue interference highlight the need for new thinking around how to innovate responsibly.

New ideas require creativity and imagination, and a willingness to see the world differently. And this is where science fiction movies can help.

Sci-fi flicks are, of course, notoriously unreliable when it comes to accurately depicting science and technology. But because their plots are often driven by the intertwined relationships between people and technology, they can be remarkably insightful in revealing social factors that affect successful and responsible innovation.

This is clearly seen in Jurassic Park. The movie provides a surprisingly good starting point for thinking about the pros and cons of modern-day genetic engineering and the growing interest in bringing extinct species back from the dead. But it also opens up conversations around the nature of complex systems that involve both people and technology, and the potential dangers of “permissionless” innovation that’s driven by power, wealth and a lack of accountability.

Similar insights emerge from a number of other movies, including Spielberg’s 2002 film “Minority Report”—which presaged a growing capacity for AI-enabled crime prediction and the ethical conundrums it’s raising—as well as the 2014 film Ex Machina.

As with Jurassic Park, Ex Machina centers around a wealthy and unaccountable entrepreneur who is supremely confident in his own abilities. In this case, the technology in question is artificial intelligence.

The movie tells a tale of an egotistical genius who creates a remarkable intelligent machine—but he lacks the awareness to recognize his limitations and the risks of what he’s doing. It also provides a chilling insight into potential dangers of creating machines that know us better than we know ourselves, while not being bound by human norms or values.

The result is a sobering reminder of how, without humility and a good dose of humanity, our innovations can come back to bite us.

The technologies in Jurassic Park, Minority Report, and Ex Machina lie beyond what is currently possible. Yet these films are often close enough to emerging trends that they help reveal the dangers of irresponsible, or simply naive, innovation. This is where these and other science fiction movies can help innovators better understand the social challenges they face and how to navigate them.

Real-World Problems Worked Out On-Screen
In a recent op-ed in the New York Times, journalist Kara Swisher asked, “Who will teach Silicon Valley to be ethical?” Prompted by a growing litany of socially questionable decisions amongst tech companies, Swisher suggests that many of them need to grow up and get serious about ethics. But ethics alone are rarely enough. It’s easy for good intentions to get swamped by fiscal pressures and mired in social realities.

Elon Musk has shown that brilliant tech innovators can take ethical missteps along the way. Image Credit:AP Photo/Chris Carlson
Technology companies increasingly need to find some way to break from business as usual if they are to become more responsible. High-profile cases involving companies like Facebook and Uber as well as Tesla’s Elon Musk have highlighted the social as well as the business dangers of operating without fully understanding the consequences of people-oriented actions.

Many more companies are struggling to create socially beneficial technologies and discovering that, without the necessary insights and tools, they risk blundering about in the dark.

For instance, earlier this year, researchers from Google and DeepMind published details of an artificial intelligence-enabled system that can lip-read far better than people. According to the paper’s authors, the technology has enormous potential to improve the lives of people who have trouble speaking aloud. Yet it doesn’t take much to imagine how this same technology could threaten the privacy and security of millions—especially when coupled with long-range surveillance cameras.

Developing technologies like this in socially responsible ways requires more than good intentions or simply establishing an ethics board. People need a sophisticated understanding of the often complex dynamic between technology and society. And while, as Mozilla’s Mitchell Baker suggests, scientists and technologists engaging with the humanities can be helpful, it’s not enough.

An Easy Way into a Serious Discipline
The “new formulation” of complementary skills Baker says innovators desperately need already exists in a thriving interdisciplinary community focused on socially responsible innovation. My home institution, the School for the Future of Innovation in Society at Arizona State University, is just one part of this.

Experts within this global community are actively exploring ways to translate good ideas into responsible practices. And this includes the need for creative insights into the social landscape around technology innovation, and the imagination to develop novel ways to navigate it.

People love to come together as a movie audience.Image credit: The National Archives UK, CC BY 4.0
Here is where science fiction movies become a powerful tool for guiding innovators, technology leaders and the companies where they work. Their fictional scenarios can reveal potential pitfalls and opportunities that can help steer real-world decisions toward socially beneficial and responsible outcomes, while avoiding unnecessary risks.

And science fiction movies bring people together. By their very nature, these films are social and educational levelers. Look at who’s watching and discussing the latest sci-fi blockbuster, and you’ll often find a diverse cross-section of society. The genre can help build bridges between people who know how science and technology work, and those who know what’s needed to ensure they work for the good of society.

This is the underlying theme in my new book Films from the Future: The Technology and Morality of Sci-Fi Movies. It’s written for anyone who’s curious about emerging trends in technology innovation and how they might potentially affect society. But it’s also written for innovators who want to do the right thing and just don’t know where to start.

Of course, science fiction films alone aren’t enough to ensure socially responsible innovation. But they can help reveal some profound societal challenges facing technology innovators and possible ways to navigate them. And what better way to learn how to innovate responsibly than to invite some friends round, open the popcorn and put on a movie?

It certainly beats being blindsided by risks that, with hindsight, could have been avoided.

Andrew Maynard, Director, Risk Innovation Lab, Arizona State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Fred Mantel / Shutterstock.com Continue reading

Posted in Human Robots